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Abstract: Ovarian cancers are curable by surgical resection when discovered early. Unfortunately,
most ovarian cancers are diagnosed in the later stages. One strategy to identify early ovarian tumors is
to screen women who have the highest risk. This opinion article summarizes the accuracy of different
methods used to assess the risk of developing ovarian cancer, including family history, BRCA genetic
tests, and polygenic risk scores. The accuracy of these is compared to the maximum theoretical
accuracy, revealing a substantial gap. We suggest that this gap, or missing heritability, could be
caused by epistatic interactions between genes. An alternative approach to computing genetic risk
scores, using chromosomal-scale length variation should incorporate epistatic interactions. Future
research in this area should focus on this and other alternative methods of characterizing genomes.
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1. Background

Ovarian cancer is known as the silent killer. The symptoms of ovarian cancer in the
initial stages are minimal and non-specific. Constipation, heartburn, fatigue, and bloating
are early signs of ovarian cancer, but they are also associated with other common maladies.
Because of these non-specific symptoms, ovarian cancer is often undiagnosed until the
tumor has grown large, spread to nearby organs, and invaded the lymph system. At these
later stages, treatment options are limited, and so is survival time. Ovarian tumors, like
most solid tumors, can be surgically removed if found early. Removal of the tumor often
leads to a complete recovery [1]. However, most early detection strategies for ovarian
cancer are ineffective for screening average risk women [2].

Current risk assessment tools for ovarian cancer do not work well enough. Specific
genetic tests on BRCA1/BRCA2 status are available and work well for ovarian cancer, but
only a small fraction (about 10%) of ovarian cancers are associated with those variants [3].
Otherwise, risk assessment is usually based on family history, but many people have limited
knowledge of their family history and in any case a germline genetic test should work better
than a perfect family history. Development of a genetic test to identify women at high-risk
of ovarian cancer could lead to a reduction in the number of ovarian cancer deaths.

Genetic mutations are known to cause ovarian cancer, but the full extent is not known.
The BRCA1/2 mutations account for a small percentage of ovarian cancer, but the others
are called sporadic, with no known genetic cause. We suggest that these sporadic ovarian
cancers are caused by as of yet unknown genetic alterations in the germline. These genetic
alterations might consist of epistatic effects, multiple combinations of mutations, unlike
the simple mutations present in BRCA1/2 that cause ovarian cancer. This suggestion is
based on several lines of evidence. First, analysis of somatic mutational data from tumors
suggests that these tumors take decades to develop [4]. Second, age specific incidence data
suggest that most cancers originate during development [5]. Third, the current lack of a
detailed search for epistasis in germlines of ovarian cancer patients. Finally, an alternative
hypothesis that cancers originate from exposure to environmental mutagens that cause
point mutations in people is not supported by evidence despite decades of studies [6].
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2. Quantifying the Accuracy of Predictive Tests

Predictive tests often produce a numerical score that can be a continuous value, for
instance from 1–100. From this score, one has to choose a cutoff value to make a prediction,
which is a binary choice. Parameters like the sensitivity, specificity, positive predictive
value, and negative predictive value are all a function of both the test and the choice of a
cutoff value. The best way to characterize such a predictive test is with a Receiver Operating
Characteristic (ROC) curve [7,8]. This curve represents all cut off values, and one can read
the sensitivity and specificity for the test for a given cutoff value.

The AUC (area under the receiver operating characteristic curve) characterizes differ-
ent predictive tests. The AUC, sometimes called a c-statistic, reduces the ROC curve to a
single number, which is useful for comparing different tests. However, the complete ROC
curve can show that two tests with similar AUC are not equivalent in some instances. Thus,
it is always best to examine the ROC curve for a test when judging its effectiveness.

The AUC can vary from 0.5, which is equivalent to random guessing, to 1.0, which
indicates a perfect test that is always correct. The AUC is equivalent to the accuracy when
the two classes have equal numbers. The AUC is insensitive to class imbalance.

One example that illustrates how a predictive test with a low AUC can still be effective
is the BRCA1 test for breast and ovarian cancer. This test works very well but only in a small
subpopulation. Although the AUC is small, the test is quite valuable for that subpopulation.

3. Theoretical Maximum Accuracy of an Ovarian Cancer Genetic Risk Score

The highest possible AUC for predicting ovarian cancer in women is about 0.99 [9].
The discriminative accuracy of a genetic test depends on two factors, the heritability and
prevalence of the trait. The Nordic Twin Study measured the heritability of ovarian cancer
at about 40% [10]. Based on this heritability measurement and the prevalence of ovarian
cancer, an ovarian cancer genetic test could have a maximum discrimination accuracy
(AUC) in excess of 0.99. A substantial gap exists between the current best genetic risk tests
and what should be possible.

4. Predicting Risk: Family History

Understanding a patient’s family history is the first step in predicting whether a
woman will develop ovarian cancer. Predictions based solely on family history have not
been well characterized for ovarian cancer, but breast cancer predictive models have been
well characterized, as it occurs ten times more frequently than ovarian cancer. For instance,
one commonly used predictive model, the Gail model [11], has an AUC of 0.58 (95%
confidence interval [CI] = 0.56 to 0.60) [12]. The Gail model incorporates several parameters
including first degree relatives who were diagnosed with breast cancer but does not include
any genetic information. Certain germline mutations in BRCA1 and BRCA2 are known to
increase the risk of ovarian cancer.

The Tyrer-Cuzick model includes a more detailed picture of genetics, including
BRCA1/BRCA2 status and a hypothetical low-penetrance gene that is designed to en-
compass all other genetic factors [13]. The Tyrer-Cuzick model is an improvement over the
Gail model and has an AUC = 0.62, with a 95% CI of (0.60 to 0.64) [14].

Several mutations in the BRCA1/BRCA2 genes are known to increase the risk of
developing ovarian cancer. However, these mutations account for only about 10% of
ovarian cancers in the general population [3,15]. Similarly, the fraction of breast cancers
attributable to mutations in BRCA1 or BRCA2 is about 10%. Thus, the best AUC which could
be expected for ovarian cancer predictive tests based on family history and supplemented
with information on BRCA1/BRCA2 mutation status is probably similar to that for breast
cancer, or about AUC = 0.60–0.65 [16–22].
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The BRCA1/2 genetic tests are used to predict women at a high risk of breast and
ovarian cancers. Some women whose BRCA test indicates a high risk of breast cancer choose
to surgically remove their breasts to avoid breast cancer. Although less common, some
women also choose a prophylactic oophorectomy—the surgical removal of the ovaries—to
avoid ovarian cancers.

A positive BRCA1/2 test is highly predictive of breast/ovarian cancer, but a negative
test is not very predictive of not having these cancers. In the US, only about 5–10% of breast
and ovarian cancers are associated with mutations in BRCA1/2. A need exists to develop
an effective genetic test for these other 90–95% of breast and ovarian cancers.

5. Predicting Risk: Polygenic Risk Scores

To fill this need, the most common approach is to use polygenic risk scores [16–22].
These are linear combinations of single nucleotide polymorphisms (SNPs) found more
often in breast/ovarian cancer patients than in the general population. Models based on
detailed germline genetics should perform better than models based on family history
alone, since family history is often incomplete, limited to just a generation or two, and
genetic factors present in relatives might not be inherited.

The polygenic risk scores used today originate from Genome Wide Association Studies
(GWAS) [23–25]. These GWAS studies were designed to find genes that drive disease, not for
predictive tests. These polygenic risk scores are usually computed as a linear combination
of the “hits,” each with a different weight, found in GWAS studies. Different algorithms
use slightly different criteria to decide on which “hits” to include and how to weigh them.

The current state of research knowledge on ovarian cancer genetic risk scores is best
represented by two recent papers. The first was published in the Journal of the National
Cancer Institute in 2020 [26] and the second was published in the European Journal of
Human Genetics in 2022 [27].

The 2020 paper [26] evaluated polygenic risk scores for ovarian cancer and seven other
common cancers using the UK Biobank. In this dataset, they identified 358 women who
had been diagnosed with ovarian cancer. They constructed a polygenic risk score based
upon 31 different SNPs. Then, they evaluated the performance of this polygenic risk score
to predict ovarian cancer using the UK Biobank dataset. This test had a predictive accuracy
of AUC = 0.568 (95% CI 0.537 to 0.598).

The second paper, with over 150 authors, is a tour-de-force [27]. Compared to the
first paper, they increase the number of ovarian cancer subjects by nearly a factor of 100,
using 23,564 cases. They thoroughly explored different combinations of SNPs and different
algorithms for combining these SNPs into a polygenic risk score. The second paper [27]
describes the best model found to be one based on measurements of 27,240 SNPs, almost
1000 times more than the 2020 paper [26]. After all that optimization, they achieved an
AUC of 0.588 (they did not report a 95% confidence interval for the AUC).

Comparing the two papers, one can see that despite the extraordinary efforts of the second
paper, the AUC of the test was not significantly higher than the first paper (AUC = 0.588 vs.
95% CI 0.537 to 0.598). From this comparison, we can conclude that most of the useful
information for predicting ovarian cancer has been extracted from SNP data using current
algorithms. It seems unlikely that the AUC can be significantly improved with different
algorithms, a different set of SNPs, or more patients in a dataset. This AUC is substantially
lower than the theoretical maximum; something is missing.
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6. Missing Heritability?

Many human diseases, including ovarian cancer, are known to be inherited. It was
thought that the advent of large-scale genome wide association studies (GWAS) would re-
veal the underlying genes that led to this inheritance for different diseases [28,29]. However,
GWAS results have consistently shown that a substantial gap exists between the heritabil-
ity that could be attributed to known factors by GWAS and the heritability observed by
studying inheritance in families. The size of this gap varies by disease or trait, but it can
be as large as a factor of ten [30]. The general missing heritability problem, and potential
solutions, is well described by [29], in the specific case of ovarian cancer; Flaum et al. put it
succinctly: “However, a significant proportion of women who develop ovarian cancer with
a strong family history of breast and/or ovarian cancer still do not have a known variant to
explain their increased risk, and there must be other genetic factors at play that we do not
yet understand” [15].

7. Beyond Polygenic Risk Scores

Epistatic interactions, nonadditive interactions between two or more genes, are one
factor usually cited as part of the missing heritability problem [29,31]. The methods used
in GWAS studies ignore non-linear interactions between genes, which are necessary to
measure epistatic interactions. Modern statistical techniques, or machine learning, allow
one to consider non-linear interactions between features, but these techniques inevitably
require substantially more features (SNPs) than samples (patients), which is not useful
when a few thousand patient samples are considered large, and genomes are characterized
by millions of SNPs.

One approach to the problem is to construct a different representation of the genome as
an alternative to SNPs. A more compact representation that still accounts for the variability
in humans would allow the use of machine learning algorithms.

One example of this approach is to use measures of chromosome-scale length varia-
tion [32]. Chromosome-scale length variation can be computed from SNP array data. SNP
arrays provide calibrated intensity values for each SNP location. This intensity data is
usually processed into copy number variation data, which is represented by a multiplicity
number (where two is the normal multiplicity) and chromosome segment. Instead, one can
take this intensity data and compute an average multiplicity across an entire chromosome.
By measuring this multiplicity across an entire chromosome for many people, one finds
a distribution in values (See Figure 1). A person’s germline genome, then, can be charac-
terized by a series of 23 numbers where each number represents the average multiplicity
across each chromosome.

This representation of a person’s genome as 23 numbers has some advantages over
the conventional SNP representation of a genome. It is more compact, but still sufficiently
complex to capture the enormity of the human population. The compactness allows one to
use modern machine learning techniques. It is extensible; you can split the chromosomes
into arbitrarily small sections.

Using a dataset acquired as part of the Cancer Genome Atlas (TCGA) project, we
evaluated a genetic risk score computed from chromosomal-scale length variation derived
from TCGA normal blood samples. In this dataset, the genetic risk score had an AUC of
0.88 (95% CI of 0.86-0.91) [32]. Women with the highest 20% had 160 times greater risk of
developing ovarian cancer as compared to the lowest 20%. Although these numbers showed
extraordinary discrimination, it is unclear whether these results can be generalized to the
general population. The TCGA dataset only contains people who had been diagnosed
with cancer, so this work really distinguished one form of cancer from other forms of
cancer. It is also possible that the TCGA has subtle batch effects, leading to falsely high
discrimination [33,34].
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8. Conclusions 

Figure 1. This figure shows a histogram of chromosome-scale length variation measurements of
chromosomes 1, 7, 13, and 19 for 10,000 people in the NIH All of Us dataset. “Chromosome length” is
measured by averaging calibrated intensity measurements taken from SNP arrays for many SNPs
located on each of the four chromosomes. These calibrated intensity measurements are representative
of local copy number. Chromosomes can have many deletions, insertions, and translocations that
affect copy number. The values measured in log_2(Ratio Units) represent the overall length of the
chromosome, where a value of zero indicates the nominal average chromosome length. By measuring
this parameter for all chromosomes, one can characterize each person’s germline genetic makeup
with these 23 numbers.

8. Conclusions

Ovarian cancer is completely curable in the early stages. While convincing data do not
yet exist, we believe that the propensity to develop ovarian cancer appears to be transmitted
through the genome, primarily through epistatic interactions. Thus, our opinion is that
identification of signatures in the germline genome that indicate future diagnosis of ovarian
cancer should be a primary and important target of research. We describe one early effort to
use chromosome-scale length variation measurements to quantify insertions and deletions
that might hold promise for predicting risk of developing ovarian cancer.
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