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Abstract: An inverse comorbidity has been observed between Down syndrome (DS) and solid tumors
such as breast and lung cancers, and it is posited that the overexpression of genes within the Down
Syndrome Critical Region (DSCR) of human chromosome 21 may account for this phenomenon.
By analyzing publicly available DS mouse model transcriptomics data, we aimed to identify DSCR
genes that may protect against human breast and lung cancers. Gene expression analyses with
GEPIA2 and UALCAN showed that DSCR genes ETS2 and RCAN1 are significantly downregulated
in breast and lung cancers, and their expression levels are higher in triple-negative compared to
luminal and HER2-positive breast cancers. KM Plotter showed that low levels of ETS2 and RCAN1
are associated with poor survival outcomes in breast and lung cancers. Correlation analyses using
OncoDB revealed that both genes are positively correlated in breast and lung cancers, suggesting
that they are co-expressed and perhaps have complementary functions. Functional enrichment
analyses using LinkedOmics also demonstrated that ETS2 and RCAN1 expression correlates with
T-cell receptor signaling, regulation of immunological synapses, TGF-β signaling, EGFR signaling,
IFN-γ signaling, TNF signaling, angiogenesis, and the p53 pathway. Altogether, ETS2 and RCAN1
may be essential for the development of breast and lung cancers. Experimental validation of their
biological functions may further unravel their roles in DS and breast and lung cancers.
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1. Introduction

Down syndrome (DS) is the most common chromosomal disorder associated with
intellectual disability. It occurs in approximately 1 of 800 births worldwide, with an ever-
increasing lifetime prevalence as the global population increases. In the United States, DS
accounts for nearly 5000 live births annually, and more than 200,000 persons are living
with the disorder [1,2]. In Europe, the live birth prevalence of DS from 2011 to 2015 was
10.1 per 10,000 live births [3]. The prevalence of DS is influenced by maternal age at
conception, which varies between countries and ethnicities. This variation—coupled with
disparities in childhood survival and poor record keeping especially in under-developed
countries—negatively impacts the precise calculation of a global estimate [4].

Symptoms range from physical defective characteristics such as craniofacial abnor-
malities (i.e., small head and ears, flattened facial profile), short neck, short stature, larger-
than-average tongue, poor muscular tone, and one rather than two wrinkles across the
palm. Other symptoms include delayed social and emotional development, difficulties
with abstract reasoning and problem-solving, short-term memory, focus and concentration
problems, learning impairment, and delay in language and speech development [2,4].

DS is caused by trisomy of Homo sapiens chromosome 21 (HSA21), i.e., the presence of
an extra copy of a complete or partial HSA21. A free trisomy 21 (meiotic nondisjunction
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leading to the presence of 47 chromosomes) is present in 95% of individuals with DS,
translocation (occurs with one HSA21 attached to HSA14, HSA21, or HSA22) accounts
for trisomy 21 in 3 to 5% of affected individuals, and mosaicism for trisomy 21 (an extra
copy of HSA2 present in some, but not all of the body cells) occurs in ~2% of individ-
uals with DS [1,2,4]. The HSA21 is the smallest human autosome: it is approximately
46.7 million bp long and comprises 738 genes, of which 233 are protein-coding genes,
while 505 encode microRNAs, long-noncoding RNAs, immunoglobulin genes and other
regulatory elements [5]. The protein-coding genes encode for cell adhesion molecules, cell
cycle regulators, transcription factors, kinases, ion channels, proteins involved in nucleic
acid processing and/or modification, etc. [6]. On the long arm of the HSA21 is a region
known as the Down Syndrome Critical Region (DSCR). The DSCR has an approximate
length of 5.4 Mb, is located between bands 21q22.13 and q22.2 of HSA21, and harbors
approximately 33 genes that are hypothesized to be responsible for the symptoms that
collectively cause the DS phenotype [7].

Advanced maternal age at conception is a major risk factor for DS; pregnancies in
women over 35 years are more likely to be affected by DS than pregnancies in women at
a younger age [1]. This risk is associated with nondisjunction of HSA21 during meiosis I,
meiosis II, or postzygotic mitotic divisions of oocytes [8,9]. Additionally, specific altered
recombination patterns such as single pericentromeric or telomeric exchanges in meiosis
associated with maternal age contribute to these types of errors [10]. Environmental factors
also influence the risk of nondisjunction but are difficult to identify due to the problem
of defining the exposure, dosage, and timing of each factor [4]. Environmental factors
that contribute to DS include tobacco use, folate metabolism, oral contraceptive use and
maternal socioeconomic status [11].

Due to the chromosomal aberration which results in DS, it is thought to be a predis-
posing factor for certain health conditions such as anxiety disorders, autoimmune diseases,
epilepsy, early-onset Alzheimer disease, hypothyroidism, obstructive sleep apnea, and
recurrent infections [4,12]. Surprisingly, epidemiological data show that while persons
with DS are more (10–30 times) likely to be diagnosed with hematological malignancies
such as acute myeloid, acute lymphoblastic and acute megakaryoblastic leukemias, solid
tumors are less likely to occur within the DS populace [13]. Researchers initially recognized
this phenomenon in the 1940s when it was noticed that persons with DS appeared to have
a lower risk of developing cancer. Since then, some investigations have supported this
finding; notably, for lung cancer, prostate cancer, and breast cancer. In a study of persons
with DS in Denmark, a very low risk of breast and lung cancers was determined [14].
Another study of DS individuals in Finland reported a low incidence of breast cancer [15].

This inverse comorbidity has been attributed to higher susceptibility to apoptosis in
DS, which results in cell death instead of tumorigenesis following cell injury [14]. Another
philosophy ascribes this phenomenon to aberrant histone modification observed in DS
individuals. Although this hypothesis requires further investigation, it has been shown that
aberrant methylation in DS persons leads to mitochondrial dysfunction which results in cell
death, killing malignant cells [16,17]. Again, the inverse comorbidity has been attributed to
the overexpression in specific DSCR genes due to the presence of the extra HSA21 and the
downstream consequences of their overexpression [4]. For example, DS is characterized by
the overexpression of antiangiogenic markers found on HSA21 which halt the progression
of solid tumors that directly depend on angiogenesis. Such antiangiogenic markers include
Col18A1 (collagen Type XVIII α 1 Chain), RCAN1 (regulator of calcineurin 1/calcipressin-1),
and DYRK1A (dual-specificity tyrosine-phosphorylation regulated kinase 1A) [6].

Although the inverse comorbidity between DS and solid tumors has been established,
only a few studies have been conducted to understand the molecular processes and precise
biological mechanism(s) responsible for this observation [18–21]. Using a systematic
computational approach (Figure 1), we identified genes within the DSCR which may
be protective against breast and lung cancers.
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2. Materials and Methods
2.1. Gene Expression Data Acquisition

DS dataset GSE149465, submitted by Duchon et al. (2021) [22], was extracted from the
Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo, accessed on
16 December 2022) for this study. The dataset contains gene expression data of the hip-
pocampi of five male control littermates (Ts65Dn wildtype (WT)) and five male mutant
trisomic mice (Ts65Dn mutant trisomy) analyzed with an Affymetrix GeneChip® Mouse
Gene 1.0 ST Array System (Santa Clara, CA, USA).

In mice, there are three independent chromosomal regions homologous to HSA21.
They are altogether made up of 158 protein-coding homologous genes out of the 228 protein-
coding genes identified on HSA21. The largest region is found on Mus musculus chromo-
some 16 (Mmu16) with 119 orthologous genes. The other parts are found on mouse
chromosome 17 (Mmu17) with 19 homologous genes, and mouse chromosome 10 (Mmu10)
with 37 genes.

The most widely used DS murine model is the Ts(1716)65Dn (noted Ts65Dn) mouse. It
has a supplementary mini-chromosome containing the centromeric region of Mmu17 and
the telomeric fragment of Mmu16. Of all the DS murine models (Ts1Cje, Ts65Dn and
Dp(16)1/Yey), the Ts65Dn mouse is the only DS model that segregates an extra mouse
chromosome; all other models are made by direct duplication of a mouse chromosome
segment that is orthologous to HSA2 [23]. All the DS mouse models used in the study
by Duchon et al. (2021) displayed defects in behavior and cognition upon behavioral
phenotyping and magnetic resonance imaging [22].

http://www.ncbi.nlm.nih.gov/geo
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2.2. Identification of Differentially Expressed DSCR Genes

GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/, accessed on 16 December 2022)
was used to identify differentially expressed genes (DEGs) between the Ts65Dn mutant
trisomy and Ts65Dn WT groups. Genes with adjusted p value < 0.05 and |logFC| ≥ 1 were
considered DEGs.

2.3. Analyses of DSCR Gene Expression in Breast and Lung Cancers

The Gene Expression Profiling Interactive Analysis (GEPIA2) webserver (http://
gepia2.cancer-pku.cn/, accessed on 5 January 2023) [24] was used to evaluate the mRNA
expression of the differentially expressed DSCR genes in breast and lung cancers. Gene
expression data from The Cancer Genome Atlas (TCGA) (representing tumor tissues)
and the Genotype-Tissue Expression (GTEx) project (representing normal tissues) were
analyzed. Statistical significance was set at p value < 0.01 and |Log2FC| > 1.

2.4. Gene Expression Analyses Based on Cancer Stage and Subtype

The expression profiles of the genes of interest were further evaluated in human
breast and lung cancers based on stage and histological type using TCGA data in the
University of ALabama at Birmingham CANcer (UALCAN) data analysis portal (http:
//ualcan.path.uab.edu/, accessed on 5 January 2023) [25,26]. Statistical significance was
achieved when p value was ≤0.05.

2.5. Survival Analyses

The prognostic values of the genes of interest in breast and lung cancer patients
were examined using TCGA data in the Kaplan–Meier (KM) Plotter interactive web re-
source (https://kmplot.com/, accessed on 5 January 2023) [27]. KM Plotter is a web-
based tool applied to evaluate the effect of 54,675 genes on survival using 10,461 cancer
samples, including 5143 breast and 2437 lung samples. The hazard ratio (HR) was calcu-
lated with a 95% confidence interval. Statistical significance was achieved when log-rank
p value was ≤0.05.

2.6. Correlation Analyses

Pair-wise gene expression correlation analyses of the genes of interest were performed
using TCGA data in the OncoDB webserver (http://oncodb.org/index.html, accessed on
5 January 2023) [28]. OncoDB combines RNA-seq, DNA methylation, and associated
clinical data from over 10,000 cancer patients in the TCGA and GTEx studies to examine
gene expression patterns that are connected to clinical cancer characteristics. Statistical
significance was achieved when p value was ≤0.05.

2.7. Functional Enrichment Analyses

The Gene Set Enrichment Analysis (GSEA) tool in the Link Interpreter module
of the LinkedOmics webserver (http://www.linkedomics.org/admin.php, accessed on
7 January 2023) [29] was used to perform functional enrichment analyses of the genes of
interest and their co-expressed genes. The LinkedOmics database is a web-based platform
for analyzing 32 TCGA cancer-associated multi-dimensional datasets. To clarify the bio-
logical functions and signaling pathways that are regulated by the genes of interest and
their co-expressed genes, we annotated each gene based on Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway and Panther pathway. For GO
functional analyses, the gene functions were classified into biological process, cellular
component, and molecular function.

3. Results
3.1. DEGs between Ts65Dn Mutant and Ts65Dn WT Groups

Analysis of the GSE149465 dataset revealed a total of 70 genes that are differentially
expressed between the Ts65Dn mutant and Ts65Dn WT groups. All the DEGs were signifi-

https://www.ncbi.nlm.nih.gov/geo/geo2r/
http://gepia2.cancer-pku.cn/
http://gepia2.cancer-pku.cn/
http://ualcan.path.uab.edu/
http://ualcan.path.uab.edu/
https://kmplot.com/
http://oncodb.org/index.html
http://www.linkedomics.org/admin.php
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cantly upregulated genes, with no significantly downregulated genes (Figure 2). Of the 70
significantly upregulated genes, 18 were identified to be human orthologous DSCR genes
and were used for further analyses (Table 1).
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Figure 2. DEGs between Ts65Dn mutant and Ts65Dn WT groups. A volcano plot showing DEGs
between the Ts65Dn mutant and Ts65Dn WT groups in the GSE149465 dataset. Grey dots: genes with
no significant difference between groups, red dots: significantly upregulated DEGs based on adjusted
p value < 0.05 and |logFC| ≥ 1.

Table 1. Upregulated DSCR genes in the Ts65Dn mutant group compared to the Ts65Dn WT group.

Gene
Symbol Gene Name

Chromosomal Position

Human Mouse

Bace2 β-site app-cleaving enzyme 2 chr16:97157942-97244136 chr21:39556492-39670904
Brwd1 Bromodomain and WD repeat-containing protein 1 chr16:95793292-95883628 chr21:37568748-37698102
B3galt5 β-1,3-galactosyltransferase 5 chr16:96037001-96121059 chr21:38042256-38057589

Cbr1 Carbonyl reductase 1 chr16:93404725-93407393 chr21:34453172-34455941
Cbr3 Carbonyl reductase 3 chr16:93480103-93487878 chr21:34518104-34529412

Dopey2 Dopey protein 2 chr16:93508792-93607476
Dscam Down syndrome cell adhesion molecule chr16:96392040-96971952 chr21:38398213-39235595
Dscr3 Down syndrome critical region gene 3 chr16:94298642-94327689 chr21:37223425-37267532

Dyrk1a Dual-specificity
tyrosine-phosphorylation-regulated kinase 1a chr16:94370869-94495926 chr21:35802642-35897561

Ets2 Ets proto-oncogene 2 transcription factor chr16:95502942-95522095 chr21:37188977-37208711
Hlcs Holocarboxylase synthetase chr16:93931271-94091145 chr21:35130820-35348858

Kcnj6 Potassium inwardly-rectifying channel 6 chr16:94561928-94798555 chr21:36006636-36299912
Morc3 Microrchidia 3 chr16:93629009-93672961 chr21:34702785-34759216

Pigp Phosphatidylinositol
N-acetylglucosaminyltransferase subunit P chr16:94165494-94172701 chr21:35447565-35455253

Psmg1 Proteasome assembly chaperone 1 chr16:95781133-95792160 chr21:37559338-37568021
Rcan1 Regulator of calcineurin 1 chr16:92188843-92196965 chr21:32899008-32908032
Ttc3 Tetratricopeptide protein ligase chr16:94171477-94270079 chr21:35455544-35585333
Wrb Tryptophan-rich basic protein chr16:95946607-95959052 chr21:37764912-37900121

3.2. Differential Expression of DSCR Genes in Breast and Lung Cancers

The mRNA expression levels of the 18 DSCR genes in human breast and lung cancers
from TCGA and GTEx projects were analyzed using GEPIA2. Of these genes, ETS2 and
RCAN1 were determined to be significantly downregulated in both cancers (Figure 3),
suggesting that they may act as tumor suppressors against breast and lung cancers. All
other genes showed no significant difference in their expression between tumor and normal
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samples (Supplementary Figure S1A–R). The UALCAN analyses showed that ETS2 and
RCAN1 expressions were not influenced by breast cancer stages (Figure 4A,B). However,
their expression levels were higher in triple-negative breast cancer (TNBC) compared
to luminal and HER2-positive breast cancers (Figure 4C,D). Similarly, ETS2 and RCAN1
expressions were not influenced by lung cancer stages (Figure 4E,F).
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3.3. ETS2 and RCAN1 Are Associated with Low Overall Survival in Breast and Lung Cancers

The associations between ETS2 and RCAN1 and patient survival in breast and lung
cancers were investigated using KM Plotter. The survival curves show that in breast cancer, low
expression of ETS2 and RCAN1 is associated with a significantly lower probability of survival
(Figure 5A,B). Similar results were observed in the lung cancer cohort (Figure 5C,D), suggesting
that ETS2 and RCAN1 expression affect survival outcomes in breast and lung cancers.
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3.4. ETS2 and RCAN1 Expression Are Positively Correlated in Breast and Lung Cancers

We further explored the possibility of co-expression of ETS2 and RCAN1 using On-
coDB. Pair-wise gene expression correlation analyses revealed that ETS2 and RCAN1 are
positively correlated in breast and lung cancers, with a stronger correlation seen in breast
cancer (Figure 6).
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3.5. Functional Analyses of ETS2 in Breast and Lung Cancers

The GO analyses for cellular components and molecular function showed that ETS2
is involved in the positive regulation of immunological synapses and the negative regula-
tion of odorant binding and olfactory receptor activity in breast and lung cancers. KEGG
pathway analysis also showed that in both cancers, ETS2 may positively regulate T-cell
receptor signaling, focal adhesion, Hippo signaling pathway, and transforming growth
factor β (TGF-β) signaling, and may negatively influence olfactory regulation and neu-
roactive ligand–receptor interaction. Furthermore, Panther pathway analysis revealed that
in breast and lung cancers, ETS2 may positively influence T-cell activation as well as the
epidermal growth factor (EGF) receptor, integrin, platelet-derived growth factor (PDGF),
interferon-γ (IFN-γ), p53, and cadherin signaling pathways. Nicotine degradation and the
heterotrimeric G-protein signaling pathway may also be negatively regulated by ETS2 in
both cancers (Figure 7).

3.6. Functional Analyses of RCAN1 in Breast and Lung Cancers

GO analyses for biological processes showed that in breast and lung cancers, RCAN1
may positively regulate extracellular structure organization, myocyte proliferation, cell
chemotaxis, cell–cell adhesion, and glycosaminoglycan binding while negatively regulating
translational initiation, mRNA processing, tRNA metabolic process, and DNA replication.
The cellular component analysis also showed that in both cancers, RCAN1 is significantly
enriched in the extracellular matrix, receptor and transporter complexes, and cell–substrate
junction. GO for molecular function showed that in breast and lung cancers, RCAN1
may be involved in cytokine and glycosaminoglycan binding. KEGG pathway analysis
revealed that in both cancers, RCAN1 may be involved positive regulation of cytokine–
cytokine regulation, TGF-β signaling, tumor necrosis factor (TNF) signaling, and cell
adhesion, and the negative regulation of pyrimidine metabolism, cell cycle, and DNA
replication. Moreover, Panther pathway analysis revealed that in both cancers, RCAN1 may
be involved positive regulation of T-cell activation and angiogenesis as well as the integrin,
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EGF receptor, TGF-β, and cadherin signaling pathway while negatively regulating the
ubiquitin–proteasome pathway and DNA replication. Additionally, RCAN1 may positively
influence the p53 pathway in breast cancer, but negatively influence the p53 pathway in
lung cancer (Figure 8).
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4. Discussion

Globally, DS is the most common genetic disorder, and research is still ongoing to fully
understand the syndrome. An inverse comorbidity has been observed between DS and
solid tumors such as breast and lung cancers, offering a new direction for understanding
the molecular mechanisms of DS as well as these cancers. The HSA21, which is principal in
DS, has been determined to harbor a DSCR composed of approximately 33 genes which
may be responsible for the characteristic features of DS. The DSCR genes are also theorized
to act as tumor suppressors against solid tumors [4]. Nonetheless, the protective roles of
the DSCR genes against solid tumors have not been elucidated. Research on the intriguing
inverse comorbidity between some cancers and DS may result in new cancer prevention
and treatment strategies. In this in silico study, we identified two DSCR genes (ETS2 and
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RCAN1) that are upregulated in DS mouse models but are significantly downregulated in
human breast and lung cancer tissues compared to normal tissues and are associated with
cancer patient survival.

The ETS (erythroblast transformation-specific) family of transcription factors are
composed of a total of 28 ETS proteins in humans. They regulate numerous genes that are
involved in cell proliferation, differentiation, development, angiogenesis, and apoptosis.
ETS1 and ETS2 are representative members of the ETS family and are downstream effectors
of the RAS/RAF/ERK pathway [30]. Depending on the biological event, the ETS2 gene
functions in tumor suppression or oncogenesis. On one hand, ETS2 suppresses tumors by
recruiting co-repressors and activating gene transcription [31]. On the other hand, ETS2
may contribute to tumorigenesis by stabilizing gain-of-function mutant p53, inducing
cyclin D1 promoter activity, and binding ETS sites on the hTERT promoter region [30].
In breast cancer cells, ETS2 may inhibit invasive properties [32]. Conversely, transfection
of MCF-12A breast cancer cells with ETS2 promotes proliferation, adhesiveness, and
invasiveness [33]. Furthermore, ETS2 interacts with c-Myc oncogene to maintain hTERT
expression in breast cancer [34], sustaining the replicative potential of the cancer cells.
From our analyses, ETS2 levels were associated with patient survival but not cancer stage,
suggesting that ETS2 is associated with the development but not the progression of breast
and lung cancers. Furthermore, ETS2 levels were lower in luminal and HER2-positive
breast cancers compared to TNBC, indicating that it may play a role in the molecular
profiles that characterize these breast cancer subtypes. Further research is needed to
ascertain the biological conditions that instigate the opposing roles of ETS2 in breast cancer.
ETS1/2 proteins also regulate the expression of dual specificity phosphatase 6 protein
which suppresses lung cancer progression by inhibiting oncogenic ERK signaling [35]. In
human non-small cell lung cancer (NSCLC), Kabbout et al. (2013) demonstrated that ETS2
acts as a tumor suppressor by inhibiting MET proto-oncogene [36]. Thus, ETS2 may at least
partially protect DS individuals from developing lung cancer.

RCAN1 gene, also known as DSCR1 (Down syndrome critical region 1) gene, exists as
two isoforms in human tissues: RCAN1.1 and RCAN1.4. Post-transcriptional modifications
result in the generation of two versions of RCAN1.1, namely RCAN1.1L (the major isoform)
and RCAN1.1S (the truncated form of RCAN1.1 L). RCAN1 is an endogenous inhibitor of
calcineurin dephosphorylation, which is critical for the activation and nuclear translocation
of nuclear factor of activated T cells (NFAT) [37]. Since NFAT promotes cancer cell prolifera-
tion and invasiveness, RCAN1 serves as a tumor suppressor [37–39]. RCAN1 expression in
breast cancer tissues is lower than in adjacent healthy tissues [40], and its isoform RCAN1-4
represses breast cancer progression by inhibiting calcineurin/NFAT2 signaling [41]. From
this study, RCAN1 levels were associated with patient survival but not cancer stage, sug-
gesting that RCAN1 is associated with the development but not the progression of breast
and lung cancers. Similar to ETS2, RCAN1 expression was downregulated in luminal and
HER2-positive breast cancers compared to TNBC, suggesting that it may influence the
molecular features of breast cancer subtypes. RCAN1 reduces the aggressiveness of lung
cancer cell lines by inhibiting the calcineurin/NFAT pathway [21,42]. Additionally, RCAN1
overexpression suppresses lung metastases by modulating the CN/NFAT/angiopoietin
2 signaling axis in lung endothelium [43]. Moreover, Kim et al. (2020) detected lower
RCAN1-4 levels in NSCLC tissues compared to healthy lung tissues [44]. This suggests
that RCAN1 acts as a tumor suppressor in lung cancer.

In this study, a positive correlation between ETS2 and RCAN1 was observed in breast
and lung cancers. A previous study which assessed the frequencies of deleted regions
in HSA21 in solid tumors reported that the RCAN1 gene is deleted in Wilms tumors and
downregulated (but not deleted) in breast and lung cancers [45]. Another study discovered
that in breast and lung cancers, ETS2 amplification (but not deletion) is the only type of
genetic alteration [46]. As such, we hypothesize that other mechanisms rather than large
gene deletions are responsible for the concurrent lowered expression of both genes in these
cancers. Bassuk et al. (1997) demonstrated that a physical interaction occurs between
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multiple ETS and NF-kB/NFAT proteins in activated normal human T cells [47]. Tsao et al.
(2013) also revealed that in primary Th1 cells, ETS1—an ETS2 homolog—physically and
functionally interacts with NFAT to modulate IL-2-mediated immune responses [48]. Given
the role of RCAN1 in the regulation of NFAT, it is likely that ETS2 and RCAN1 function
cooperatively in cellular responses. Indeed, Luo et al. (2021) determined that ETS2 can bind
to the RCAN1 promoter and can form a complex with NFAT to transactivate RCAN1 [49].
This suggests that ETS2 and RCAN1 are co-expressed and may possess complementary
functions in the development of breast and lung cancers.

The functional enrichment analysis in this study showed that ETS2 may participate
in T-cell receptor signaling, regulation of immunological synapses, focal adhesion, the
Hippo signaling pathway, TGF-β signaling, EGF receptor signaling pathway, integrin
signaling pathway, PDGF signaling pathway, and IFN-γ signaling pathway. These signaling
pathways have been shown to affect the development and progression of breast and
lung cancers [50,51], suggesting that ETS2 may contribute to the biology and immune
landscape of breast and lung cancers. The functional enrichment analysis also revealed
that RCAN1 may be involved in cytokine regulation, T-cell activation, TNF signaling, TGF-
β signaling, integrin signaling pathway, angiogenesis, EGF receptor signaling pathway,
cadherin signaling pathway, and the p53 pathway in breast and lung cancers. These
biological events are critical for the pathogenesis and advancement of breast and lung
cancers [50,51]. Thus, RCAN1 expression may be critical for biological processes and
immune responses to influence breast and lung tumorigenesis.

In conclusion, ETS2 and RCAN1, which are significantly upregulated in DS mouse
models, are downregulated in human breast and lung cancers and are associated with
patient survival. Considering their expression patterns in DS and breast and lung cancers,
as well as their co-expression in these cancers, we hypothesize that ETS2 and RCAN1
are at least partly responsible for the low incidences of breast and lung cancers in DS. It
is, however, necessary to note that the RCAN1 gene assessed in this study could not be
verified as the RCAN1.1 or RCAN1.4 isoform. Furthermore, the tissue-specific expression
patterns of the genes in the hippocampi of the Ts65Dn models may not reflect patients’
breast and lung tumor expression data. Therefore, experimental research is necessary to
test this hypothesis and to fully understand the roles of these genes in DS and breast and
lung cancers.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14040800/s1, Figure S1: Differential expression of upregulated
DSCR genes in breast and lung cancers. Table S1: Survival of breast cancer patients based on
expression of DSCR genes. Table S2: Survival of lung cancer patients based on expression of
DSCR genes.
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