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Abstract: Reproductive traits have a key impact on production efficiency in the pig industry. It is
necessary to identify the genetic structure of potential genes that influence reproductive traits. In this
study, a genome-wide association study (GWAS) based on chip and imputed data of five reproductive
traits, namely, total number born (TNB), number born alive (NBA), litter birth weight (LBW), gestation
length (GL), and number of weaned (NW), was performed in Yorkshire pigs. In total, 272 of 2844 pigs
with reproductive records were genotyped using KPS Porcine Breeding SNP Chips, and then chip
data were imputed to sequencing data using two online software programs: the Pig Haplotype
Reference Panel (PHARP v2) and Swine Imputation Server (SWIM 1.0). After quality control, we
performed GWAS based on chip data and the two different imputation databases by using fixed and
random model circulating probability unification (FarmCPU) models. We discovered 71 genome-
wide significant SNPs and 25 potential candidate genes (e.g., SMAD4, RPS6KA2, CAMK2A, NDST1,
and ADCY5). Functional enrichment analysis revealed that these genes are mainly enriched in the
calcium signaling pathway, ovarian steroidogenesis, and GnRH signaling pathways. In conclusion,
our results help to clarify the genetic basis of porcine reproductive traits and provide molecular
markers for genomic selection in pig breeding.

Keywords: genome-wide association analysis; reproductive traits; genotype imputation; Yorkshire
pig

1. Introduction

The reproductive performance of pigs plays a key role in the pig industry. Improving
the reproductive performance of sows can lead to higher economic benefits for pig farms.
However, reproductive traits are low-heritability traits, and their genetic structure is much
more complex [1]. Therefore, it is difficult to improve these traits more rapidly using
traditional breeding methods. With the development of molecular breeding technology,
marker-assisted selection (MAS) and genomic selection (GS) have become effective ways to
improve pig breeding efficiency [2].

In recent years, to complete genomic screening for trait-associated variants, genome-
wide association studies (GWASs) have been widely applied to find quantitative trait loci
(QTL) in economic traits [3]. Thus far, 35,384 QTLs have been identified in pigs accord-
ing to pigQTLdb, of which 3315 QTLs are associated with reproduction (https://www.
animalgenome.org/cgi-bin/QTLdb/SS/summary, 25 April 2022). In pigs, GWAS has iden-
tified numerous SNPs significantly associated with growth traits [4,5], meat quality [6,7],
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feed efficiency [8,9], semen traits [10,11], coat color [12,13], genetic defects [14,15], disease
susceptibility [16,17], and microbial phenotypes [18]. However, most of them were geno-
typed based on SNP microarrays, and the density of markers is a key factor affecting GWAS
efficiency [19]. With the development of sequencing technology and its increasingly low
cost, many researchers have used sequencing or resequencing to perform relevant stud-
ies [20–22]. However, the sequencing or resequencing of large population samples is too
costly and remains an inefficient strategy. Genotype imputation is an effective strategy in
GWAS [23], which has been widely used in human genetics research, such as HapMap [24]
and the 1000 Genomes Project [25]. It can increase the total number and density of SNPs
used for association analysis and provide the opportunity to discover new potential genes.

In our study, we performed GWAS using two different genotype imputation databases
and identified genetic variants related to five reproductive traits in large white pigs.

2. Materials and Methods
2.1. Ethics Statement

All ear tissue sample collection procedures were approved by the Institutional Animal
Care and Use Committee of the Northwest A & F University (approval number: NWAFU-
314021167).

2.2. Animals and Phenotypes

The pig population was uniformly reared at the core breeding farm of Zhumei Group
Limited (Zhumadian City, China). Briefly, we collected breeding information and lineage
records of large white pigs from 2011 to 2019 at this farm. There were 3733 pigs with
complete pedigrees, and pedigrees could be traced back three generations. A total of
10,206 reproduction records of 2844 pigs were collected. The phenotype records included
parity (including 8 levels: 1, 2, 3, 4, 5, 6, 7, or 8 or higher parity number), herd-year-season,
and five reproductive traits. Five reproductive phenotypes, namely, total number born
(TNB), number born alive (NBA), litter birth weight (LBW), gestation length (GL), and
number of weaned (NW), were chosen for the next analysis. Table 1 presents the descriptive
statistics of the five traits. Apart from GL, the other four traits had coefficients of variation
above 25%.

Table 1. Descriptive statistics for five reproductive traits.

Traits 1 N-obs 2 Mean S.D. CV 3 (%) Min Value Max Value

TNB 10,088 9.93 2.54 25.6 3 18
NBA 9862 9.25 2.53 27.2 3 17
LBW 9897 12.47 3.72 29.8 2.4 30
GL 10,193 114.65 1.49 1.3 105 127
NW 5857 8.75 2.46 28.1 2 17

1 TNB: total number born; NBA: number born alive; LBW: litter birth weight; GL: gestation length; NW: number
of weaned. 2 N-obs: number of observations. 3 CV: coefficient of variation.

2.3. Genotyping and Genotype Imputation

In this study, KPS Porcine Breeding 50K Chip v1 (Compass Biotechnology, Beijing,
China), which contains 51,315 SNPs, was used to genotype 272 individuals of the total
2844 pigs with phenotype records. Then, quality control was performed by only keeping
SNPs with MAF > 0.05, SNP call rate > 95%, individual call rate > 95%, and HWE > 1 × 10−6

using the PLINK software (v1.90) [26]. A total of 31,174 SNPs and 271 animals were
retained for further GWAS. To improve the marker density, imputation was performed
using two online software programs: the Pig Haplotype Reference Panel (PHARP v2)
(http://alphaindex.zju.edu.cn/PHARP/index.php/, accessed on 21 October 2022) [27]
and Swine Imputation Server (SWIM 1.0) (https://quantgenet.msu.edu/swim/index.
html, 21 October 2022) [28]. After imputation with PHARP v2, quality control (R2 > 0.8
and MAF > 0.05) was performed, and 9,093,720 SNPs were obtained. Additionally, the
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SNPs were further pruned by using the “–indep-pairwise 50 5 0.9” command with a
sliding window of 50 SNPs, a 5-step SNP shift, and an r2 less than 0.9. Similarly, SNPs
imputed using the SWIM online software were subjected to the relevant quality control
procedure. Finally, with the online imputation software PHARP and SWIM, 1,017,199 and
1,019,225 autosomal SNPs were retained.

2.4. Estimation of Genetic Parameters and Genetic Correlation

The variance and covariance components and genetic correlations of the five traits
were calculated using a repeatability model in DMU v6.0 software [29].

The animal model was as follows:

y = Xb + Zaa + Zpepe + e (1)

In the model, y is a vector of phenotype records; b is the fixed effect of herd-year-
season and parity with eight levels; X is a design matrix relating b to y; a is a vector of
additive genetic effects; pe is a vector of random permanent environmental effects; and e is
a vector of random residual effects. Za and Zpe are the corresponding incidence matrices.

The genetic correlation was calculated as follows:

r12 =
cov(a1,a2)

σa1 σa2

(2)

where r12 is the genetic correlation between trait 1 and trait 2, a1 and a2 represent the
additive genetic values of trait 1 and trait 2 for the same individuals, and cov(a1, a2), σa1 ,
and σa2 refer to the genetic covariance of two traits and the genetic standard deviations of
trait 1 and trait 2, respectively.

2.5. Genome-Wide Association Study (GWAS)

To perform GWAS, we used the sum of an individual’s estimated breeding value (EBV)
and residual as the adjusted phenotype in this study. We used fixed and random model
circulating probability unification (FarmCPU) models for GWAS in GAPIT3 [30]. This
method iteratively takes advantage of the mixed linear model (MLM) as the random model
and stepwise regression as the fixed model [31]. In this study, we used the Bonferroni
correction method to find candidate SNPs. p < 1/N represents the genome-wide suggestive
significance threshold. p < 0.05/N represents the genome-wide significance threshold.
Manhattan and Q-Q plots were generated using the R CMplot package version 4.2.0 [32].

2.6. Candidate Gene Search

We used BedTools [33] to search for candidate genes in the regions 0.5 Mb downstream
and upstream of the significant SNPs based on the pig reference genome (http://useast.
ensembl.org/Sus_scrofa/Info/Index/, accessed on 16 December 2022, Sscrofa11.1). Ad-
ditionally, to better understand the biological processes and pathways of these candidate
genes, we also performed enrichment analyses. Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways and Gene Ontology (GO) terms were enriched via KOBAS-i [34].

3. Results
3.1. Genetic Parameters and Genetic Correlations of Reproductive Traits

The genetic parameters of the five reproductive traits are presented in Table 2. The her-
itability estimates of TNB, NBA, LBW, GL, and NW were 0.0442 ± 0.0011, 0.0442 ± 0.0012,
0.0476 ± 0.0025, 0.1571 ± 0.0009, and 0.0727 ± 0.0021, respectively. As can be seen, these
traits are all low-heritability traits. Table 3 shows the genetic correlations of the five repro-
ductive traits. The genetic correlations ranged from −0.235 to 0.985, with standard errors
ranging from 0.001 to 0.015. Among the five reproductive traits, TNB, NBA, LBW, and NW
show strong positive correlations, with correlations ranging from 0.751 to 0.985. In contrast,

http://useast.ensembl.org/Sus_scrofa/Info/Index/
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GL shows some negative correlations with the remaining four traits, but the correlations
are not strong.

Table 2. Estimates of variance components and genetic parameters for five reproductive traits.

Traits 1 σ2
a

2 σ2
pe

3 σ2
e

4 h2 SE

TNB 0.2687 0.5289 5.2803 0.0442 0.0011
NBA 0.2700 0.5531 5.2856 0.0442 0.0012
LBW 0.6008 1.1104 10.9099 0.0476 0.0025
GL 0.3313 0.1765 1.6008 0.1571 0.0009
NW 0.4052 0.1744 4.9922 0.0727 0.0021

1 TNB: total number born; NBA: number born alive; LBW: litter birth weight; GL: gestation length; NW: number
of weaned. 2 σ2

a : additive genetic variance. 3 σ2
pe: permanent environmental effect variance. 4 σ2

e : residual effect
variance.

Table 3. Genetic correlations between five reproductive traits.

Traits 1 TNB NBA LBW GL NW

TNB 0.985 (0.001) 0.886 (0.003) −0.235 (0.010) 0.751 (0.005)
NBA 0.945 (0.001) −0.188 (0.010) 0.850 (0.003)
LBW −0.120 (0.015) 0.934 (0.002)
GL −0.176 (0.011)
NW

1 TNB: total number born; NBA: number born alive; LBW: litter birth weight; GL: gestation length; NW: number
of weaned. SEs of estimates are in parentheses.

3.2. Identification of Significant SNPs Associated with Reproductive Traits before Imputation

In GWAS based on chip data, only three SNPs on chromosome 13 for GL reach
chromosome-level significance [p < 1.60 × 10−6 (0.05/33,175)] (Figure 1A). These SNPs
are located in candidate genes such as DDPA4 and DDPA2 (Table 4). Additionally, there
are 5, 6, 11, and 7 SNPs that exceed the suggestive significance threshold [p < 3.01 × 10−5

(1/33,175)] for TNB, LBW, NBA, and GL, respectively (Supplementary Table S2).

Table 4. The significant SNPs in the genome for the gestation length (GL) trait using chip data in pigs.

Traits 1 SNP 2 Chr 3 Position p-Value Candidate Gene

GL
13:150210534 13 150210534 2.13 × 10−7 DPPA4 , DPPA2

13:156135228 13 156135228 2.24 × 10−7

13:156180521 13 156180521 6.75 × 10−7

1 GL: gestation length; 2 SNP: single-nucleotide polymorphism; 3 Chr: chromosome.
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Figure 1. Manhattan and Q-Q plots of GWAS based on chip data for five reproductive traits. (A). The
red line represents the genome-wide significance level. The blue line represents the suggestive
significance (3.01 × 10−5). Red spots identify SNPs with genome-wide significance (1.60 × 10−6).
Traits from the inner to outer lanes are gestation length (GL), litter birth weight (LBW), number
born alive (NBA), number of weaned (NW), and total number born (TNB). (B). Q-Q plots of five
reproductive traits.

3.3. Identification of Significant SNPs Associated with Reproductive Traits after Imputation
with PHARP

Figure 2A shows the results of Manhattan plots after imputation using PHARP. The
Q-Q plots are shown in Figure 2B, with genome inflation factors between 0.964 and 1.095
(Supplementary Table S1). The results show that 22 and 3 genome-wide significant SNPs
[p < 4.91 × 10−8 (0.05/1,017,199)] for TNB and GL are identified, respectively (Table 5).
Notably, 14 genes are identified as related to reproduction, including MRTO4, TAS1R2,
PAX7, CAPZB, UBR4, KCNJ2, MITF, LDHA, LDHC, ABCC8, ARGFX, and IGSF11. According
to the suggestive significance threshold [p < 9.83 × 10−7 (1/1,017,199)], 8, 3, 1, and 186 SNPs
are found to be associated with TNB, NBA, LBW, and GL, respectively (Supplementary
Table S3).



Genes 2023, 14, 861 6 of 13

Genes 2023, 14, x FOR PEER REVIEW 6 of 14 
 

 

3.3. Identification of Significant SNPs Associated with Reproductive Traits after Imputation with 
PHARP 

Figure 2A shows the results of Manha an plots after imputation using PHARP. The 
Q-Q plots are shown in Figure 2B, with genome inflation factors between 0.964 and 1.095 
(Supplementary Table S1). The results show that 22 and 3 genome-wide significant SNPs 
[p < 4.91 × 10−8 (0.05/1,017,199)] for TNB and GL are identified, respectively (Table 5). No-
tably, 14 genes are identified as related to reproduction, including MRTO4, TAS1R2, 
PAX7, CAPZB, UBR4, KCNJ2, MITF, LDHA, LDHC, ABCC8, ARGFX, and IGSF11. Accord-
ing to the suggestive significance threshold [p < 9.83 × 10−7 (1/1,017,199)], 8, 3, 1, and 186 
SNPs are found to be associated with TNB, NBA, LBW, and GL, respectively (Supplemen-
tary Table S3). 

 
Figure 2. Manha an and Q-Q plots of GWAS based on data imputation using PHARP for five re-
productive traits. (A) The red line represents the genome-wide significance level (4.91 × 10−8). The 
blue line represents the suggestive significance (9.83 × 10−7). (B) Q-Q plots of five reproductive 
traits. Abbreviations: GL = gestation length, LBW = li er birth weight, NBA = number born alive, 
NW = number of weaned, TNB = total number born. 

Table 5. The significant SNPs in the genome with the total number born (TNB) and gestation length 
(GL) traits using data imputed with PHARP. 

Traits 1 SNP 2 Chr 3 Position p-Value Candidate Genes 

TNB 

6:77501624 6 77501624 6.07 × 10−36 MRTO4, TAS1R2, PAX7, CAPZB, UBR4 
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6:77325166 6 77325166 1.30 × 10−11 MRTO4, TAS1R2, PAX7, CAPZB, UBR4 
6:77330464 6 77330464 1.30 × 10−11 MRTO4, TAS1R2, PAX7, CAPZB, UBR4 
6:77458051 6 77458051 1.30 × 10−11 MRTO4, TAS1R2, PAX7, CAPZB, UBR4 
6:77462853 6 77462853 1.30 × 10−11 MRTO4, TAS1R2, PAX7, CAPZB, UBR4 
6:77480978 6 77480978 1.30 × 10−11 MRTO4, TAS1R2, PAX7, CAPZB, UBR4 

Figure 2. Manhattan and Q-Q plots of GWAS based on data imputation using PHARP for five
reproductive traits. (A) The red line represents the genome-wide significance level (4.91 × 10−8).
The blue line represents the suggestive significance (9.83 × 10−7). (B) Q-Q plots of five reproductive
traits. Abbreviations: GL = gestation length, LBW = litter birth weight, NBA = number born alive,
NW = number of weaned, TNB = total number born.

Table 5. The significant SNPs in the genome with the total number born (TNB) and gestation length
(GL) traits using data imputed with PHARP.

Traits 1 SNP 2 Chr 3 Position p-Value Candidate Genes

TNB

6:77501624 6 77501624 6.07 × 10−36 MRTO4, TAS1R2, PAX7, CAPZB, UBR4
6:77296986 6 77296986 1.36 × 10−27 MRTO4, TAS1R2, PAX7, CAPZB, UBR4

12:10032955 12 10032955 1.16 × 10−12 KCNJ2
13:51852849 13 51852849 7.91 × 10−7 MITF
6:77325166 6 77325166 1.30 × 10−11 MRTO4, TAS1R2, PAX7, CAPZB, UBR4
6:77330464 6 77330464 1.30 × 10−11 MRTO4, TAS1R2, PAX7, CAPZB, UBR4
6:77458051 6 77458051 1.30 × 10−11 MRTO4, TAS1R2, PAX7, CAPZB, UBR4
6:77462853 6 77462853 1.30 × 10−11 MRTO4, TAS1R2, PAX7, CAPZB, UBR4
6:77480978 6 77480978 1.30 × 10−11 MRTO4, TAS1R2, PAX7, CAPZB, UBR4

9:105582098 9 105582098 2.14 × 10−11 -
6:77352307 6 77352307 8.67 × 10−11 MRTO4, TAS1R2, PAX7, CAPZB, UBR4
6:77354514 6 77354514 8.67 × 10−11 MRTO4, TAS1R2, PAX7, CAPZB, UBR4
6:77364237 6 77364237 8.67 × 10−11 MRTO4, TAS1R2, PAX7, CAPZB, UBR4
6:77473320 6 77473320 8.67 × 10−11 MRTO4, TAS1R2, PAX7, CAPZB, UBR4
6:77335250 6 77335250 4.47 × 10−10 MRTO4, TAS1R2, PAX7, CAPZB, UBR4
6:77342385 6 77342385 9.30 × 10−10 MRTO4, TAS1R2, PAX7, CAPZB, UBR4
6:77500110 6 77500110 9.30 × 10−10 MRTO4, TAS1R2, PAX7, CAPZB, UBR4
6:77506794 6 77506794 9.30 × 10−10 MRTO4, TAS1R2, PAX7, CAPZB, UBR4
6:77551399 6 77551399 9.30 × 10−10 MRTO4, TAS1R2, PAX7, CAPZB, UBR4
6:77401218 6 77401218 9.30 × 10−10 MRTO4, TAS1R2, PAX7, CAPZB, UBR4
2:41234740 2 41234740 1.89 × 10−8 LDHA, LDHC, ABCC8

10:67101509 10 67101509 3.72 × 10−8 PFKP

GL
13:139111128 13 139111128 1.25 × 10−8 ARGFX
13:141726529 13 141726529 1.96 × 10−8 IGSF11
13:141659895 13 141659895 3.47 × 10−8 IGSF11

1 TNB: total number born; GL: gestation length; 2 SNP: single-nucleotide polymorphism; 3 Chr: chromosome.



Genes 2023, 14, 861 7 of 13

3.4. Identification of Significant SNPs Associated with Reproductive Traits after Imputation
with SWIM

Figure 3A shows the Manhattan plots of the genotype imputed using SWIM for
GWAS. The Q-Q plots are shown in Figure 3B, with genome inflation factors between 0.889
and 1.132 (Supplementary Table S1). Overall, 271 SNPs reaching suggestive significance
[p < 9.81 × 10−7 (1/1,019,225)] were found to be associated with the five reproductive traits
(Supplementary Table S4). Further, 43 SNPs reach the genome-wide significance level: 8
SNPs for TNB, 3 SNPs for NBA, 8 SNPs for LBW, and 24 SNPs for GL. These significant
SNPs were annotated to a number of candidate genes associated with reproduction, such
as MYOCD, HMGN1, DACH1, GPC5, RPS6KA2, ARAP2, CAMK2A, and RGS18 (Table 6).
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Table 6. The significant SNPs in the genome for the total number born (TNB) and gestation length
(GL) traits using data imputed with SWIM.

Traits 1 SNP 2 Chr 3 Position p-Value Candidate Gene

TNB

12:56839134 12 56839134 3.94 × 10−20 MYOCD
12:56840928 12 56840928 3.09 × 10−19 MYOCD
13:202985373 13 202985373 2..91 × 10−12 HMGN1
11:43367981 11 43367981 2.78 × 10−10 DACH1
11:60300851 11 60300851 3.06 × 10−9 GPC5
10:3913625 10 3913625 3.82 × 10−9 -
1:2245988 1 2245988 1.61 × 10−8 RPS6KA2

11:60226963 11 60226963 2.43 × 10−8 -
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Table 6. Cont.

Traits 1 SNP 2 Chr 3 Position p-Value Candidate Gene

NBA
8:27377546 8 27377546 3.44 × 10−8 ARAP2

2:151525142 2 151525142 4.56 × 10−8 RPS14, NDST1, CAMK2A
2:151616302 2 151616302 4.56 × 10−8 CAMK2A, SYNPO, NDST1

LBW

2:151525142 2 151525142 9.82 × 10−17 RPS14, NDST1, CAMK2A
2:151635734 2 151635734 1.01 × 10−14 RPS14, NDST1, CAMK2A
3:14559878 3 14559878 4.05 × 10−10 AUTS2
3:2296285 3 2296285 3.29 × 10−9 CARD11

6:30206625 6 30206625 4.60 × 10−9 IRX6
8:27377546 8 27377546 2.24 × 10−8 ARAP2

17:13034535 17 13034535 2.64 × 10−8 PSD3

GL

10:1796697 10 1796697 1.12 × 10−8 RGS18
10:1805679 10 1805679 1.12 × 10−8 RGS18
10:1809838 10 1809838 1.12 × 10−8 RGS18
10:1820524 10 1820524 1.12 × 10−8 RGS18
10:1838406 10 1838406 1.12 × 10−8 RGS18
10:1847106 10 1847106 1.12 × 10−8 RGS18
10:1855846 10 1855846 1.12 × 10−8 RGS18
10:1784012 10 1784012 1.12 × 10−8 RGS18
10: 1801316 10 1801316 1.12 × 10−8 RGS18
10:1816938 10 1816938 1.12 × 10−8 RGS18
10:1824028 10 1824028 1.12 × 10−8 RGS18
10:1853098 10 1853098 1.12 × 10−8 RGS18
10:1898784 10 1898784 1.12 × 10−8 RGS18
10:1977819 10 1977819 1.12 × 10−8 RGS18
10:1990160 10 1990160 1.12 × 10−8 RGS18
10:2000211 10 2000211 1.12 × 10−8 RGS18
10:1711812 10 1711812 1.68 × 10−8 RGS18
10:1699892 10 1699892 1.96 × 10−8 RGS18
10:1516875 10 1516875 2.38 × 10−8 RGS18
10:1719667 10 1719667 2.63 × 10−8 RGS18
10:1722698 10 1722698 2.63 × 10−8 RGS18
10:1549545 10 1549545 3.75 × 10−8 RGS18
10:1768905 10 1768905 4.79 × 10−8 RGS18
10:1772064 10 1772064 4.79 × 10−8 RGS18

1 TNB: total number born; GL: gestation length; 2 SNP: single-nucleotide polymorphism; 3 Chr: chromosome.

3.5. Bioinformatics Annotation Analysis

In this research, candidate functional genes were found by searching 0.5 Mb up-
stream and downstream of the suggestive SNPs using GWAS based on chip data and
two imputed databases. The genes associated with TNB are found to be linked to gly-
colysis/gluconeogenesis, TGF-β, the oxytocin signaling pathway, and oocyte maturation
processes. For NBA and LBW, the same genes, PDGFRB, CAMK2A, and MMP2, are iden-
tified, mainly enriched in the calcium signaling pathway, GnRH signaling pathway, and
embryonic organ development process. Finally, the functional genes related to GL are
enriched in the mTOR signaling pathway, ovarian steroidogenesis, prolactin signaling
pathway, embryo development, and regulation of G protein-coupled receptor signaling
pathway (Table 7).
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Table 7. Significant KEGG pathways and GO terms associated with productive traits in pigs (p < 0.05).

Traits 1 Term Database 2 ID Gene Names

TNB

Glycolysis/gluconeogenesis KEGG PATHWAY ssc00010 LDHC|LDHA|PFKP
TGF-β signaling pathway KEGG PATHWAY ssc04350 SMAD4|NBL1

Oxytocin signaling pathway KEGG PATHWAY ssc04921 KCNJ2|RYR2
uterus development Gene Ontology GO:0060065 SMAD4
oocyte maturation Gene Ontology GO:0001556 RPS6KA2

NBA
Calcium signaling pathway KEGG PATHWAY ssc04020 PDGFRB|ADRA1B|CAMK2A
GnRH signaling pathway KEGG PATHWAY ssc04912 MMP2|CAMK2A

Embryonic organ development Gene Ontology GO:0048568 PDGFRB

LBW

MAPK signaling pathway KEGG PATHWAY ssc04010 PDGFRB|GNA12|CSF1R
PPAR signaling pathway KEGG PATHWAY ssc03320 FABP4|FABP5

Regulation of actin cytoskeleton KEGG PATHWAY ssc04810 PDGFRB|GNA12
In utero embryonic development Gene Ontology GO:0001701 PDGFRB|GNA12

Hormone receptor binding Gene Ontology GO:0051427 FABP4
cell development Gene Ontology GO:0048468 IRX5|IRX6

GL

mTOR signaling pathway KEGG PATHWAY ssc04150 ATP6V1C2|ATP6V1A|GSK3B
Ovarian steroidogenesis KEGG PATHWAY ssc04913 ADCY5

Prolactin signaling pathway KEGG PATHWAY ssc04917 GSK3B
Embryo development Gene Ontology GO:0009790 DLX4|DLX3

Regulation of G protein-coupled
receptor signaling pathway Gene Ontology GO:0008277 RGS18

1 TNB: total number born; NBA: number born alive; LBW: litter birth weight; GL: gestation length; NW: number
of weaned. 2 KEGG: Kyoto Encyclopedia of Genes and Genomes.

4. Discussion

Reproductive traits such as TNB, NBA, LBW, GL, and NW are closely related to sow
fertility and are important quantitative indicators of pig production. However, most of
them have low heritability due to the complexity of the genetic structure. Therefore, it is
important to clarify the genetic relationships between reproductive traits and to identify key
candidate genes. In this study, a repeatability model was used to estimate the heritability
of reproductive traits. The heritability estimates of the TNB, NBA, LBW, GL, and NW traits
were 0.0442, 0.0442, 0.0476, 0.1571, and 0.0727, respectively. This is in agreement with the
results of previous studies [35–37]. Additionally, we also calculated genetic correlations
between individual traits and found strong positive correlations between TNB, NBA,
LBW, and NW, with correlation coefficients ranging from 0.751 to 0.985, in agreement
with previous reports [38,39]. This suggests that fewer traits can be selected to simplify
breeding work.

Genotype imputation has been widely used in recent years with the development
of sequencing technologies, price reductions, and the demand for high-density markers.
This approach allows the imputation of chip data with low-density markers to WGS data,
and the imputation accuracy is affected by the density of the target SNPs, the size of the
reference population, the genetic distance between the target and imputation reference
population, and the imputation procedure [40]. In our study, we imputed chip data
using two publicly available online populating platforms. PHARP v2 provides genotype
imputation using Minimac4, and the reference panel includes 4096 haplotypes, 53 million
autosome SNPs, and 122 pig breeds [27]. The reference panel of SWIM 1.0 has a total
of 2259 pigs, representing 44 different breeds. Based on the imputed data of the two
imputation platforms mentioned above, combined with chip data, we performed GWAS
for five reproductive traits.

In our study, we conducted GWAS for five reproductive traits using imputation data
from two different online imputation platforms. Imputation data based on the SWIM
platform detected more significant or potentially significant loci compared to the PHARP
platform. This may be due to the fact that the SWIM platform has a larger number of
pigs in its reference panel. In addition, an imputation strategy could improve on previous
SNP-based studies without the need for additional data and expense. Furthermore, a
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common set of SNPs can be obtained with an imputation approach, thus making a meta-
analysis possible.

Some studies have shown that the FarmCPU model can be effective in GWASs for
identifying loci with low-heritability traits [35]. So, we performed GWAS by using the
FarmCPU model, which divides the MLM into two parts and uses them iteratively [31]. For
the TNB trait, a total of 19 suggestive candidate genes were identified based on chip data
and imputed data. Among them, the RPS6KA2 gene plays a major role in the EGF signaling
cascade at ovulation, which is also correlated with oocyte developmental quality [41]. As a
transcription factor, SMAD4 plays an important role in the porcine reproductive system. It
has been shown that miR-143 [42], miR-26b [43], and miR-10b [44] can inhibit apoptosis
and promote E2 release via SMAD4 in porcine granulosa cells. For both the NBA and LBW
traits, GWAS based on imputed data identified the CAMK2A, NDST1, and RPS14 genes.
In a meta-analysis of reproductive traits in heifers, the CAMK2A gene was identified as
being involved in calcium signaling mechanisms and acting on pituitary gonadotropin
secretion [45]. This is consistent with our findings. In addition, NDST1 has been shown to
be critical for many organogenesis processes, and the targeted disruption of the NDST1
gene impaired heart development in mice [46]. NSDT1 f/f/2 null/3 null mice with defective
decidualization resulted in female infertility [47]. It has been reported that RSP14 is a key
gene in early embryonic development [48]. Embryonic stem cells heterozygous for the
RSP14 gene showed defects in embryoid body differentiation [49]. For the GL trait, both
GWASs based on chip data and imputed data identified genome-wide significant SNPs.
Based on KEGG and GO analyses, we annotated a total of 13 candidate genes, mainly
related to the ovarian steroidogenesis pathway and embryo development process. Among
these, ADCY5 was identified as being associated with seasonal estrus in Sunite sheep [50],
egg production in white Muscovy ducks [51], and fertility in cows [52], while in human
GWAS, ADCY5 was found to be associated with gestational duration [53]. Interestingly,
it has been reported that ADCY5 is associated with fetal growth and birth weight [54].
However, the ADCY5 gene has not been studied in pig reproduction, and we speculate
that this gene may be a key gene in the influence of reproductive performance in pigs.
Unfortunately, no potential SNPs were identified for the NW trait, probably due to the
small size of the population and the high number of missing phenotypic data points.
Overall, our results identify a number of new key candidate genes and loci associated
with reproductive traits in large white pigs, but further studies are needed to confirm the
functions of these genes.

5. Conclusions

In this study, the genetic parameters of TNB, NBA, LBW, GL, and NW in Yorkshire
pigs were estimated using a repeatability model. These traits are low-heritability traits.
There were strong positive correlations between TNB, NBA, LBW, and NW, excluding the
GL trait, which was weakly negatively correlated with them. GWASs based on chip data
and imputed data were performed for five reproductive traits in Yorkshire pigs. Finally,
combining the results of GWAS and bioinformatics annotation analysis, SMAD4, RPS6KA2,
CAMK2A, NDST1, and ADCY5 were identified as novel genes, and some of them have not
been studied in livestock, so they may be key candidate genes affecting reproductive traits
in pigs. The results of this study highlight some new major genes regulating reproductive
traits in pigs and can benefit genome selection for pig genetic breeding.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/genes14040861/s1, Table S1. The genomic inflation factor (λ) for
each GWAS using chip and imputation data of pigs. Table S2. Genes within 0.5 Mb of suggestive
significant SNPs identified by GWAS based on chip data for reproductive traits. Table S3. Genes
within 0.5 Mb of suggestive significant SNPs identified by GWAS based on the PHARP imputation
data for reproductive traits. Table S4. Genes within 0.5 Mb of suggestive significant SNPs identified
by GWAS based on SWIM imputation data for reproductive traits.
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