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Simple Summary: The present study provides the first genetic data on Hipposideros nicobarulae, an
endangered and endemic leaf-nosed bat in the Nicobar Islands, India. Preliminary data sheds light
on the phylogenetic relationship of H. nicobarulae and other closely related species (H. cf. antricola and
H. cf. einnaythu) from South and Southeast Asia. Additionally, the distribution modelling provides
information on suitable habitats for H. nicobarulae in the insular biogeography of Nicobar Island.
Further integrated studies are needed to clarify the evolution, population genetics, distribution, and
diversification of the Hipposideros species in the world.

Abstract: The Nicobar leaf-nosed Bat (Hipposideros nicobarulae) was described in the early 20th
century; however, its systematic classification has been debated for over 100 years. This endangered
and endemic species has achieved species status through morphological data in the last 10 years.
However, the genetic information and phylogenetic relationships of H. nicobarulae remain neglected.
The generated mitochondrial cytochrome b gene (mtCytb) sequences (438 bp) of H. nicobarulae
contains 53.42–53.65% AT composition and 1.82% variable sites. The studied species, H. nicobarulae
maintains an 8.1% to 22.6% genetic distance from other Hipposideros species. The genetic divergence
estimated in this study is congruent with the concept of gene speciation in bats. The Bayesian and
Maximum-Likelihood phylogenies clearly discriminated all Hipposideros species and showed a sister
relationship between H. nicobarulae and H. cf. antricola. Current mtCytb-based investigations of H.
nicobarulae have confirmed the species status at the molecular level. Further, the MaxEnt-based species
distribution modelling illustrates the most suitable habitat of H. nicobarulae (294 km2), of which the
majority (171 km2) is located on Great Nicobar Island. The present study suggests rigorous sampling
across the range, taxonomic coverage, the generation of multiple molecular markers (mitochondrial
and nuclear), as well as more ecological information, which will help in understanding population
genetic structure, habitat suitability, and the implementation of appropriate conservation action plans
for H. nicobarulae and other Hipposideros species.

Keywords: Chiroptera; Hipposideridae; systematics; phylogeny; endemic species; conservation

1. Introduction

Bats (order Chiroptera) are the second most diverse group of mammals after Rodentia
and currently contain approximately 1456 species worldwide [1]. Among them, more than
130 bat species under nine families have been reported from the Indian mainland and
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islands. The Palaeotropical genus Hipposideros consists of about 74 species worldwide,
and 12 species are distributed in the Indian subcontinent [2]. Among them, four species
(Hipposideros diadema, Hipposideros fulvus, Hipposideros grandis, and Hipposideros larvatus)
are distributed in the Andaman group of islands, whereas three species (H. diadema, Hip-
posideros gentilis, and Hipposideros nicobarulae) are reported from the Nicobar group of
islands, India [3–7]. To date, H. nicobarulae is only known from the type locality, Nicobar
Island in the Andaman and Nicobar archipelago in India [3,4]. The Nicobar Leaf-nosed Bat,
H. nicobarulae, was originally described in the early 20th century [8], and for over 100 years
this bat species (or “this form”) was considered a subspecies of Hippisideros ater as H. ater
nicobarulae [9,10]. However, based on its body size and external and dental morphology,
this bat species (or ‘this form’) was elevated to a distinct species in the recent past [3]. Due
to the lack of relevant material, the species status of H. nicobarulae is still controversial and
has not yet been tested using genetic data. Hippisideros nicobarulae lives in a mixed-sex
colony in caves, abandoned buildings, and tunnels as well [3,4]. Due to habitat destruction
by tsunamis and other anthropogenic activities, the population size of H. nicobarulae is
decreasing day by day [4]. Hence, the species is classified as “endangered” by the Bat
Specialist Group of the IUCN Red List of Threatened Species [11].

With the rapid advancement of molecular tools, integrated methods incorporating
partial mitochondrial and nuclear genes, complete genomes, and transcriptome data were
used in an iterative manner to identify and elucidate the diversity of bats worldwide [12–15].
A number of molecular approaches have been published in Hipposideros bats and related
taxa in various contexts: description of new species or subspecies [16], detection of cryptic
species [17,18], phylogenetic and evolutionary significance [19,20], and phylogeographic
studies [21,22]. Additionally, being an indicator species, many physiological studies on bats
have also been accomplished around the world [23,24]. The assessment of the mitochondrial
Cytochrome b (mtCytb) gene has proven useful for identification and genetic diversity
estimation in mammals, including bats [25–27]. Nevertheless, the genetic information of H.
nicobarulae is still not available to the scientific community. In this milieu, we examined bat
specimens collected from the Nicobar Islands through an integrated approach to improve
our understanding of the systematic position of this charismatic taxon. This preliminary
data will enrich the global genetic library and encourage further phylogeographic research
on endangered H. nicobarulae and other closely related species.

Additionally, apart from existing threats to H. nicobarulae, the insular island habitat
automatically increases the vulnerability of this species. To protect any threatened species,
it is important to know how different taxa respond to land use change and how habitat and
climate change affect their persistence [28,29]. Several studies have already been conducted
to achieve habitat distribution modelling of bats globally [30–32] and in India [33]. Due
to the lack of sufficient knowledge on habitat fitness, the present study also attempts to
perform species distribution modelling of H. nicobarulae to identify a suitable home range
in the Nicobar Islands, which can be used for monitoring and strategic conservation of this
species in the near future.

2. Materials and Methods
2.1. Ethics Statement and Sampling

A total of six individuals (four males and two females) of H. nicobarulae were collected
from three different localities at Great Nicobar Island (6.83 N 93.86 E, 6.85 N 93.81 E,
and 6.94 N 93.87 E) by using a mist net (Figure 1). The morphological examination was
carried out at the Western Ghat Regional Centre (WGRC) of the Zoological Survey of India
(ZSI), Kerala, India. The species was identified by the morphological characters described
earlier [3]. A photograph of the live specimen was taken by M. Kamalakannan (Figure 1).
The specimens were vouchered in 10% formaldehyde for long-term preservation. The
voucher specimens were deposited in the National Zoological Collections of the WGRC,
ZSI, under the museum catalogue numbers (ZSIWGRC-3630 to ZSIWGRC-3635). A meager
amount of tissue sample was collected from the toe region of each sample for molecular
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experiments. The experimental procedures were approved by the Zoological Survey of
India. No specific permission was required for sampling the targeted taxa.
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Figure 1. Map showing the collection localities of H. nicobarulae in the Great Nicobar Island (marked
by a red pin). (A) A live specimen of H. nicobarulae captured by M. Kamalakannan during the field
survey in the Andaman and Nicobar archipelago; (B) a frontal view of the ears and nose leaves of H.
nicobarulae; (C,D) the habitat of H. nicobarulae on the Great Nicobar Island, India.

2.2. Morphological Identification

The external morphology and cranial characteristics were measured for each sample of
H. nicobarulae by using vernier calipers to the nearest 0.01 mm. To explain the species level
identity and distinct specific status, the morphometrics data of closely related (H. ater and
H. cf. einnaythu) and sympatric (H. diadema, H. fulvus, H. grandis, H. larvatus, and H. gentilis)
species were acquired from the previous literature and compared [3,34–36] (Table 1). We
could not obtain the taxonomic measurements of H. cf. antricola from any sources; hence,
not incorporated here. The external measurements were performed according to the Bates
and Harrison, 1997 [34]; length of head and body (HBL): from the tip of the snout to base
of the tail on dorsal side, length of forearm (FA): from the extremity of the elbow to the
extremity of the carpus with the wings folded, ear length (EL): from the lower border of
the externally auditory meatus to the tip of the pinna, length of hindfoot (HF): from the
extremity of the heel behind the Os calcis to the extremity of the longest digit, length of
tibia (TIB): from the knee joint to the ankle, length of tail (TL): from the tip of the tail to its
base adjacent to the body.

Table 1. External morphological measurements (mm) of Hipposideros spp. [3,34–36]. The measure-
ments are represented in range (minimum and maximum). HBL: head and body length; FA: forearm
length; EL: ear length; HF: hind foot length; Tib: tibia length; T: tail length.

Species HBL FA EL HF Tib T

H. nicobarulae (n = 6) 41.6–47.9 38.1–42.2 15.5–15.9 7.67–8.05 17.2–18.4 24.7–32.5

H. ater (n = 11) 38.0–48.0 34.0–38.0 14.8–20.0 5.30–7.20 15.2–17.8 20.0–30.0

H. einnaythu (n = 2) 43.3, 49.1 39.5, 40.3 16.6, 16.7 6.5, 7.0 16.2, 17.8 24.7, 28.7

H. diadema (n = 6) - 80.2–90.2 23.3–30.8 13.67–18.1 29.7–37.8 44.3–57.2

H. fulvus (n = 35) 40.0–50.0 38.4–44.0 19.0–26.0 6.0–9.8 16.5–20.7 24.0–35.0
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Table 1. Cont.

Species HBL FA EL HF Tib T

H. grandis (n = 12) 70.0–79.0 60.0–64.0 21.5–24.0 12.0–13.5 21.0–25.7 34.0–39.0

H. larvatus (n = 8) - 48.7–59.0 14.4–23.5 3.9–6.6 19.0–20.1 24.8–35.5

H. gentilis (n = 9) 36.0–52.0 39.5–43.2 22.0–25.0 6.3–8.5 18.2–19.1 28.0–35.0

2.3. Mitochondrial DNA Extraction and Sequencing

The present study targeted the amplification of only a small fragment (>400 bp) of
the mitochondrial Cytb gene, as it has been shown to be suitable for mammalian species
identification [27,37]. Total genomic DNA was extracted by the standard phenol-chloroform
isoamyl alcohol method and visualized in 1% agarose gel electrophoresis [38]. To amplify
the partial mtCytb gene, mcb 398: 5′-TACCATGAGGACAAATATCATTCTG-3′ and mcb
869: 5′-CCTCCTAGTTTGTTAGGGATTGATCG-3′) primer pairs were used [37]. The 30 mL
PCR mixture contains 10 pmol of forward and reverse primer, 20 ng of template DNA, 1X
PCR buffer, 1.0–1.5 mM of MgCl2, 0.25 mM of each dNTPs, and 1U of Taq DNA polymerase
(Invitrogen). The PCR was executed in a Veriti Thermal Cycler (Applied Biosystems) with
the standard thermal settings. The PCR products were purified by using a QIAquick
Gel Extraction Kit (QIAGEN). The cycle sequencing was performed using the BigDye
Terminator ver. 3.1 Cycle Sequencing Kit (ABI) and 3.2 pmol of each primer. The PCR
products were purified by the BigDye X-terminator kit (ABI) and bidirectionally sequenced
by the genetic analyser housed at the Rajiv Gandhi Centre for Biotechnology (RGCB),
Thiruvananthapuram, Kerala, India.

2.4. Sequence Annotation and Dataset Construction

To avoid the pseudogenes in the raw sequences, the noisy parts of each chromatogram
were brought down at both ends through the SeqScanner Version 1.0 (Applied Biosystems).
To validate the generated sequence, both nucleotide BLAST (https://blast.ncbi.nlm.nih.gov,
accessed on 10 March 2023) and ORF finder (https://www.ncbi.nlm.nih.gov/orffinder/,
accessed on 10 March 2023) were used to check the insertion-deletion and amino acid
array for the vertebrate mitochondrial gene. The annotated sequences were submitted
to GenBank’s global database through Bankit (https://www.ncbi.nlm.nih.gov/WebSub/,
accessed on 10 March 2023). To estimate the genetic distances and perform the phylogenetic
analysis, a total of 98 mtCytb sequences of Hipposideros species were acquired from NCBI
GenBank. The mtCytb sequence of Rhinolophus rouxii (family Rhinolophidae) (accession
no. JQ316214) was used as an out-group in the present phylogenetic analyses. The gen-
erated and database sequences were aligned through ClustalX software to build the final
dataset [39].

2.5. Genetic Divergence and Phylogenetic Analyses

The Kimura-2-parameter (K2P) genetic divergence was estimated by MEGAX [40].
The best-fit model was estimated through JModelTest v2 with the lowest BIC (Bayesian In-
formation Criterion) value [41]. The Bayesian (BA) topology was constructed in
Mr. Bayes 3.1.2 by choosing nst = six for the GTR + G + I with one cold and three
hot chains of metropolis-coupled Markov Chain Monte Carlo (MCMC); it was run for
10,000,000 generations with 25% burn-in and trees saving at every 100 generations [42]. The
maximum-likelihood (ML) tree was constructed through the IQ-Tree web server with the
GTR + G + I model and 1000 bootstrap samples [43]. The final topologies were illustrated
in the web-based iTOL tool (https://itol.embl.de/, accessed on 10 March 2023) and edited
with Adobe Photoshop CS 8.0 [44].

https://blast.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov/orffinder/
https://www.ncbi.nlm.nih.gov/WebSub/
https://itol.embl.de/
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2.6. Species Occurrence Data

The occurrence records of H. nicobarulae were collected from available literature [3,4],
and the GBIF online data repository (https://doi.org/10.15468/dl.d8ph4a, accessed on
10 March 2023) [45]. We started with a set of 21 habitat variables grouped into three
types: climatic, land cover and land use (LULC), and topographic (Table S1). The cli-
matic variables were represented by 19 bioclimatic variables from Worldclim, Ver: 2.0
(https://www.worldclim.org/, accessed on 10 March 2023) [46]. To examine the in-
fluence of individual LULC classes, land use and land cover derived from Copernicus
Global Land Service (https://lcviewer.vito.be/download, accessed on 10 March 2023) were
used. The elevation profile for the study landscape was generated using the 90-m Shuttle
Radar Topography Mission (SRTM) data (http://srtm.csi.cgiar.org/srtmdata/, accessed on
10 March 2023). Finally, all predictors were resampled at 30 arc sec spatial resolution,
and spatial multicollinearity among the variables were eliminated by using Pearson’s
correlation with r > 0.8 in SDM Toolbox v2.4.

2.7. Model Building and Evaluation

For identifying suitable habitats for H. nicobarulae in the study landscape, we have
attempted maximum entropy-based modelling using the software MaxEnt Ver. 3.4.4. The
adopted method provides the probability of occurrence of a given species, ranked from 0
(least likely occurrence) to 1 (most likely occurrence). Our result generates a distribution
probability as a probability raster surface ranging from a 0 to 1 value, where 0 is the most
unsuitable zone and 1 is the most suitable zone. The relative influence of the selected
variables was estimated by the Jackknife test of developed regularized training gain [47].
For model evaluation, the area under the curve statistics (AUC) of the receiver operating
characteristic (ROC) curves with values ranging from 0 to 1, where a score of less than 0.5
is worse than random, followed by a score of 0.5 as considered a random prediction. A
score between 0.7 and 0.8 is regarded as an acceptable model result, followed by a score
between 0.8 and 0.9 as excellent, and <0.9 is regarded as an exceptional model [48]. Finally,
we have prepared the binary maps from the continuous suitability raster based on an equal
test sensitivity and specificity (SES) threshold.

3. Results
3.1. Taxonomic Identification

The collected specimens were identified as H. nicobarulae by the external morphome-
tric characteristics: head and body length (HBL) ranges 41.6–47.9 mm; forearm length
(FA): 38.1–42.2 mm; ear length 15.50–15.94 mm; hindfoot length: 7.67–8.05 mm; tibia length:
17.23–18.44 mm; tail length: 24.7–32.5 mm; and craniodental measurements: greatest length of
the skull (GTL) ranges 16.68–17.23 mm: condylobasal length (CBL): 16.05–16.38 mm; condylo-
canine length (CCL): 15.07–15.42 mm; zygomatic breadth (ZB): 8.28–8.62 mm; breadth of the
braincase (BB): 7.26–7.50 mm; maxillary toothrow length (C–M3): 5.69–5.74 mm; mandibular
toothrow length (C–M3): 6.00–6.29 mm; posterior palatal width (M3–M3): 4.22–4.29 mm;
anterior palatal width (C1–C1): 3.39–3.53 mm; mandibular length (M): 10.05–10.13 mm.
The external and cranial measurements are comparatively larger than the H. ater (HBL:
38–48 mm; FA: 34–38 mm; GTL: 15.4–16.5 mm; CBL: 13.6–14.6 mm; CCL: 13.2–14.2 mm;
M: 9.2–10.2 mm); the ears are large; the nose-leaf is slightly elongated and narrowed; there
are no supplementary lateral leaflets; and the postero-lateral chambers of the rostrum are
inflated but are significantly smaller than the H. ater (Figures 1 and 2). The external mor-
phological measurements of other closely related Hipposideros species, namely, H. einnaythu,
H. fulvus, H. grandis, H. larvatus, and H. gentilis, overlap with H. nicobarulae except for H.
diadema, H. grandis, H. gentilis, and H. larvatus, where these four species are significantly
larger than H. nicobarulae (Table 1).

https://doi.org/10.15468/dl.d8ph4a
https://www.worldclim.org/
https://lcviewer.vito.be/download
http://srtm.csi.cgiar.org/srtmdata/
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3.2. Molecular Identification

The partial cytochrome b analyses included 104 mtCytb sequences from 40 putative
species. The generated sequences revealed 92.41% to 92.63% similarity with H. ater se-
quences (MT149731-MT149733) generated from the Philippines in the global nucleotide
BLAST search. The mtCytb sequence (438 bp) contains an average of 53.55% AT compo-
sition in all Hipposideros species, with 53.42–53.65% in H. nicobarulae. A total of 49.54%
variable sites were observed in the partial mtCytb sequences among all Hipposideros bats,
while 1.82% variable sites were found in H. nicobarulae. The present dataset showed a
15.9% overall K2P mean genetic distance in all Hipposideros species. The interspecies genetic
distances ranged from 4.1% (between H. grandis and H. larvatus) to 31% (H. grandis and
H. fulvus). The studied species, H. nicobarulae maintains 8.1% to 22.6% genetic distance
from other species in the present dataset (Table S2). Due to a lack of mtCytb data, genetic
comparisons of H. nicobarulae with H. ater distributed in mainland India and Sri Lanka were
not possible in this present analysis. However, H. nicobarulae showed 8.1% distance with
H. ater (H. cf. antricola) generated from the Philippines, 13.5% distance with H. ater (H. cf.
einnaythu) generated from Malaysia, and 12.4% distance with H. ater (hitherto unreported
species) from Queensland, Australia. Besides, H. nicobarulae also maintained high genetic
distances with other sympatric species (11.9% with H. gentilis, 16.8% with H. diadema,
18.2% with H. larvatus, 19.3% with H. grandis, and 22.6% with H. fulvus) distributed in the
Andaman and Nicobar Islands (Table S2). In BA phylogeny, all Hipposideros species were
clustered together (Figure 3). The ML tree also showed similar topology of the studied
Hipposideros species (Figure S1). The studied species, H. nicobarulae, cohesively cladded
with H. cf. antricola (distributed in the Philippines) and was recovered as a sister species.
Further, the H. cf. einnaythu (distributed in Malaysia) showed close clustering with the H.
nicobarulae + H. cf. antricola clades in the present BA phylogeny (Figure 3). As anticipated,
the Hipposideros species were clearly discriminated by this fast-evolving mtCytb gene. We
knew that the short sequence of a single mitochondrial gene does not clearly affect the
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understanding of phylogenetic relationships, but we were able to confirm the species-level
genetic information of this endangered bat species, which will help for future phylogenetic,
evolutionary, and population genetic studies.
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Figure 3. The BA phylogeny based on the mtCytb gene clearly discriminates all Hipposideros species in
this present study. The Genebank accession number is indicated in parentheses along with the species
name. The posterior probability support values are mentioned with each node. The relationship
between H. nicobarulae and closely related species is mentioned in different colors.

3.3. Model Performance and Habitat Suitability

Our result has precisely predicted the suitable habitats within its extent distribution
range. The average training AUC score for replicate runs (n = 50) for the model was found
to be 0.861 ± 0.021 (SD) (Figure 4). Out of the total distribution range extent (1841 km2),
only 294 km2 (15.96%) was found suitable for H. nicobarulae. The most suitable areas are
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within the southern range of Grater Nicobar (171 km2). Further, within the smaller islands,
the most suitable and continuous habitat patches (40 km2) were distributed in the Car
Nicobar. The result suggests that the suitable distribution for H. nicobarulae was greatly
influenced by the precipitation of the wettest month, with a relative contribution of 25.80%,
followed by the contribution of elevation at 15.80% (Figure 4). Further, the distribution
probability concerning the elevation was found within the range of 0–300 m, after which
the probability values were found to reduce substantially.
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einnaythu, and H. cf. antricola), elevated as a distinct species from H. ater, (B) Representing the
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4. Discussion

The Hipposideros bats are distributed in the Palearctic, Afrotropical, Indo-Malayan, and
Australasian regions and certainly contain many unresolved systematic issues. Some of
them concern the taxonomic position of certain species that were not previously included
in the relevant studies for various reasons (rareness in collections and in nature, limited
range in areas inaccessible to researchers, etc.). Clarification of the taxonomic position
is especially important for narrow-range endemics since it affects the development and
implementation of conservation measures. Thus, taking into account the uncertainties with
the taxonomy of H. nicobarulae, the present study elucidates an interesting systematic doubt
both morphologically and genetically, as well as in terms of their habitat suitability.

The Great Nicobar Island is located about 170 km northwest of Sumatra, 350 km
southeast of the Little Andaman Islands, 640 km off the southwest coast of Thailand,
and 1306 km off the east coast of Sri Lanka. These islands are evidenced to be a discrete
biogeographic unit and hold many magnetic faunal components, which act as a significant
model for evolutionary studies [49]. During the Miocene–Pliocene, volcanic eruptions
formed many isolated islands, and their sporadic connectivity was directly linked to
changes in sea level during the Pleistocene, which accorded both geographical and temporal
processes of species diversification in South and Southeast Asia [50]. The bathymetric
study unwrapped the invisible connectivity of the Andaman and Nicobar archipelago and
Sumatra by a well-developed seamount on the seafloor [51]. Moreover, the unparalleled
biogeography of Southeast Asian oceanic islands provides a suitable habitat for many
Hipposideros bats [52,53]. Looking at the biogeographic pattern, it is obvious that the
species diversity of the Andaman and Nicobar archipelago would be more alike to the
Indo-Malayan and Sundaic realms.

Considering the molecular-based species delimitation performed in the present mt-
Cytb dataset, H. nicobarulae is genetically distinct and evolutionary close to its postulated
sister species, H. cf. antricola, compared with other mainland species (Hipposideros pomona
and Hipposideros durgadasi) of India. Previous studies have suggested that ≥8% genetic
distance in the mitochondrial gene is pretty significant for inferring the genetic species
concept in bats [26,54]. Similar genetic diversity has also been identified in Neotropical and
Palearctic bats [55,56]. The targeted taxa (H. nicobarulae) maintain high genetic divergence
(8.1% to 22.6%) with other Hipposideros bats, congruent with previous bat genetic speciation
concepts. Further, the paraphyletic cladding of Hipposideros taxa from the African and Asian
continents eliminates the biogeographical paradox and provides an interesting example
of convergent evolution [57,58]. Moreover, the present integrated approach confirms the
evolutionary placement of H. nicobarulae and is congruent with the prevailing hypothesis
of Hipposideros classification. This cladding pattern and unique biogeography indicate that
the endemic H. nicobarulae is not the result of local radiation, as might initially be assumed
by H. ater sensu lato, but appears to have arisen from multiple independent colonization
events. However, a more comprehensive study is required, including the generation of
more molecular data (mitochondrial and nuclear) supporting many of the deeper nodes of
phylogeny and their echolocation divergence, to understand their astonishing evolutionary
pattern and diversification that may shed light on the speciation mechanisms of Hipposideros
bats in their range distribution.

The mammalian fauna of the Great Nicobar Island comprises mostly bats and a few
non-volant mammals. A total of 25 species of bats under 13 genera are found in the
Andaman and Nicobar archipelago [4,34]. Among them, seven species under six genera
were reported from the Great Nicobar Island (Cynopterus brachyotis, Hipposideros diadema, H.
gentilis, H. nicobarulae, Myotis horsfieldii, Murina cyclotis, Pteropus melanotus, and Taphozous
melanopogon). Apart from H. nicobarulae (endangered) and P. melanotus (vulnerable), other
species are “least concern” in this insular habitat. It is proven that climate change and
consequent natural calamities like tsunamis and earthquakes are gradually increasing the
sea level of the Indian Ocean, which is greatly affecting the ecosystems of the Andaman
and Nicobar Islands [59,60]. It is therefore imperative to select and conserve a minimum
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land area for biodiversity conservation that will also help conserve endemic and threatened
species within an ecosystem [61,62]. Therefore, the conservation of the estimated suitable
habitat (294 km2) is crucial for the conservation of the endemic H. nicobarulae population
within this isolated insular habitat. Our predictions about habitat suitability will help
governments and conservation organizations when formulating conservation policies for
these endangered species. We also recommend further ecology studies of this species
within its total range (1841 km2) to understand its present status and implement upcoming
action plans for proper conservation.

5. Conclusions

The population of H. nicobarulae has declined significantly on Nicobar Island due to
climate change and habitat degradation. No proper conservation action has been aimed to
protect this species as its taxonomic status is still controversial in the scientific community.
Although morphological data overlapped with some Hipposideros species, genetic data
clearly discriminated most of the species and showed a matrilineal relationship with H.
nicobarulae and H. cf. antricola in the present dataset. The study also delineated the suitable
habitats and conservation priority areas of H. nicobarulae on Nicobar Island. We recommend
an integrated approach, prioritizing extensive sampling, taxonomic coverage, multiple loci
enrichment, and ecological modelling, to gain evolutionary knowledge and conserve this
threatened bat species in the wild.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14030765/s1, Figure S1. The mtCytb based ML phylogeny
of the studied Hipposideros species; Table S1. Primary environmental and topographical variables
used for ensemble modelling; Table S2. The K2P genetic divergences of the analysed of the studied
Hipposideros species.
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