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Abstract: Phenotype–gene association studies can uncover disease mechanisms for translational re-
search. Association with multiple phenotypes or clinical variables in complex diseases has the ad-
vantage of increasing statistical power and offering a holistic view. Existing multi-variate association
methods mostly focus on SNP-based genetic associations. In this paper, we extend and evaluate
two adaptive Fisher’s methods, namely AFp and AFz, from the p-value combination perspective for
phenotype–mRNA association analysis. The proposed method effectively aggregates heterogeneous
phenotype–gene effects, allows association with different data types of phenotypes, and performs the
selection of the associated phenotypes. Variability indices of the phenotype–gene effect selection are
calculated by bootstrap analysis, and the resulting co-membership matrix identifies gene modules
clustered by phenotype–gene effect. Extensive simulations demonstrate the superior performance of
AFp compared to existing methods in terms of type I error control, statistical power and biological
interpretation. Finally, the method is separately applied to three sets of transcriptomic and clinical
datasets from lung disease, breast cancer, and brain aging and generates intriguing biological findings.

Keywords: association analysis; gene expression; phenotypes; complex disease

1. Introduction

Identifying genes associated with disease phenotypes in transcriptomics studies is
of long-standing interest. Many methods for testing genes associated with a univariate
phenotype have been labelled as “differential expression” analysis, which is named after
the commonly encountered case–control design; examples include edgeR [1], limma [2],
and DESeq2 [3] (also see review papers [4,5] for more details). In many complex diseases,
however, patients are often characterized by multiple phenotypes that reflect different
facets of the disease. For example, chronic obstructive pulmonary disease (COPD) can be
characterized by FEV1 (i.e., the volume of breath exhaled with effort in one second), FVC
(i.e., the full amount of air that can be exhaled with effort in a complete breath), as well
as several test indices of blood. Despite active research in univariate association analysis,
the problem of testing genes associated with multivariate phenotypes is understudied and
presents new challenges.

A naive association is to test the association between all pairs of genes and phenotypes
and interpret significant genes for each phenotype. This, however, loses the statistical power
and interpretation of gene mechanisms in often correlated phenotypes. Therefore, there is
great interest in aggregating the effects of a gene on multiple phenotypes and testing for the
overall association. Hence in this paper, we consider the following union–intersection test
(UIT) [6] or conjunction null hypothesis [7] to determine the overall association between a
gene and K phenotypes of interest:

H0 : ~θ ∈ ⋂{θk = 0}
HA : ~θ ∈ ⋃{θk 6= 0}.
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where ~θ = (θ1, . . . , θK) and each θk denotes the effect size for measuring the association
between the gene and phenotype k. Conventional methods for the UIT test include multi-
variate analysis of variance (MANOVA), linear mixed models (LMMs), and generalized
linear models (GLMM). However, such methods either impose strong assumptions on
the data type of phenotypes (e.g., Gaussian assumption for MANOVA) or are incapable
of handling multiple phenotypes of different data types (e.g., continuous, binary and
categorical) at the same time. As it is common to have phenotypes of various data types
in a complex disease, it is challenging to use the above methods to aggregate the effects
of multiple phenotypes in practice. Another category of potential solution is regression-
based methods. O’Reilly et al. [8] proposed the MultiPhen method by regressing genotypes
(SNPs in the paper but genes in our case) on phenotypes via a proportional odds logistic
model, which is only applicable to ordinal outcomes in GWAS. Wu et al. [9] proposed the
multi-trait gene sequence kernel association test (MSKAT), where the purpose is to test the
association between a phenotype and multiple SNPs in a chromesome region. Since both
regression-based methods were previously developed for SNP-based association and are
difficult to extend to the transcriptomic scenario, we will not include them in the evaluation
in this paper.

Borrowing ideas from meta-analysis, another approach is to combine summary statis-
tics (e.g., p-values and test statistics) from the association tests that separately test for each
phenotype. O’Brien et al. [10] combined test statistics from the individual tests on each
trait weighted by inverse variance. Pan et al. [11] and Zhang et al. [12] proposed the sum
of powered score tests (SPU) and adaptive SPU (aSPU) to combine the score test statistics
derived from generalized estimation equations (GEE). However, the proposed methods
are still incapable of dealing with phenotypes of different data types. In addition, the
two methods involve tuning parameters and are not fully data-driven. Instead of directly
combining test statistics, many p-value combination tests are also applicable to this prob-
lem. Examples include Fisher’s method [13] (TFisher = −2 ∑K

k=1 log pk), or the minimum
p-value method (ref. [14] denoted by minP hereafter) (TminP = minpi), where for each
k = 1, . . . , K, pk denotes the p-value of hypothesis test that tests the association between
the gene and phenotype k. To account for dependency between phenotypes and thus
the p-values, one can perform a permutation test by randomly shuffling sample columns
in the gene expression data while keeping the phenotype data unchanged. In this way,
the associations between genes and phenotypes break down while correlation structure
between phenotypes is preserved. Van der Sluis et al. [15] also proposed to extend the
Simes’ test by exploiting the correlation structure between p-values (TATES). The p-value
combination approaches can aggregate effects from multiple phenotypes of arbitrary data
types, as long as the input p-values are derived from valid tests.

In addition to association tests, another challenge arises from heterogeneity across
phenotypes, where only a subset of phenotypes have associations and the subsets differ
for each gene. That is, in a multivariate phenotype–gene association study on a complex
disease, a given gene may only have an association with a subset of phenotypes, and the
association levels may be heterogeneous. The heterogeneity of associations can significantly
impact the power of existing methods. For example, when the subset of phenotypes
associated with the gene is small or there is only a single strong effect with many rather
weak effects, the minP method will be more powerful, while when most phenotypes
have associations, Fisher’s method will perform better [16]. The heterogeneity can also
lead to a misleading biological interpretation of existing methods. For example, suppose
~p1 = (0.001, 1, 1) denotes p-values for separately testing associations between gene 1 and
three phenotypes, and ~p2 = (0.1, 0.1, 0.1) denotes the p-values for gene 2. Although both
genes lead to the same Fisher’s test statistics (TFisher = 13.8), their biological interpretations
hugely differ. ~p1 indicates strong statistical significance in only the first phenotype, whereas
~p2 indicates marginal statistical significance in all three. All the methods mentioned above
fail to characterize the heterogeneity across the phenotypes. As a result, methods for
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aggregating heterogeneous effects that have a refined characterization of heterogeneity and
competitive statistical power are preferred for this problem.

Another challenge is to identify the subset of phenotypes that are associated with
a given gene. When the individual associations between the phenotypes and the gene
are strong, it is easy to look at whether each corresponding p-value is significant or not.
However, in our setting, where each individual association between the phenotype and
the gene is weak (corresponding p-value is marginally significant or non-significant), it is
challenging to identify the subset of associated phenotypes. To the best of our knowledge,
no existing method has addressed this problem.

To address the above challenges, we extend two existing p-value combination meth-
ods to aggregate association information across phenotypes. In Li and Tseng [17] and
Huo et al. [18], an adaptively weighted Fisher’s statistic takes the minimal p-values among
all possible combinatorial aggregations. Consequently, we denote the procedure modified
from this method as AFp. Later, Song et al. [19] proposed an alternative adaptive Fisher’s
statistics by taking the minimal z-standardized Fisher score (i.e., z-standardization by sub-
traction of the mean and division of standard deviation) among all possible combinatorial
aggregations, which we consequently denote as its modified method as AFz in this paper.
Based on the p-value combination, both methods can accommodate multiple phenotypes of
different data types at the same time. Furthermore, both methods adaptively assign a binary
0–1 weight to each input p-value to determine whether the corresponding phenotype is
associated with the gene of interest. As a result, the proposed methods efficiently aggregate
heterogeneous effects across phenotypes, provide a refined characterization of the hetero-
geneity of association patterns for better biological interpretation, and identify the subset
of associated phenotypes, even when the individual associations are weak. We evaluate the
two methods through comprehensive simulations. We find that both methods have com-
parable performance on type I error control and statistical power for detecting the overall
association between a gene and multiple phenotypes. However, the AFp-based method
outperforms the AFz-based method in phenotype selection. Consequently, we recommend
the AFp-based method for future applications. For further downstream interpretation, we
propose to evaluate the variability of the 0–1 weight estimates using variability indices
constructed through bootstrapping. In addition, following Huo et al. [18], we further use
the bootstrap samples to estimate a co-membership matrix of genes, followed by the tight
clustering method [20] to identify gene modules of different phenotype association patterns.

The paper is structured as follows. Section 2 introduces the AFp and AFz-based meth-
ods and the accompanying downstream analysis methods. Section 3.1 performs extensive
simulations to evaluate AFp, AFz, as well as other existing methods. Section 3.2 contains the
results from a lung disease transcriptomic dataset, a breast cancer transcriptomic dataset,
and a brain aging transcriptomic dataset, respectively. Section 4 includes final conclusion
and discussion.

2. Methods

This section introduces our proposed methods for multivariate phenotype-gene asso-
ciation analysis. Section 2.1 discusses how to generate the input p-values. In Section 2.2, we
propose to use the adaptive sum of log-transformed p-values to aggregate heterogeneous
effects in the input p-values, which is the foundation that AFz and AFp are built upon. We
also propose a permutation procedure to take the correlation structure of phenotypes into
account. By extending the AFp and AFz methods, Sections 2.3 and 2.4 propose two ways to
adaptively assign the binary 0–1 weights for the log-transformed p-values and formulate
the final statistic for testing the overall association between multiple phenotypes and the
gene of interest. Sections 2.5 and 2.6 discuss the bootstrap algorithms to estimate the
variability indices of the 0–1 weight estimates and identify gene modules associated with
disease phenotypes. Suppose there are n independent samples, K phenotypes, p gene fea-
tures, and M covariates. Denote by Yik, Zim, and Xij the k-th phenotype, m-th covariate, and
j-th gene feature of subject i, respectively, where 1 ≤ k ≤ K, 1 ≤ m ≤ M, and 1 ≤ j ≤ p. Let
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−→
Yk = (Y1k, Y2k, . . . , Ynk)

T ,
−→
Zm = (Z1m, Z2m, . . . , Znm)T , and

−→
Xj = (X1j, X2j, . . . , Xnj)

T be the
vectors of the k-th phenotype, m-th covariate, and j-th gene for all the samples, respectively.

2.1. Generalized Linear Models for Generating Input p-Values

To generate the input p-values for both the AFp and AFz methods, the following gener-
alized linear model is assumed for the k-th phenotype and the j-th gene with M covariates:

gk(E(Yik)) = Xij · θjk +
M

∑
m=1

Zim · αmkj (1)

where θjk is the coefficient of the gene feature, αmkj is the coefficient of covariates, and
gk() is the link function. The associated p-value pjk of θjk can be derived by the classic
Wald test or score test, which serves as the input p-values for the combination. Note that
the distributional assumptions on Yik and the choices of link function gk are not required
to be consistent across the phenotypes, which allows one to accommodate phenotypes
of different data types. For example, one can use gk(t) = logit(t) for binary outcomes,
gk(t) = log(t) for count data, and gk(t) = t for continuous outcomes.

2.2. Aggregation of Heterogeneous and Dependent Effects in p-Values

To aggregate heterogeneous effects in the input p-values, we propose to use the
following weighted sum of the log-transformed p-values:

Uj(
−→wj) = −

K

∑
k=1

wjk log(pjk),

where wjk ∈ {0, 1} is the binary 0–1 weight to determine whether the k-th phenotype
is associated with the j-th gene. Here, −→wj = (wj1, wj2, . . . , wjK)

T denotes the weight
vector. The observed weighted statistic of Uj(

−→wj) is denoted by uj(
−→wj). Let

Ω =
{−→wj : −→wj = (wj1, . . . , wjK) ∈ {0, 1}K} \ {~0} be the searching space of all possi-

ble realizations of −→wj. In the following Sections 2.3 and 2.4, we adapt the AFp and AFp
methods to aggregate Uj(

−→wj)s with all possible choices of wj in Ω and adaptively choose
the best −→wj to determine the subset of p-values with true signals. The above procedures
require estimation of the mean, standard deviation, and p-value of Uj(

−→wj) for a given −→wj.
However, those quantities are intractable when a complex dependency structure between
the phenotypes is present. To account for the correlations between the phenotypes, we
propose the following permutation procedure.

Recall that we want to test the conditional independence between each gene and
K phenotypes given the covariates Z (i.e., Y ⊥ −→Xj | Z), where Z = (

−→
Z1,
−→
Z2, . . .

−→
Zm) and

Y = (
−→
Y1 ,
−→
Y2 , . . .

−→
YK). We intend to develop a permutation procedure that breaks the

associations between Y and
−→
Xj while preserving the associations between Y and Z and

between
−→
Xj and Z. Simply permuting the genotype

−→
Xj leads to an inflated type I error rate

because it also breaks the correlations between
−→
Xj and covariates Z. Following Potter [21]

and Werft and Benner [22], we permute residuals of regressions of
−→
Xj on Z for generalized

regression models. That is, we first regress each gene feature on the covariates, then
permute the residuals derived from the regression and fit the generalized linear model by
regressing each phenotype on the permuted residuals.

More precisely, we denote the vector of residuals of regressing Xj on Z by
−→ej = (e1j, e2j, . . . , enj)

T and permute it for B times. In the b-th permutation, we regress
−→
Yk on e(b)j by the generalized linear model gk(E(Yik)) = e(b)ij · θ

(b)
jk (1 ≤ i ≤ n) and cal-

culate the p-values p(b)jk for the coefficient θ
(b)
jk . After B permutations, we obtain a B× K

matrix P = {p(b)jk }. The observed weighted statistics for permuted data are calculated as
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u(b)
j (−→wj) = −∑K

k=1 wjk log(p(b)jk ). Note that we break the association of each gene and each
phenotype. Therefore, for a given −→wj, the null distribution of the weighted statistic Uj(

−→wj)

is approximated by {u(b)
j′ (−→wj), 1 ≤ b ≤ B, 1 ≤ j′ ≤ p} with precision B× p.

2.3. AFp

Below, we extend the adaptively weighted Fisher’s method [17,18] to aggregate p-
values from each dependent phenotype. Since the statistics take the minimal p-values
among all possible combinatorial aggregation, we denote the method as AFp. Under the
null hypothesis that θjk = 0, ∀k, the p-value of observed weighted statistic, pU(uj(

−→wj)), can
be obtained for the j-th gene and a given weight −→wj ∈ Ω by

pU(uj(
−→wj)) =

∑B
b=1 ∑

p
j′=1 I{u(b)

j′ (−→wj) ≥ uj(
−→wj)}

B · p .

Here, I{.} is the indicator function. We have further defined the AFp statistic as
the minimal p-value among all possible weights −→wj ∈ Ω (see Li and Tseng [17] and
Huo et al. [18] for more details):

TAFp
j = min−→wj∈Ω

pU(uj(
−→wj)).

The estimated weight vector

−̂→wj
AFp

= arg min−→wj∈Ω
pU(uj(

−→wj))

can be used to determine the subset of phenotypes associated with the gene j. To calculate

the p-value of TAFp
j , we similarly calculate TAFp,(b)

j using P = {p(b)jk } from permutation.
Specifically, we calculate

TAFp,(b)
j = min−→wj∈Ω

pU(u
(b)
j (−→wj)),

where pU(u
(b)
j (−→wj)) =

∑B
b=1 ∑

p
j′=1

I{u(b)
j′ (−→wj)≥u(b)

j (−→wj)}
B·p , and the p-value of TAFp

j can be calcu-
lated as

pT(T
AFp
j ) =

∑B
b=1 ∑

p
j′=1 I{TAFp,(b)

j′ ≤ TAFp
j }

B · p .

In summary, pT(T
AFp
j ) can be used to determine whether the j-th gene is associated

with K phenotypes and −̂→wj
AFp

can be used to determine which specific phenotypes the j-th
gene is associated with.

2.4. AFz

Below, we extend another adaptive Fisher’s method [19] to aggregate p-values from
each dependent phenotype. Since the statistics take the minimal standardized Fisher’s
score (i.e., z-standardization by subtracting the mean and dividing by the standard devia-
tion) among all possible combinatorial aggregation, we denote the method as AFz. For a
given −→wj ∈ Ω, the mean and standard deviation of uj(

−→wj) under null can be approximated

by Ê(uj(
−→wj)) =

∑B
b=1 ∑

p
j′=1

u(b)
j′ (−→wj)

B·p and ŝd(uj(
−→wj)) =

√
∑B

b=1 ∑
p
j′=1
{u(b)

j′ (−→wj)−E(uj(
−→wj))}2

B·p , respec-
tively. We denote by u′j(

−→wj) the z-standardized (observed) weighted statistic (see [19]),

u′j(
−→wj) =

uj(
−→wj)− Ê(uj(

−→wj))

ŝd(uj(
−→wj))

,
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and the AFz statistic is defined as the largest standarized observed weighted statistic among
all possible weights:

TAFz
j = max−→wj∈Ω

u′j(
−→wj).

The estimated weight vector is obtained by

−̂→wj
AFz

= arg max−→wj∈Ω
u′j(
−→wj).

To calculate the p-value of TAFz
j , we obtain the standardized observed weighted statistic

by u′,(b)j (−→wj) =
u(b)j (−→wj)−Ê(u(b)j (−→wj))

ŝd(u(b)j (−→wj))
for each permutation b, and TAFz,(b)

j = max−→wj∈Ω u′,(b)j (−→wj),

where Ê(u(b)
j (−→wj)) = Ê(uj(

−→wj)) and ŝd(u(b)
j (−→wj)) = ŝd(uj(

−→wj)) by definition. Finally, the

p-value of −→wj
AFz is calculated as

pT(TAFz
j ) =

∑B
b=1 ∑

p
j′=1 I{TAFz,(b)

j′ ≥ TAFz
j }

B · p

In summary, pT(TAFz
j ) can be used to determine whether the j-th gene is associated

with K phenotypes, and −̂→wj
AFz

can be used to determine which specific phenotypes the j-th
gene is associated with.

One can note that both AFp and AFz use either the minimum p-value (AFp) or
maximum z-score (AFz) as the final test statistic, where each p-value (AFp) or z-score (AFz)
corresponds to a subset of selected phenotypes (phenotypes with weights equal to 1), and
all possible subsets are searched in the optimization. The rationale comes from the fact
that the traditional Fisher’s method combines all p-values, including non-signal ones. This
greatly weakens statistical power. Both AFp and AFz aim to identify the most possible
subset of phenotypes that are associated with the gene by an optimization procedure in
the test statistics. This strategy of adaptive combination of p-values has gradually become
popular in the literature, e.g., [17,19,23–26].

2.5. Variability Index of Adaptive Weights

The 0–1 weight estimates ŵj =
(
ŵj1, . . . , ŵjK

)
obtained by either AFp or AFz are

binary and discontinuous as a function of the input p-values and thus may not be stable.
Following [18], we use a bootstrap procedure to calculate an estimate of variability index
Ujk = 4 ·Var

(
ŵjk

)
for the j-th gene and k-th phenotype, where the normalization factor 4

scales ŵjk to [0, 1]. We obtain L bootstrap samples with
−→
Yk

(l),
−→
Zm

(l) and
−→
Xj

(l) for the k-th
phenotype, m-th covariate, and j-th gene, where 1 ≤ k ≤ K, 1 ≤ m ≤ M, 1 ≤ j ≤ G, l is the
bootstraping index and 1 ≤ l ≤ L. Following the same procedure in Sections 2.3 and 2.4,

weight estimates for AFp and AFz can be estimated as −̂→wj
AFp,(l)

= (ŵAFp,(l)
j1 , . . . , ŵAFp,(l)

jK )

and −̂→wj
AFz,(l)

= (ŵAFz,(l)
j1 , . . . , ŵAFz,(l)

jK ) for the l-th bootstrap and j-th gene. The final
variability indices are obtained by

ÛAFp
jk =

4
L

L

∑
l=1

(
ŵAFp,(l)

jk − 1
L

L

∑
l′=1

ŵAFp,(l)
jk

)2

and

ÛAFz
jk =

4
L

L

∑
l=1

(
ŵAFz,(l)

jk − 1
L

L

∑
l′=1

ŵAFz,(l)
jk

)2,

respectively.



Genes 2023, 14, 798 7 of 19

2.6. Ensemble Clustering for Biomarker Categorization

As mentioned in the end of Section 2.4, a unique advantage of AFp and AFz is to
estimate the 0–1 weights to identify the subset of associated phenotypes for a given gene
(a weight of 1 or 0 means the phenotype is associated or independent with the gene,
respectively). Consequently, the methods optimize and select from all possible subsets
(i.e., 2K − 1 combinations of the 0–1 weight values), which grow exponentially. When
further considering the sign (positive/negative) of the association in each phenotype, the
number of possible association patterns increase to 3K − 1. For example, in the lung disease
application (Figure 1), five phenotypes generate a total of 35 − 1 = 242 possible phenotype
association patterns. To overcome this challenge, we performed a gene clustering pro-
cedure proposed by [18] to identify data-driven gene modules (M1, M2, · · ·Mq) of major
phenotype association patterns. We clustered genes by a co-membership matrix for all pairs
of genes where each element of the co-membership matrix represents a similarity of signed
weight v̂ = ŵ× sign(θ̂) of any pair genes. Similar to Section 2.5, we bootstrapped data

L times and obtained the signed weight statistics v̂jk
AFp,(l) = ŵjk

AFp,(l) × sign(θ̂jk
AFp,(l)

)

and v̂jk
AFz,(l) = ŵjk

AFz,(l) × sign(θ̂jk
AFz,(l)

) for the j-th gene, k-th phenotype, and l-th boot-
strapping data for AFp and AFz, respectively. We next calculated the co-membership
matrix for l-th bootstrapping data of AFp as V AFp,(l) ∈ Rp×p, where V AFp,(l)

jj′ = 1 if

v̂jk
AFp,(l) = v̂j′k

AFp,(l) for all k, and V AFp,(l)
jj′ = 0 otherwise. The final co-membership ma-

trix was calculated as V AFp = ∑L
l=1 V AFp,(l)/L and any classic clustering algorithm could

be applied to obtain gene categorization. In this paper, we applied the tight clustering
method [20] in real applications, which can eliminate the distractions of scattered genes
and construct compact gene modules. V AFz can also be obtained in a similar way, followed
by the tight clustering algorithm.

Module 1 

Module 2 

Module 3 

Module 4 

C1

C2

C3

C4

C5

C6

C7

(a) (b)

Figure 1. (a) The heatmap of comembership matrix of seven clusters identified in the complex lung
diseases dataset. Red color means two genes are close. The number in the parentheses indicates the
sample size of each cluster. (b) The weight estimation of each gene (blue represents 1, black represents
0 and yellow represents −1).

3. Results
3.1. Simulation

In this section, we perform three simulations to evaluate: (1) Type I error control and
power for AFp and AFz-based methods and other existing methods; (2) the accuracy of
the weight estimates of the AFp and AFz-based methods. The methods evaluated include
MANOVA, aSPU.ind, aSPU.ex, TATES, Fisher, minP, AFp, and AFz. In Simulations I
and II, we consider continuous phenotypes without and with confounders, respectively,
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and all the methods above are evaluated. In Simulation III, we consider a mixture of
phenotypes of count and continuous types, and we benchmark the performance of TATES,
Fisher, minP, AFp, and AFz since other methods are not applicable. We have two different
settings, A and B, in each of Simulations I, II, and III, where A mimics the scenarios
where each phenotype-gene association has a similar effect size, and B generates the
scenarios where some phenotypes have much stronger associations with genes compared
to other phenotypes. In each simulation setting, we adapt a random effect model to
simulate a hierarchical association structure between 10 phenotypes and 4800 genes, where
phenotypes 1 to 4 are associated with genes 1 to 1600, phenotypes 5 to 9 are associated with
genes 1601 to 3200, and phenotype 10 is associated with genes 3201 to 4800. The details of
each simulation setting are illustrated below.

3.1.1. Simulation Settings

Simulation IA and IB:
Simulation I simulated continuous phenotypes without confounders.

• We simulated ui1, ui2, ui3 ∼ N(0, σ2
µ) for each sample, where N() stands for a Gaussian

distribution and 1 ≤ i ≤ N1. N1 is the sample size.
• We simulated 10 phenotypes, where yik ∼ N(ui1, σ2

k ) for 1 ≤ k ≤ 4, yik ∼ N(ui1 + ui2, σ2
k )

for 5 ≤ k ≤ 9 and yi10 ∼ N(ui3, σ2
10).

• We simulated 4800 gene features, where xij ∼ N(ui1, σ2
x) for 1 ≤ j ≤ 1600, xij ∼ N(ui2, σ2

x)

for 1601 ≤ j ≤ 3200 and xij ∼ N(ui3, σ2
x) for 3201 ≤ j ≤ 4800.

We set N1 ∈ {100, 30}, σx = 0.5, and σµ ∈ {0, 0.4, 0.6} for varying correlation levels.
When σµ = 0, all the phenotypes are independent of genes, and the larger the σµ is, the
stronger association between phenotypes and genes. For σk, we chose two values that
corresponded to two different scenarios, respectively. In Simulation IA, we set σk = 2
for 1 ≤ k ≤ 9 and σ10 = 1, where each phenotype–gene association has a similar effect
size. In Simulation IB, we set σ1 = σ5 = 0.05, σ10 = 1, and σk = 2 otherwise, where
σ1 = σ5 = 0.05 ensures that the first phenotype has much significant association with genes
1 to 1600 compared with phenotypes 2 to 9 and the 5-th phenotype has much significant
association with genes 1601 to 3200 compared with phenotypes 5 to 9. We used Simulation
IB to evaluate the performance when some phenotypes have a much stronger association
with genes compared with other phenotypes.

Simulation IIA and IIB:

Simulation II simulated continuous phenotypes with a confounder z for genes 1 to
1600 and phenotypes 1 to 9.

• We simulated ui1, ui2, ui3 ∼ N(0, σ2
µ) and zi ∼ N(0, σ2

c ) where N() stands for a Gaus-
sian distribution and 1 ≤ i ≤ N1. N1 is the sample size.

• We simulated 10 phenotypes, where yik ∼ N(ui1 + zi, σ2
k ) for 1 ≤ k ≤ 4, yik ∼

N(ui1 + ui2 + zi, σ2
k ) for 5 ≤ k ≤ 9, and yi10 ∼ N(ui3, σ2

10).
• We simulated gene expression data for 4800 genes, where xij ∼ N(ui1 + zi, σ2

x) for
1 ≤ j ≤ 1600, xij ∼ N(ui2, σ2

x) for 1601 ≤ j ≤ 3200, and xij ∼ N(ui3, σ2
x) for

3201 ≤ j ≤ 4800.

Similar to Simulation I, we set N1 ∈ {100, 30}, σx = 0.5, and σµ ∈ {0, 0.4, 0.6}. In
Simulation IIA, we set σk = 2 for 1 ≤ k ≤ 9, and σ10 = 1, and in Simulation IIB, we set
σ1 = σ5 = 0.05, σ10 = 1, and σk = 2 otherwise.

Simulation IIIA and IIIB:

Simulation III generated phenotypes with a mixture of count, binary, and continuous-
type data.
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• We simulated ui1, ui2, ui3 ∼ N(0, σ2
µ) where N() stands for a Gaussian distribution

and 1 ≤ i ≤ N1. N1 is the sample size.
• We simulated 10 phenotypes, where yik ∼ Possion(ui1) for 1 ≤ k ≤ 4, yi5

∼ Bin(1, exp(ui1+ui2)
1+exp(ui1+ui2)

), yik,∼ N(ui1 + ui2, σ2
k ) for 6 ≤ k ≤ 9, and yi10 ∼ N(ui3, σ2

10).

• We simulated gene expression data for 4800 genes, where xij ∼ N(ui1, σ2
x) for 1 ≤ j ≤ 1600,

xij ∼ N(ui2, σ2
x) for 1601 ≤ j ≤ 3200, and xij ∼ N(ui3, σ2

x) for 3201 ≤ j ≤ 4800.

Similar to Simulations I and II, we set N1 ∈ {100, 30}, σx = 0.5, and σµ ∈ {0, 0.4, 0.6}.
In Simulation IIIA, we set σk = 2 for 6 ≤ k ≤ 9, and σ10 = 1, and in Simulation IIIB, we set
σ6 = 0.01, σ10 = 1, and σk = 2 for 6 ≤ k ≤ 9.

3.1.2. Evaluation Benchmark

In Simulations I and II, the phenotypes were continuous, and we evaluated MANOVA,
aSPU.ind, aSPU.ex, TATES, Fisher, minP, AFp, and AFz in terms of Type I error (σµ = 0)
and power (σµ = 0.4, 0.6). We also evaluated AFp and AFz for their accuracy of weight

estimation. The Type I error and power were calculated by
∑S

s=1 ∑
p
j=1 I{p(s)j <0.05}

p×S , where

S = 500 is the number of simulated data for each setting, p(s)j is the p-value of the j-th gene
and the s-th simulated data of a generic method discussed in this paper, and I{.} is the
indicator function. For the accuracy of the weight estimation of AFp and AFz, sensitivity
∑S

s=1 ∑G
j=1 ∑K

k=1 ŵ(s)
jk I{wjk=1}

∑S
s=1 ∑

p
j=1 ∑K

k=1 I{wjk=1} (the proportion of weights estimated to be 1 when the truth is 1)

and specificity
∑S

s=1 ∑
p
j=1 ∑K

k=1(1−ŵ(s)
jk )I{wjk=0}

∑S
s=1 ∑

p
j=1 ∑K

k=1 I{wjk=0} (the proportion of weights estimated to be 0

when the truth is 0) were used for evaluation. We also included average weight estimates
for each phenotype and genes from 1 to 1600, 1601 to 3200, and 3201 to 4800 for further
inspection (see Section 3.1.3 and Tables S1, S3, and S4 for details).

In Simulation III, the phenotypes were a mixture of count and continuous data, and
MANOVA, aSPU.ind, and aSPU.ex are inapplicable. Therefore, we only evaluated TATES,
Fisher, minP, AFp, and AFz in Simulation III. The benchmark criteria in Simulation III are
the same as those in Simulations I and II.

3.1.3. Simulation Results

Table 1 shows the Type I error, power, sensitivity, and specificity results of Simulation
I with N1 = 100. The simulation results of N1 = 30 are shown in Table S1 with a similar
pattern. All methods control type I error well, and the AFp and AFz methods generally
perform among the best in terms of power. For example, in Simulation IA, all the phenotype–
gene associations have similar effect sizes, and AFp (0.91) and AFz (0.9) have higher power
than Fisher (0.87) and MANOVA (0.85) when σµ = 0.6. In Simulation IB, AFp and AFz,
respectively, have powers of 0.96 and 0.97 when σµ = 0.6, which is comparable with
minP (0.97) and higher than Fisher (0.89). In terms of 0–1 weight estimation, AFp has
better sensitivity than AFz, and the gap is more significant in Simulation IB (0.49 and 0.78
for AFp compared with 0.29 and 0.31 for AFz). To dig further, in Table S2, we calculate
the average weight estimate for AFp and AFz for each phenotype and 1600 genes in
Simulation I. In σµ = 0.6 and N = 100, AFz selects phenotype 1 over phenotypes 2, 3, and
4 with a significantly higher proportion of 0.78 for genes 1∼1600, while AFp also evenly
selects phenotypes 2, 3 and 4 (with proportions 0.72, 0.71, and 0.72). For genes 1601∼3200,
AFz also selects phenotype 5 with a significantly higher proportion of 0.76 (proportions
of phenotypes 6∼9 are 0.29, 0.28, 0.29, and 0.30), while AFp selects the phenotype 6∼9
with probabilities of 0.68, 0.68, 0.67 and 0.67, which are much closer to the probability of
phenotype 5 (0.84). This means that when a gene has different effect sizes of associations
with several phenotypes, AFz will only detect the association of the phenotype with the
strongest association, while AFp can detect all associated phenotypes more evenly.
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Table 1. Results of Simulations IA and IB when N1 = 100. For σµ = 0, the value indicates Type I error
control, and for σµ = 0.4 and 0.6, the value indicates power.

Benchmark Method
Simulation IA Simulation IB

σµ = 0 σµ = 0.4 σµ = 0.6 σµ = 0 σµ = 0.4 σµ = 0.6

power
&

type I
error

MANOVA 0.05 0.36 0.85 0.05 0.76 0.93

aSPU.ind 0.05 0.42 0.67 0.05 0.46 0.69

aSPU.ex 0.05 0.41 0.67 0.05 0.45 0.7

TATES 0.05 0.25 0.79 0.05 0.74 0.96

minP 0.05 0.33 0.85 0.05 0.77 0.97

Fisher 0.05 0.44 0.87 0.05 0.71 0.89

AFz 0.05 0.4 0.9 0.05 0.77 0.97

AFp 0.05 0.42 0.91 0.05 0.77 0.96

Sensitivity
AFz - 0.34 0.6 - 0.29 0.31

AFp - 0.38 0.72 - 0.49 0.78

Specificity
AFz - 0.79 0.76 - 0.86 0.89

AFp - 0.77 0.68 - 0.74 0.67

Tables S3 and S4 show the Type I error, power, sensitivity, and specificity results of
Simulation II for N1 = 100and30, respectively. MANOVA cannot control Type I error well
when there are confounders, while all other methods can control Type I error well. Similar
to Simulation I, AFp and AFz generally perform among the best in terms of power, and AFp
has better sensitivity than AFz in phenotype selection, especially when gene–phenotype
association effect sizes are imbalanced (Table S5).

Table 2 summarizes the results of Simulation III with N1 = 100 when the phenotypes
have count, binary, and continuous data. The simulation results of N1 = 30 are shown
in Table S6 with a similar pattern. In terms of power, AFp and AFz outperform the other
three methods. For example, in Simulation IIIA with N1 = 100, the power of TATES, minP,
Fisher, AFz, and AFp are {0.43, 0.46, 0.51, 0.53, and 0.53} and {0.82, 0.79, 0.79, 0.9, and 0.91}
for σµ = 0.4 and σµ = 0.6, respectively. Similar to Simulations I and II, AFp has much better
sensitivity in terms of phenotype selection than AFz, and AFz only selects the phenotype
with the strongest association (Table S7) in most cases.

Table 2. Results of Simulations IIIA and IIIB when N1 = 100. For σµ = 0, the value indicates Type I
error control, and for σµ = 0.4 and 0.6, the value indicates power.

Benchmark Method
Simulation IIIA Simulation IIIB

σµ = 0 σµ = 0.4 σµ = 0.6 σµ = 0 σµ = 0.4 σµ = 0.6

Power
& Ttype I

error

TATES 0.05 0.43 0.82 0.05 0.74 0.96

minP 0.05 0.46 0.79 0.05 0.76 0.95

Fisher 0.05 0.51 0.79 0.05 0.7 0.84

AFz 0.05 0.53 0.9 0.05 0.77 0.97

AFp 0.05 0.53 0.91 0.05 0.77 0.96

Sensitivity
AFz - 0.48 0.72 - 0.3 0.43

AFp - 0.55 0.81 - 0.6 0.85

Specificity
AFz - 0.8 0.81 - 0.8 0.82

AFp - 0.76 0.68 - 0.73 0.66
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3.2. Real Application
3.2.1. Application to Complex Lung Diseases

We applied MANOVA, aSPU.ind, aSPU.ex, TATES, Fisher, minP, AFp and AFz to
a lung disease transcriptomic dataset with 319 patients, where the majority of patients
were diagnosed as the two most representative lung disease subtypes: chronic obstructive
pulmonary disease (COPD) and interstitial lung disease (ILD). Gene expression data were
collected from Gene Expression Omnibus (GEO) GSE47460, and clinical information was
obtained from the Lung Genomics Research Consortium (https://topmed.nhlbi.nih.gov/
group/ltrc (accessed on 11 November 2019)). In this paper, FEV1, FVC, ratiopre, WBCDIFF1,
and WBCDIFF4 were the five continuous phenotypes of interest. FEV1 (forced expiratory
volume in 1 s) is the volume of air that can be forcibly blown out in the first 1 s after full
inspiration. FVC (forced vital capacity) is the volume of air that can be forcibly blown
out after full inspiration. Ratiopre is the ratio of FEV1 to FVC, and WBCDIFF1 and
WBCDIFF4 are differential neutrophils (%) and differential eosinophils (%) in the white
blood cells, respectively. Age, gender, and BMI were included as confounding covariates X
in Equation (1) to calculate the input p-values for Fisher, minP, AFp, and AFz. After filtering
samples with missing covariates, the final preprocessed dataset contained N = 279 samples
and p = 15,966 genes. We first evaluated MANOVA, aSPU.ind, aSPU.ex, TATES, Fisher,
minP, AFp, and AFz by the numbers of significant genes detected by each method, followed
by gene module identification through the AFp- and AFz-based methods.

Figure S1 shows violin plots of − log10 (p-value) of all methods, where the significant
genes are determined by Bonferroni correction with a cutoff of 0.05. We find that aSPU.ex
has the most number of signficant genes (6092), followed by AFp (4367) and MANOVA
(3973). We then focused on the significant genes of AFp- and AFz-based methods and
categorized genes into gene modules. Table 3 shows the percentage of selected phenotypes
for the 4367 and 3287 significant genes identified by AFp and AFz, respectively. Consistent
with the simulation results, AFp has a more balanced distribution of phenotype selection,
while AFz almost only selects ratiopre and unselects all the other phenotypes. For example,
the percentages of genes selecting FEV1, FVC, and WBCDIFF1 are 79%, 48%, and 29% for
AFp, while these numbers are 14%, 8%, and 1% for AFz. Figure S2 shows the boxplot of the
− log10 (p-value) of each phenotype for significant genes detected by both AFp and AFz
methods, and it clearly indicates that the p-value of ratiopre is, on average, much smaller
than that of other phenotypes. The AFz method almost only selects ratiopre and ignores
others, which is consistent with the findings in Simulation IB, IIB, and IIIB (Tables S2–S4).
As a result, we only performed gene categorization on the AFp results, as below.

Table 3. The proportion of weight estimated to be 1 for significant genes (4367 and 3287 for AFp and
AFz, respectively, determined by Bonferroni correction with cutoff 0.05) of AFp and AFz methods.

Method FEV1 FVC Ratiopre WBCDIFF1 WBCDIFF4

AFp 79% 48% 99% 29% 67%

AFz 14% 8% 98% 1% 6%

Following Section 2.6, we calculated the co-membership matrix of 4367 significant
genes from AFp and utilized a tight clustering algorithm to cluster genes. A total of
1106 genes were clustered into seven clusters (C1, C2 · · · C7), where C1, C2, and C3 were
closer to one another compared with other clusters, and they were categorized as mod-
ule 1 (Figure 1a). Similarly, C6 and C7 were combined as module 4. Figure 1b shows
the weight estimation. It again indicates that C1, C2, and C3 have similar patterns (up-
regulated FEV1 and ratiopre and no association with FVC and WBCDIFF1), and C6 and C7
have similar patterns (down-regulated FEV1, ratiopre, and WBCDIFF4 and up-regulated
FVC and WBCDIFF1), which is also confirmed by Figure S3, the heatmap of directed

https://topmed.nhlbi.nih.gov/group/ltrc
https://topmed.nhlbi.nih.gov/group/ltrc
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− log10 (p-values) of 1106 genes selected by the tight clustering method. To verify the
weight estimations of the significant genes, we also calculated Spearman correlations be-
tween gene expressions and phenotypes in each cluster (Figure S4), which matched the
pattern in Figure 1b well. In addition, we found that phenotype ratiopre has relatively
strong associations with genes in all four gene modules (Figure S3) and is always assigned
by 1 or −1 in weight estimation with high confidence (i.e., low variability index; see Fig-
ure S5). This observation justifies the common use of the FEV1/FVC ratio (ratiopre) in
diagnosing obstructive and restrictive lung disease in current clinical practice [27,28].

We next conducted pathway enrichment analysis using Fisher’s exact test based on the
Gene Ontology (GO), KEGG, and Reactome pathway databases to assess the biological rele-
vance of genes and show the top 10 significant pathways for each module (Table 4). The top
pathways for different modules depict distinct aspects of lung diseases. The top pathways
in module 1 involve many DNA damage [29,30] and amino acid alternation/degradation
pathways [31,32], which are known to be related to COPD in the literature. This set of
genes is positively associated with FEV1 and ratiopre (and some with WBCDIFF4). Module
2 is enriched in many immune response pathways. The immune system needs to react
promptly and adequately to potential challenges posed by microbes and particles, while at
the same time avoiding extensive tissue damage. Many studies have shown the association
between immune response and lung diseases, such as Toll-like receptor and NOD-like recep-
tor [33,34] and kinase-based protein signaling cascades [35]. This set of genes is negatively
associated with FEV1, ratiopre, and WBCDIFF4 and positively associated with WBCDIFF1.
Module 3 clearly indicates many extracellular matrix (ECM) structure pathways, which
provide structural support and stability to the lung. Changes in the ECM in the airway or
parenchymal tissues are now recognized in the pathological profiles of many respiratory
diseases, including COPD [36]. This gene module is positively associated with FEV1, ratio-
pre, and WBCDIFF4 but negatively associated with FVC (and some to WBCDIFF1). The top
pathways in module 4 include pathways related to cancer and vasculature development.
COPD is a risk factor for lung cancer as they have many shared driving factors and genetic
effects [37]. Additionally, COPD is a risk factor for major cancers developing outside of the
lung, including bladder cancer and pancreatic cancer [38,39]. Furthermore, angiogenesis
(vasculature development) is a shared phenomenon for both cancer and COPD [40], which
may indicate the molecular connection between COPD and cancers. Genes in this module
are positively correlated with FVC, with some being positively correlated with WBCDIFF1
but negatively correlated with FEV1, ratiopre, and WBCDIFF4.

3.2.2. Application to Breast Cancer

We applied Fisher, minP, AFp, and AFz to a breast cancer transcriptomic dataset with
1981 patients collected from the Molecular Taxonomy of Breast Cancer International Con-
sortium (METABRIC, https://www.cbioportal.org/study/summary?id=brca_metabric
(accessed on 20 February 2023)). We considered tumor grade (binary), lymph node status
(count), overall survival (survival), and tumor size (continuous) as the four phenotypes
of interest, with age as the confounding covariate. We performed a pre-processing step
that kept the 10,000 genes with the largest coefficients of variation. The purpose of this
was to remove housekeeping genes. Patients with missing outcomes or confounders were
further removed, and 1708 samples were left. As we considered a mixture of phenotypes of
different data types, only Fisher, minP, AFp, and AFz can be applied.

Figure S6 shows violin plots of − log10 (p-values) of the four methods, where the
significant genes are determined by Bonferroni correction with a cutoff of 0.05. We found
that AFp has the most significant genes (5856), followed by EW (5194) and AFz (4590).
Similar to Section 3.2.1, we then focused on the significant genes of the AFp-based method
and categorized these genes into gene modules.

https://www.cbioportal.org/study/summary?id=brca_metabric
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Table 4. The pathway enrichment analysis of each module by GO, KEGG, and Reactome pathway
databases for the lung disease dataset. The * sign indicates the p-value is significant under a false
discovery rate of 0.05.

Pathway p Value

module 1

GO:BP double-strand break repair 4.37 ×10−3

Reactome double-strand break repair 4.37 ×10−3

KEGG Valine, leucine and isoleucine degradation 6.78 ×10−3

Reactome Branched-chain amino acid catabolism 7.82 ×10−3

Reactome Homologous recombination repair of replication-independent double-strand breaks 1.42 ×10−2

GO:MF phosphotransferase activity, phosphate group as acceptor 1.98 ×10−2

GO:BP gamete generation 2.67 ×10−2

GO:BP sexual reproduction 2.68 ×10−2

GO:MF motor activity 3.39 ×10−2

GO:MF nucleobase-containing compound kinase activity 3.39 ×10−2

module 2

KEGG Toll-like receptor signaling pathway 8.47 ×10−6 *

KEGG NOD-like receptor signaling pathway 1.03 ×10−5 *

KEGG MAPK signaling pathway 3.91 ×10−5 *

GO:BP response to stress 3.95 ×10−5 *

KEGG cytosolic DNA-sensing pathway 4.13 ×10−5 *

GO:MF enzyme binding 7.46 ×10−5 *

GO:BP protein kinase cascade 8.41 ×10−5 *

GO:MF rho gtpase activator activity 8.93 ×10−5 *

Reactome NFkB and MAP kinase activation mediated by TLR4 signaling repertoire 1.28 ×10−4 *

GO:BP regulation of protein kinase activity 1.55 ×10−4 *

module 3

Reactome extracellular matrix organization 1.48 ×10−8 *

Reactome collagen formation 1.64 ×10−6 *

GO:CC proteinaceous extracellular matrix 3.28 ×10−6 *

GO:CC extracellular matrix 3.97 ×10−6 *

GO:CC extracellular region part 2.66 ×10−5 *

GO:CC collagen trimer 7.31 ×10−5 *

GO:CC extracellular region 9.26 ×10−5 *

GO:CC extracellular matrix component 1.33 ×10−4 *

GO:MF glycosaminoglycan binding 3.30 ×10−4

Reactome diabetes pathways 3.63 ×10−4

module 4

KEGG MAPK signaling pathway 1.87 ×10−4

KEGG dorso-ventral axis formation 1.89 ×10−4

KEGG bladder cancer 2.62 ×10−4

KEGG pancreatic cancer 2.84 ×10−4

GO:MF neurotransmitter binding 3.80 ×10−4

GO:BP angiogenesis 4.28 ×10−4

KEGG pathways in cancer 4.55 ×10−4

GO:BP organ development 5.51 ×10−4

GO:BP vasculature development 7.34 ×10−4

GO:BP anatomical structure formation involved in morphogenesis 9.83 ×10−4
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Following Section 2.6, we calculated a co-membership matrix of 5856 significant genes
from AFp and utilized the tight clustering algorithm to cluster genes. A total of 3560 genes
were clustered into five gene modules (clusters) (Figure 2a). Figure 2b shows the weight
estimation, which is verified by Figures S8 and S9. Specifically, we find up-regulation for
all phenotypes in gene module 1 (tumor grade, lymph node status, overall survival, and
tumor size) and down-regulation for all phenotypes in gene module 2. Gene modules 3 and
5 are down-regulated for lymph node status, grades, and survival, while gene module 4 is
up-regulated for lymph node status and grade. Additionally, we find that tumor grade and
lymph node status have relatively strong associations with genes when compared to overall
survival and tumor size. Lastly, we also find that grade has highly strong associations with
genes in all the five genes modules (Figure S8) and is always assigned by 1 or −1 in weight
estimation with high confidence (Figures 2b and S10).

We next conducted pathway enrichment analysis using Fisher’s exact test based on
the Gene Ontology (GO), KEGG, and Reactome pathway databases to assess the biological
relevance of genes and show the 10 most significant pathways for each module (Table 5).
The top pathways for different modules depict distinct aspects of breast cancer. The top
pathways in gene module 1 involve cell cycle processes; the top pathways in gene module
2 are related to metabolic processes; the top pathways in gene module 3 involve transport
mechanisms; the top pathways in gene module 4 are closely related to the immune system;
and the top pathways in gene module 5 relate to the Golgi apparatus. All five aspects play
important roles in cancer [41–46].

3.2.3. Application to Brain Aging

We lastly applied Fisher, minP, AFp, and AFz to a brain aging dataset from [47].
The dataset contains 210 samples’ transcriptomic profiles in the human prefrontal cortex
(Brodmann’s area 11, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71620
(accessed on 20 February 2023)). We considered age (continuous), sex (binary), and recorded
pH levels of the tissue sample (continuous) as the three phenotypes of interest, and the
postmortem interval between the time of death and the time of tissue sample collection as
well as the RNA integrity number for each tissue sample as confounders. Similar to the
breast cancer dataset, we performed a pre-processing step that kept the 10,000 genes with
the largest coefficients of variation to remove housekeeping genes. Since we considered
a mixture of phenotypes of different data types, only Fisher, minP, AFp, and AFz can
be applied.

Figure S12 shows violin plots of − log10 (p-values) of the four methods, where the
significant genes are determined by the Benjamini–Hochberg correction with a cutoff 0.05.
We find that AFp has the most significant genes (385), followed by AFz (303) and minP
(272). Similar to Sections 3.2.1 and 3.2.2, we then focused on the significant genes of the
AFp-based method and categorized genes into gene modules.

Following Section 2.6, we calculated a co-membership matrix of 385 significant genes
from AFp and utilized a tight clustering algorithm to cluster genes. A total of 290 genes
were clustered into three gene modules (clusters) (Figure S11a). Figure S11b shows the
weight estimation, which is verified by Figures S14 and S15. Specifically, we find up-
regulation of age in gene modules 1 and 2 and down-regulation of age in gene module
3. Sex is down-regulated by genes in the second module, and pH seems to be irrelevant
for all three modules. Similar to Sections 3.2.1 and 3.2.2, we next performed a pathway
enrichment analysis using Fisher’s exact test based on the Gene Ontology (GO), KEGG, and
Reactome pathway databases to assess the biological relevance of the genes and show the
10 most significant pathways for each module (Table S8). The top pathways in gene module
1 regulate the innate immune system; the top pathways in gene module 2 are related to
immune signaling; and the top pathways in gene module 3 involve cell signaling. All three
categories of pathways from the gene modules connect to the brain aging process [48–51].

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71620
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Table 5. The pathway enrichment analysis of each module by GO, KEGG, and Reactome pathway
databases for the breast cancer (METABRIC) dataset. The * sign indicates the p-value is significant
under a false discovery rate of 0.05.

Pathway p Value

Module 1 (cell cycle)

Reactome cell cycle, mitotic 1.63 ×10−45 *

Reactome cell cycle 1.73 ×10−45 *

Reactome DNA replication 1.90 ×10−38 *

Reactome ,itotic M-M/G1 phases 1.03 ×10−32 *

GO:BP cell cycle process 7.73 ×10−22 *

GO:BP cell cycle 4.82 ×10−21 *

GO:BP mitotic cell cycle 6.48 ×10−21 *

Reactome mitotic prometaphase 3.99 ×10−20 *

GO:BP cell cycle phase 5.42 ×10−19 *

GO:BP mitotic M phase 3.02 ×10−18 *

Module 2 (metabolic processes)

Reactome Synthesis of bile acids and bile salts 2.89 ×10−4 *

Reactome Nuclear signaling by ERBB4 8.53 ×10−4 *

Reactome Bile acid and bile salt metabolism 1.44 ×10−3 *

KEGG primary bile acid biosynthesis 1.60 ×10−3 *

Reactome peroxisomal lipid metabolism 4.58 ×10−3 *

GO:BP carboxylic acid metabolic process 5.82 ×10−3 *

Reactome G alpha (s) signalling events 6.01 ×10−3 *

GO:BP organic acid metabolic process 7.04 ×10−3 *

GO:BP sodium ion transport 8.23 ×10−3 *

GO:BP regulation of cytoskeleton organization 8.44 ×10−3 *

Module 3 (transport mechanisms)

Reactome ABCA transporters in lipid homeostasis 8.90 ×10−4 *

GO:CC integral component of organelle membrane 4.67 ×10−3 *

GO:CC intrinsic component of organelle membrane 6.10 ×10−3 *

GO:BP secretion by cell 7.25 ×10−3 *

Reactome PKB-mediated events 7.94 ×10−3 *

KEGG ether lipid metabolism 7.94 ×10−3 *

Reactome acyl chain remodelling of PE 1.01 ×10−2 *

GO:BP secretion 1.02 ×10−2 *

GO:BP synaptic transmission 1.20 ×10−2 *

GO:BP secretory pathway 1.22 ×10−2 *

Module 4 (immune system)

GO:BP immune system process 2.34 ×10−36 *

GO:BP immune response 6.54 ×10−29 *

Reactome adaptive immune system 6.21 ×10−25 *

Reactome immunoregulatory interactions between a lymphoid and a non-lymphoid cell 3.60 ×10−22 *

KEGG natural killer cell-mediated cytotoxicity 7.20 ×10−16 *

KEGG primary immunodeficiency 4.20 ×10−15 *

GO:BP defense response 9.49 ×10−15 *

KEGG T cell receptor signaling pathway 3.84 ×10−11 *
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Table 5. Cont.

Pathway p Value

GO:BP T cell activation 6.67 ×10−11 *

GO:BP regulation of immune system process 1.96 ×10−10 *

Module 5 (Golgi apparatus)

Reactome generic transcription pathway 1.35 ×10−3 *

GO:CC Golgi apparatus part 1.53 ×10−3 *

GO:CC coated vesicle 4.58 ×10−3 *

GO:CC Golgi-associated vesicle 6.08 ×10−3 *

GO:CC Golgi apparatus 1.59 ×10−2 *

Reactome xenobiotics 1.85 ×10−2 *

GO:BP Golgi vesicle transport 2.43 ×10−2 *

Reactome Pre-NOTCH Transcription and Translation 2.76 ×10−2 *

Reactome Pre-NOTCH Expression and Processing 3.14 ×10−2 *

GO:BP adenylate cyclase-activating G-protein-coupled receptor signaling pathway 4.74 ×10−2 *

Module 1 

Module 2 

Module 3 

Module 4 

C1

C2

C3

C4

C5

(a) (b)

Module 5 

Figure 2. (a) The heatmap of the co-membership matrix of five clusters identified in the breast cancer
(METABRIC) dataset. Red color means two genes are close. The number in the parentheses indicates
the sample size of each cluster. (b) The weight estimation of each gene (blue represent 1, black
represents 0, and yellow represents −1).

4. Discussion

In this paper, we modified two p-value combination methods, AFp and AFz, to multi-
variate phenotype–gene association studies. Compared with traditional methods targeting
the UIT test between each gene and all phenotypes, AFp and AFz can efficiently combine
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heterogeneous effects in the input p-values. Both methods facilitate the selection of pheno-
types associated with the gene of interest. A bootstrap algorithm and gene cluster approach
identified gene modules with distinct phenotype association patterns. Pathway enrich-
ment analysis for identified gene modules elucidated the disease mechanisms underlying
multivariate phenotype–gene associations.

From extensive simulations and real application examples, we clearly showed that
AFp and AFz have robust and competitive statistical power and Type 1 error control for
accommodating an association analysis of heterogeneous phenotypes in complex diseases.
Moreover, AFp has better sensitivity to phenotype selection compared with AFz, especially
when heterogeneous association effect sizes exist across phenotypes. In conclusion, we
recommend the AFp-based method for multivariate phenotype–gene association studies,
for the subset identification of phenotypes associated with the gene, and downstream
analyses, such as gene categorization and pathway enrichment analysis. Our R package to
implement AFp, AFz, and all existing methods is available at https://github.com/hung-
ching-chang/MultiPhenoAssoc, along with all data and source code used in this paper.

One limitation of our proposed method is the relatively heavy computational de-
mand of permutation analysis, which is essential for taking the correlation structure of
the phenotypes into consideration. To relieve the computational burden, we utilized the
R package “Rfast” [52] to speed up and also optimize our code to put it in an affordable
range for general omics applications. In the lung disease application (K = 5, N = 279,
and p = 15,966), with 50 times bootstrapping using 50 computing threads, it takes ap-
proximately 2 h to implement the AFp-based method. Developing methods for further
improving the computation is a future direction.
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