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Abstract: Single-cell RNA sequencing (scRNA-seq) is a method that focuses on the analysis of gene
expression profile in individual cells. This method has been successfully applied to answer the
challenging questions of the pathogenesis of multifactorial diseases and open up new possibilities
in the prognosis and prevention of reproductive diseases. In this article, we have reviewed the
application of scRNA-seq to the analysis of the various cell types and their gene expression changes
in normal pregnancy and pregnancy complications. The main principle, advantages, and limitations
of single-cell technologies and data analysis methods are described. We discuss the possibilities
of using the scRNA-seq method for solving the fundamental and applied tasks related to various
pregnancy-associated disorders. Finally, we provide an overview of the scRNA-seq findings for the
common pregnancy-associated conditions, such as hyperglycemia in pregnancy, recurrent pregnancy
loss, preterm labor, polycystic ovary syndrome, and pre-eclampsia.

Keywords: single-cell RNA sequencing; bioinformatics; pregnancy-associated disorders; reproductive
diseases; pre-eclampsia; polycystic ovary syndrome; recurrent pregnancy loss; preterm labor; hyperglycemia
in pregnancy

1. Introduction

Pregnancy-associated disorders, including all diseases that occur during pregnancy
and give symptoms in the mother from 20 weeks of gestation, represent one of the most
challenging problems of modern reproductive medicine. High-throughput sequencing
methods have dramatically improved our knowledge of the underlying causes of human
diseases, including reproductive disorders. One of the most important high-throughput
approaches used for the investigation of disease pathogenesis is gene expression profiling
via RNA sequencing (RNA-seq). There are currently two main strategies in the study
of gene expression: (i) Bulk RNA sequencing, which involves extraction and analysis of
certain RNA fractions in a population of cells, usually coming from a tissue sample; and
(ii) Single-cell RNA sequencing (scRNA-seq), a method that focuses on the analysis of
gene expression profile in individual cells. In the former group of methods, conventional
RNA-seq approaches are dedicated to the analysis of longer RNA molecules or, specifically,
mRNA, while small non-coding RNA molecules can be analyzed using a special method,
usually called ncRNA-seq.

To date, a lot of findings have been accumulated in the analysis of gene expression
changes associated with pregnancy abnormalities [1–16]. Despite the aforementioned
progress in using transcriptome analysis methods in various pregnancy-associated disor-
ders, the etiologies of these diseases remain unexplored or not fully understood. One of
the likely reasons for this problem is the lack of information about fine-scale changes in
tissue composition and cellular interactions during normal pregnancy and its abnormalities.
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Single-cell RNA sequencing is one of the methods that help to fill the gap in the current
understanding of pregnancy.

scRNA-seq methods allow us to take a new look at the interactions within cells and
the pathogenetic mechanisms, discover new genes, and develop new methods to study
these problems. The single-cell transcriptomics approach has been shown to be an excellent
instrument in the study of the pathogenesis of various diseases. This method enables
the control and detection of different types of cancer, analysis of the stem cell differentia-
tion processes, estimation of the heterogeneity of cells in immunology, investigation and
characterization of neurons in different areas of the central nervous system, and much
more [17–19]. The rapid development of single-cell technologies has provided an expo-
nential increase in the findings in the field of pregnancy-associated disorders [20,21]. This
review will describe the current knowledge gained by applying the scRNA-seq technologies
in the research of normal pregnancy processes as well as common gestation complications,
such as hyperglycemia in pregnancy, preeclampsia, recurrent pregnancy loss, and preterm
labor. We will also review recent scRNA-seq-based advances in studying conditions associ-
ated with a high risk of pregnancy disorders, including polycystic ovary syndrome and
infections during pregnancy. Finally, we will discuss the possibilities and limitations of the
single-cell sequencing method for solving the fundamental and applied tasks related to
human pregnancy.

2. scRNA-Seq: Laboratory Technologies and Bioinformatic Data Analysis Instruments

The single-cell RNA sequencing method first appeared in 2009 and has since become
the standard for studying gene expression in dynamics at the level of one cell in various
human tissues and organs [22]. The technology is very different from the usual bulk
RNA-Seq methods, which involve the analysis of the transcriptome profile for a whole
population of cells. In contrast, scRNA-seq allows the study of gene expression at a much
higher resolution: at the level of individual cells. From the advent of the method to the
present day, scRNA-seq improved from 10 cells to tens of thousands of cells in one analysis.
It is also impossible not to mention the processes of making the method cheaper and faster
since its emergence [23].

The scRNA-seq method is based on the study of gene expression in an individual cell,
which avoids averaging the expression levels for different cell types. In contrast to bulk
methods, the scRNA-seq allows for the characterization of cell types present in the sample
and their gene expression. Furthermore, scRNA-seq provides important information for the
investigation of the biology of different cell types, as well as their interaction under normal
or pathological conditions. Moreover, the method allows for identifying and characterizing
cells with untypical expression profiles (outlier cells), which, in turn, may provide new
insights into the mechanisms of disease development [24]. In the following sections, we will
briefly review the main protocols used for scRNA-seq library preparation and subsequent
data analysis.

2.1. Laboratory Protocols

The basic experimental strategy is similar in major scRNA-seq technologies. At first,
cells must be isolated by tissue/organ dissociation. Then, cell viability is checked, and cells
are counted. After that, the RNA of individual cells is extracted and reverse-transcribed
into complementary DNA, barcoded, and amplified. Ultimately, the output is a library (or
libraries) for high-throughput sequencing, which is then subjected to bioinformatic analysis
and experimental validation [25].

There are multiple protocols for performing the scRNA-seq assay, and the number
is constantly growing. The protocols can be divided into two categories, according to the
captured transcript coverage: (i) Full-length transcript sequencing (Smart-seq2 [26], SUPeR-
seq [27], and MATQ-seq [28]); and (ii) 5′- or 3′-end transcript sequencing (Drop-seq [23], Seq-
Well [29], 10X Genomics Chromium [30], DroNC-seq [31] or STRT-seq [32]) [33]. The use of
5′- or 3′-end tags limits the power of the technology for the analysis of isoforms but increases
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the throughput and removes biases associated with transcript length. At the moment, the
most popular methods for scRNA-seq are commercially available platforms such as BD
Rhapsody [34], Takara/Clontech iCell 8 [35], and 10X Chromium technology [30]. It can be
confidently stated that 10X Genomics dominates the market of scRNA-seq, according to a
Google Scholar citations search.

The most popular scRNA-Seq technologies employ the isolation of single cells into
droplets, followed by library preparation within each droplet. In contrast to bulk RNA-Seq,
scRNA-Seq libraries usually contain additional sequence fragments for the identification of
cells (cell barcodes), as well as unique molecular identifiers (UMIs) [36]. The usage of UMIs
greatly enhances the accuracy of transcript quantification for single cells, allowing for the
identification and removal of excessive amounts of duplicate reads arising from extensive
amplification of the material.

Despite the general availability and ease of use, widely used commercial platforms
also have several drawbacks. These include a high cost of reagents and kits, “closed” bioin-
formatic solutions with platform-specific rules, and general methodological limitations [37]
such as low efficiency of reverse transcription, limited cell capture, an amplification bias,
and the need for a large number of sequencing reads. Ongoing development of scRNA-seq
technologies focuses on increasing the number of cells analyzed in one run, improving the
efficiency of cell capture, and enabling the efficient analysis of the full transcript sequence.
The extension of single-cell methods beyond transcriptional profiling is also an important
topic. However, there is still no gold standard scRNA-seq method that suits all needs to
date, despite the aforementioned prevalence of 10X Genomics on the market. Hence, the
choice of platform or method depends on the goals and capabilities of a particular study.

2.2. Data Analysis Methods in scRNA-Seq

Data analysis is one of the most extensive and time-consuming processes. Libraries
from scRNA-seq are much more complex compared to other sequencing methods, which
makes the analysis strategy more sophisticated. As scRNA-seq technologies are constantly
developing, as noted in the previous section, new methods and solutions for data analysis
are frequently being proposed. In this section, we will review the major steps in the analysis
of scRNA-seq data, primarily focusing on the most popular droplet-based techniques, such
as the one provided by 10X Genomics.

Analysis of any RNA-seq dataset (both bulk and single-cell) can be broadly divided
into major stages: (i) Upstream bioinformatic analysis, including read alignment and
quantification of gene expression levels; and (ii) Downstream statistical analysis of the
results (Figure 1). The latter stage of the analysis is undoubtedly more sophisticated for
scRNA-seq data given the structure of the data and various biological aspects that may be
of interest in a particular study (e.g., cell type composition of a sample, cell-type specific
gene expression changes, evolutionary trajectories of cells in the tissue, etc.). However,
software tools for upstream analysis of scRNA-seq data also differ from those used in bulk
RNA-seq, although conventional RNA-seq analysis software (e.g., read aligners such as
HISAT2 [38] and STAR [39], or quantification methods such as RSEM [40]) may be applied
for certain types of scRNA-seq libraries.

The necessity of using dedicated scRNA-seq software stems from the key feature
of the most widely used scRNA-seq methods—namely, the usage of cell barcoding and
UMIs for accurate quantification of the expression of each gene in each cell. Given such
a specific structure of the library, specialized read alignment and quantification methods
were developed for scRNA-Seq datasets. Cell Ranger [30], a solution developed by 10X
Genomics, is the standard tool for processing raw Chromium scRNA-Seq data. Cell Ranger
uses STAR aligner to map RNA reads onto a reference genome, and the mapping results are
further refined using several read-level procedures. The assignment of reads to genes and
cells is performed using the cell barcode and UMI information from the first read in pair,
and the per-cell barcode UMI count may be used to filter out empty droplets. A similar
logic is implemented in another scRNA-Seq-specific workflow, STARsolo [41]. In contrast
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to Cell Ranger, STARsolo allows for much faster data processing, which is important when
working with large numbers of samples. The STARsolo pipeline is also applicable for non-
10X scRNA-seq data (e.g., SmartSeq2). However, both Cell Ranger and STARsolo require
substantial computing resources, especially in terms of memory usage. Hence, specific
pseudo-alignment-based approaches have been developed for scRNA-Seq. These include
kallisto/BUStools [42] and Alevin [43]. These methods are extremely resource-efficient and
can work with fewer than 10 GB of memory on most human or mouse datasets [42].
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The quantification of gene expression in scRNA-seq results in a matrix containing
gene expression levels in each individual cell. Such a matrix is the main piece of data used
for all downstream analyses. Most of the analyses are performed using one of the frame-
works implemented in R or Python. The most popular solutions include Seurat [44–47],
SingleCellExperiment [48], and Scanpy [49]. The first steps of the downstream analysis
include post-alignment data QC and filtering, as well as the visual inspection of the data
using dimensionality reduction methods. The post-alignment QC and filtering of the data
is typically based on such parameters as the per-cell number of detected genes or the per-
centage of a mitochondrial gene or ribosomal protein gene counts. Other important issues,
which are commonly addressed during this stage, are the presence of cell doublets [50]
and ambient RNA [51], as well as various confounding biases. The correction of excessive
zero expression values (drop-outs) is also sometimes performed, though the necessity of
this procedure is questioned [52]. Moreover, the visualization of data using dimensionality
reduction methods such as UMAP [53] or tSNE [54] is an important technique that helps
to evaluate the general quality of data and the effects of post-alignment QC. UMAP or
tSNE plots are also used in other stages of the downstream analysis—for example, when
evaluating the clustering of cells and plotting various cell- or cluster-level information.

Preprocessed scRNA-seq datasets are usually used for the identification of cell types
present in the sample. This procedure involves the visualization of expression for known
cell type marker genes, unsupervised clustering of the data, and manual or automated
annotation of candidate cell types. The latter step is commonly performed using sets of
marker genes (e.g., in ScType [55]) or cross-dataset label-transfer (e.g., in CellTypist [56])
techniques. It is not uncommon to perform the aforementioned steps in several rounds
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using several algorithms for clustering [57] and their settings (such as the expected number
of clusters). In some cases, ambiguous or puzzling results of the cell-type analysis may
indicate that a more stringent post-alignment QC and filtering should be applied.

The clustered scRNA-seq dataset, with or without annotated cell types, can then
be subjected to various types of analysis depending on the study design. For example,
differential expression analysis can be performed, both between clusters (e.g., to identify
gene expression differences between a pair of cell types of interest) or for a particular cell
type (if data from case and control samples are available). A different option is the analysis
of the cell differentiation trajectories. A wide variety of methods exists to solve the complex
task of inferring the evolutionary trajectories (for example, see a comparative study by
Saelens et al. [58]). Yet another approach is the analysis of cell-to-cell communication, which
may provide important insights into the physiology of tissues and disease mechanisms.
Methods for cell-to-cell communication analysis are also numerous [59].

Taken together, there are various strategies, approaches, and tools for performing the
scRNA-seq data analysis. Thus, the choice of the methods for a particular study should be
motivated by the study design, scRNA-seq technology used, and the results of large-scale
benchmarks of the competing solutions for a specific analysis step.

3. The Recent Discoveries in the scRNA-Seq Studies of Human Pregnancy

ScRNA-seq studies regarding pregnancy are summarized in Table 1. The studies differ
in scRNA-seq techniques, biosample types, pregnancy conditions, and gestational age. The
most examined samples in scRNA-seq include placental and decidual tissues, maternal
blood, and umbilical cord blood. As expected, the most popular platform is 10X Genomics
because of its simplicity and ubiquitous availability. Viability testing and cell counting
in these studies were performed using a variety of methods. However, a hemocytometer
with trypan blue staining was more frequently used due to its accuracy. A wide variety of
bioinformatic tools were used for data analysis, with the choice of tools depending on the
platform for the study.

Table 1. The recent discoveries in the studies of normal and pathology pregnancy performed by
scRNA-seq methods.

Year
Ref. Sample Type Research Group Gestational Age Number of Cells Method

Main
Bioinformatic

Tools *
Main Findings

Normal pregnancy

2018
[60] Placenta Normal

pregnancy (n = 8) 8 and 24 weeks 1567 MACS,
smart-seq2

TopHat, HTSeq,
Seurat,

Monocle2,
KEGG

Fourteen subtypes of placental
cells: three CTBs1 subtypes,

STBs2 subtype, EVTs3 subtypes,
two macrophages’ cells subtypes,
two mesenchymal stromal cells

subtypes, one blood cell subtype
in the villi, and two EVTs3

subtypes in the decidua.

2018
[61] Villi and decidua

Villi
(n = 8),

decidua
(n = 6),

6–11 weeks,
elective

termination
21,095

Cell counter,
Drop-seq,

10X Genomics

STAR,
featureCounts,
Seurat, DAVID

Transcriptome definition of
20 cell populations; the relative
proportions of each cell type in
villi and decidual samples; an
interactome map between the
most abundantly expressed

ligands and receptors in villi and
decidua cells; the new subtypes

of the FB4-like cells.
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Table 1. Cont.

Year
Ref. Sample Type Research Group Gestational Age Number of Cells Method

Main
Bioinformatic

Tools *
Main Findings

2018
[21]

Placenta,
decidua cells,

maternal PBMC7

Decidua (n = 11),
placenta (n = 5),

PBMC (n = 6)
6–14 weeks >70,000

FACS,
10X Genomics,

smartSeq2

Cell Ranger,
HISAT2, HTSeq,

Seurat,
Monocle2,
Cytoscape,

CellPhoneDB

Molecular and cellular map of
the human decidual-placental
interface; characterization of

three DSC5 cell subtypes (dS1,
dS2, and dS3) and three dNK6

subtypes; differentiation
trajectory from CTB1 to EVT3;
repository of ligand-receptor

complexes to predict interactions
between different cells of the

maternal-fetal interface
(CellPhoneDB).

2022
[62] Placenta

After
delivery (n = 8),

full-term
38–40 weeks 11,438 MACS,

10X Genomics

Cell Ranger,
Seurat,

Monocle2,
scanpy,

clusterProfiler,
CellPhoneDB

The maternal–fetal interface
cellular map of full-term

placenta; a subpopulation of
TPLCs8 with high expression of

HMMR; downregulation of
PRDM6 may lead to an abnormal

endovascular EVTs3

differentiation process in
preeclampsia.

2023
[63] Villi

Normal
pregnancy (n =

11),

6–16 weeks,
elective

termination
52,179 HTBS9,

10X Genomics

Cell Ranger,
Seurat,

Monocle 2,
CellPhoneDB

Three new populations of
progenitor cells: endothelial

progenitors, STB2 progenitors,
and EVT3 progenitors; 8–9

gestational weeks were
determined as a critical time

point for altering gene expression
profiles in placental cells.

2022
[64] Myometrium

Term in
spontaneous
labor (n = 11),

term not in labor
(n = 13),

≥37 weeks,
caesarean section 53,194

Cellometer
Auto 2000;

10X Genomics

Cell Ranger,
kallisto, bus
tools, STAR,

SingleR, Seurat,
DESeq2,

clusterProfiler,
SPSS

A single-cell atlas of the human
myometrium; cell–cell

communications that are
modulated during the
physiologic process of

spontaneous labor at term;
ERRFI1, a specifically

differentially expressed gene in
maternally circulating

monocytes; nonimmune and
immune cells participate in a

plethora of biological pathways
associated with the contractile
and inflammatory processes of

spontaneous labor at term.

2022
[65] PBMC

Normal
pregnancy (n =

131),
non-pregnancy

(n = 5)

6–40 weeks 198,356
HTBS9, MGI
DNBelab, TF

Scientific

PISA, Seurat,
clusterProfiler,

CellChat,
MAGIC

algorithm, SHAP

A single-cell atlas of PBMCs7 in
pregnant women spanning the

entire gestation period;
cell-type-specific model to

predict gestational age in normal
pregnancy; interferon-stimulated

gene upregulation.

2022
[66] UCB10 cells Normal (n = 4) 31–37 weeks,

after delivery 3866 Countess II,
10X Genomics Cell Ranger

New cell types (erythroid cell, T
cell, B cell, erythroid precursor
cells, NK cell, and endothelial

progenitor cell), new
subpopulations (six different
clusters of erythroid cells) in

UCB10; the differentially
expressed genes and chromatin

accessibility in each cell between
different gestational weeks.

2022
[67] UCB10 cells Normal (n = 3) After delivery 57,467 DNBelab C

STAR, PISA,
Seurat, UMAP,

bap2,
clusterProfiler

Differential gene expression
regulation between neonatal and

adult T and B cells; the global
molecular features of

transcription and chromatin
accessibility in neonatal UCB10

nucleated cells and adult
PBMCs7.
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Table 1. Cont.

Year
Ref. Sample Type Research Group Gestational Age Number of Cells Method

Main
Bioinformatic

Tools *
Main Findings

Gestational diabetes mellitus

2021
[68] Placenta

Gestational
diabetes mellitus

(n = 20),
normal (n = 20)

Full-term,
caesarean section 27,220 HTBS9,

10X Genomics

Cell Ranger,
Seurat, SingleR,

Monocle2,
SCENIC,

CellPhoneDB,
Velocyto, GSVA

The comprehensive cell atlas for
the gestational diabetes mellitus
placenta; characterization of nine
cell types in the human placenta;
a significant increase of NK and

cytotoxic T cells, enhancement of
M2 macrophages, and decrease

of inflammatory response cells in
the gestational diabetes mellitus

placenta; ligand-receptor
interactions in the maternal and
fetal microenvironment, as well
as new marker genes, including

SLC1A2, SLC1A6, ADRB1.

Preeclampsia

2017
[69] Placenta

Early-onset
preeclampsia (n
= 4), normal (n =

6)

28–32 weeks,
healthy

38 weeks,
cesarean section

>24,000 10X Genomics Cell Ranger,
STAR, Rtsne

A large-scale single-cell
transcriptomic atlas of the normal
and early preeclamptic placentas;
the differentiation relationships
between the CTBs1, STBs2, and

EVTs3 were re-confirmed; a
significant increase of variability

and levels expression of cell
death-related genes in early
preeclamptic EVTs3; plasma

cell-free RNAs may be useful as
markers of placenta cellular

composition and preeclampsia.

2021
[70] Placenta

Preeclampsia (n
= 3), normal (n =

3)

34–38 weeks,
cesarean section 11,518 Singlerone

GEXSCOPE

Ensembl, fastp,
featureCounts,

Seurat,
clusterProfiler,

Monocle 2,
DDRTree

Differences in transcriptional
profiles of STBs2, EVTs3, and

VCTs11 between preeclampsia
and healthy patients; VCTs11 and
EVTs3 show immune response in

preeclampsia; signaling
pathways in STBs2 upregulated
in the preeclampsia; three new
VCTs11 subtypes; a significant
increase of VCT-2 cells in the

preeclampsia placenta.

2022
[71] Placenta

Early-onset
preeclampsia (n
= 2), healthy (n =

2)

32–40 weeks,
cesarean section 29,008 HTBS9,

10X Genomics

Cell Ranger,
Seurat, SCENIC,

scFunctions,
GSEA,

Cytoscape

Differences in transcriptional
profiles of STBs2, EVTs3, and

VCTs11 between preeclampsia
and healthy patients; two new
transcriptional factors, CEBPB
and GTF2B, involved in EVTs3

dysfunction in preeclampsia.

Recurrent pregnancy loss

2021
[72] Decidua

Recurrent
pregnancy loss
(n = 9), healthy

(n = 15)

7–9 weeks 18,646 FACS;
10X Genomics

Cell Ranger,
Seurat, SAVER,

velocyto,
CellPhoneDB,

Cytoscape

Changes in the number of dNK6

cells and macrophages function
between recurrent pregnancy loss

and normal pregnancy; a
decrease of macrophage
populations in recurrent

pregnancy loss; a significant
decrease of dNK6 subset with

growth-supporting activity and
an increase of pro-inflammatory

dNK6 subset that produces
cytokines in recurrent pregnancy

loss; ligand/receptor level
hypothesis about the likely

causes underlying
pregnancy failure.
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Table 1. Cont.

Year
Ref. Sample Type Research Group Gestational Age Number of Cells Method

Main
Bioinformatic

Tools *
Main Findings

2021
[73]

PBMC7

decidua

Recurrent
miscarriage (n =

14),
normal
(n = 10)

6–8 weeks,
therapeutic
termination

56,758 10X Genomics Cell Ranger,
Seurat

A comprehensive cellular and
molecular atlas of decidual and
peripheral leukocytes in early

pregnancy; an increase of dNK3
subset with cytotoxic and

immune-active; the unique
accumulation of the dNK4 subset

with pro-inflammatory
properties in the recurrent

miscarriages; increased
expression of

inflammation-related genes in
dNK6 cells from recurrent

miscarriages; cytotoxic properties
of T cells, NK-cells, and

mucosal-associated invariant T
cells in peripheral blood.

2021
[74] Decidua

Recurrent
spontaneous

abortion (n = 6),
normal (n = 5)

5–8 weeks 66,078 10X Genomics

Cell Ranger,
STAR, Seurat,

Monocle 2,
CellPhoneDB,

CellChat,
SCENIC

Characterization of the five
clusters of DSCs5; changes in the
number of decidualized stromal
cells in recurrent spontaneous
abortion; cell composition and
communications in normal and
recurrent spontaneous abortion
decidua at early pregnancy; the

aberrant decidualization and
obstructed communication

between stromal cells
accompanying recurrent
spontaneous abortion.

Preterm labor

2019
[75] Placenta

Preterm
labor (n = 3),

term no
labor (n = 3),

term in
labor (n = 3),

Preterm (33–35
weeks), term
labor (38–40

weeks)

79,906
Cellometer

Auto 2000; 10X
Genomics

Cell Ranger,
STAR, Seurat,
xCell, DESeq2

Two cell types: lymphatic
endothelial decidual cells in the
chorioamniotic membranes and

non-proliferative interstitial
cytotrophoblasts in the placental

villi; a significant increase of
NFKB1 gene in macrophages

from women with preterm labor.

Conditions associated with an increased risk of pregnancy complications

2016
[76]

Cumulus-
oocyte complex

Polycystic ovary
syndrome (n = 9),

healthy (n = 7)
- 28

cumulus cells Smart-seq2

Read alignment
and

quantification
methods not

disclosed;
DAVID

Differentially expressed genes,
including PPP2R1A, PDGFRA,

EGFR, PTGS, CAV1, INHBB, etc.,
detected as potential causes of

PCOS oocytes and CCs disorder
at early stages; restoration of

their normal expression level via
assisted reproductive techniques,

which can be an effective
treatment for subfertile patients

with PCOS.

2020
[77]

Cumulus-
oocyte complex

Polycystic ovary
syndrome (n = 9),

healthy (n = 7)
- 28

cumulus cells Smart-seq2

Read alignment
and

quantification
methods not

disclosed;
DAVID, DESeq2,

WGCNA,
Cytoscape,

GSEA,
clusterProfiler,

Downregulation of CYP26A1,
MTRNR2L1, and ELOA genes,

upregulation of FAM53A,
PPP1R35, and BLM in PCOS
oocytes; potential premature
activation of mitochondrial
function in PCOS oocytes.
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Table 1. Cont.

Year
Ref. Sample Type Research Group Gestational Age Number of Cells Method

Main
Bioinformatic

Tools *
Main Findings

2020
[78] Placenta Healthy patients

(n = 8) 8–24 weeks 1567 MACS,
smart-seq2

TopHat, HTSeq,
Seurat,

Monocle2,
ARACNe-AP,

KEGG

ACE2 expression in EVTs3 of the
first and second trimester
placenta; BSG/CD147, the

alternate receptor for
SARS-CoV-2, expressed by

almost all the placental cells; an
abundant expression of DPP4

(MERS-CoV receptor) and
ANPEP (CoV-229E receptor) in

the cells of the placenta;
co-expression of BSG/CD147

with ACE2 in STBs2 and EVTs3;
an increased incidence of preterm

delivery in women with
COVID-19 was assumed.

* Only tools mentioned in the original article are listed; 1CTB—cytotrophoblast cell; 2STB—syncytiotrophoblast
cell; 3EVT—extravillous trophoblast cell; 4FB—fibroblast cell; 5DSC—decidual stromal cell; 6dNK—
decidual natural killer; 7PBMC—peripheral blood mononuclear cells; 8TPLC—trophoblast progenitor-
like cell; 9HTBS—Hemocytometer and trypan blue staining; 10UCB—umbilical cord blood; 11VCT—villi
cytotrophoblast cell.

As evident from Table 1, scRNA-seq has provided many novel insights into normal
and pathological pregnancy conditions. Thanks to the scRNA-seq, the heterogeneity of the
maternal-fetal interface is being worked out in-depth and is becoming increasingly evident
with each new study. On the other hand, the study of pregnancy disorders allows the
discovery of pathogenesis mechanisms, the identification of potential targets for treating or
preventing diseases, and the development of early diagnostic capabilities. Below, we will
discuss the major findings of the studies listed in Table 1, as well as their implications for
further research in the pathogenesis of pregnancy complications.

3.1. Results of the scRNA-Seq Studies of Normal Pregnancy Conditions

The placenta plays a key role in pregnancy and its complications. The main functions
of the placenta are nutrition transfer, immune tolerance, and pregnancy adaptation between
the mother and fetus [71]. Numerous studies have investigated the development, structure,
and functions of the placenta [79].

The human placenta consists of both a fetal component and a maternal component.
The functional unit of the fetal component is the chorionic villous (before 14 weeks) or
placental villous (after 15 weeks), which consists of a stromal core, an inner layer of villous
cytotrophoblasts (VCTs), and an outer layer of multinucleated syncytiotrophoblasts (SCTs)
that cover the surface of the villous tree and the maternal–fetal exchange of gas and nutri-
ents [20,80]. The VCTs also develop to produce a multilayered cellular shell and columns
of extravillous trophoblasts (EVTs) that contact with the maternal component placenta [81].
The stromal core of the villous consists of fetal macrophages (termed Hofbauer cells), fetal
fibroblast-like cells (FBs), and fetal endothelial cells, amongst others [60].

The maternal part of the placenta, the decidua, consists of decidual immune cells,
decidual stromal cells (DSCs), and EVTs. The decidual immune cells include natural killer
cells (dNK), macrophages, dendritic cells, T cells, innate lymphocytes, and B cells, and play
a key role in the establishment of maternal–fetal immune tolerance [82].

The maternal–fetal interface is the point of direct contact between the mother and
the fetus cells, providing an adaptation to the semi-allogeneic fetus, development of the
embryo, and also protecting the fetus from infections.

Despite significant advances in studies, many questions remain regarding the het-
erogeneity of placental cell types, molecular interactions between them, placental cell
differentiation, molecular mechanisms of maternal–fetal immune tolerance establishment,
and other key processes in normal pregnancy.
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Several studies have focused on the study of normal placental tissues in single-cell reso-
lution. To date, the cellular and interactome maps of the human placental tissues under nor-
mal conditions during early pregnancy have been created [61,83]. Suryawanshi et al. [61]
created a comprehensive map of cell types in the first trimester (6–11 weeks) villi and
decidua and determined the relative proportion of cell types. As a result of this research,
an interactive map between the most abundantly expressed ligands and receptors in villi
and decidua cells of the first-trimester placenta was constructed. Vento-Tormo and col-
leagues [21] performed one of the most ambitious works profiling the transcriptomes
of about 70,000 individual cells from the first-trimester placenta samples (6–14 weeks),
which resulted in the creation of the single-cell atlas. This research revealed the cellular
organization of the decidua and placenta, as well as the regulatory interactions that might
cause pregnancy diseases, and provides new insights into maternal–fetal interactions [21].
The authors developed a repository of ligand–receptor complexes, named CellPhoneDB,
to predict interactions between decidual cells and fetal EVTs, maternal immunity, and
stromal cells [21]. Li et al. [20] first provided placental scRNA-seq data from the end of
the first trimester (< 10 weeks) to the middle of the second trimester (10–16 weeks) and
hypothesized that 8–9 gestational weeks is a critical time point for altering gene expression
profiles in placental cells.

scRNA-seq has revealed the new subtypes of the trophoblast cells, macrophages, and
mesenchymal stromal cells in placental tissues from the first and second trimesters. In
addition, several additional characteristics of known placental cells were determined.

Liu et al. [60] profiled the transcriptomes of about 1567 single cells from placental
cells during the first (8 weeks) and second (24 weeks) trimesters of normal pregnancy and
identified 14 subtypes of cells. Three CTB subtypes were found in the first-trimester villi: a
proliferative subtype CTB_8W_3, which may serve as the pool that replenishes the CTB
pool; a non-proliferative, Syncytin-2-positive cell subtype CTB_8W_1, which proved to
be the progenitor cells of the STB; and a non-proliferative, Syncytin-2-negative subtype
CTB_8W_2. Also, three EVT subtypes (EVT_8W_1, EVT_8W_2, and EVT_8W_3) were
detected in the first-trimester villi. Analysis of the enriched genes showed that EVT_8W_1
cells are associated with the cell cycle and cell division, while EVT_8W_3 cells are associated
with receptor activity regulation and the immune response. In turn, EVT_8W_2 cells have
moderate expression levels of the marker genes of the two other EVT subtypes. Newly
identified STB subtype cells in villi, namely STB_8W, are associated with glycoprotein
hormones and small molecule transport. The two subtypes of macrophages (Macro_1
and Macro_2) were found in the first trimester villous stromal core. Macro_1 cells were
demonstrated to be involved in antigen presentation and may be implicated in the removal
of dead cells or cellular debris during the early development of the human placenta. The
two subtypes of mesenchymal stromal cells in the first trimester villous stromal core were
described: Mes_1 cells that participated in the regulation of cell adhesion and migration,
and Mes_2 cells that were involved in the development of mesenchyme and blood vessels.
In the second trimester, two EVTs subtypes were found: EVT_24W_1 and EVT_24W_2.
Analysis of the enriched genes showed that EVT_24W_1 cells may be involved in the
response to wounding, digestion, and the regulation of the immune system, whereas the
EVT_24W_2 cells may participate in growth regulation and gonadotropin secretion. The
pseudo-temporal analysis predicted a differentiation pathway from CTB_8W_2 cells to
CTB_8W_3 cells and then to EVT_8W and EVT_24W [60].

Unknown subtypes of the FB-like cells were found in first-trimester placental villous
and decidual tissues: FB1, FB2, FB3 in villi, and FB1, FB2 in decidua [61]. Interestingly,
villi FB3 cells expressed proinflammatory genes such as IL6, PTGDS, CFD, CXCL2, and
BDKRB1, while FB2 cells are characterized by the unique expression of REN and AGTR1,
genes involved in the regulation of blood pressure, sodium, and fluid homeostasis [61].
The defects of these genes are risk factors for common pregnancy complications [61]. Two
decidual FB subtypes were found to express the genes involved in cell adhesion and lipid
metabolism. The two differentiation pathways from the FB1 population to decidual stromal
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cells and FB2s were predicted [61]. Suryawanshi et al. [61] clarified the functions of other
placental cells and found that EVTs highly express MMP11, which degrades collagen, and
MMP12, which in turn has a role in suppressing inflammatory processes [61].

Vento–Tormo and colleagues provided information about cells at the maternal–fetal
interface. They identified the transcription factors involved in the differentiation of CTBs
into EVTs and receptors involved in immunomodulation, cellular adhesion, and invasion
of EVT [21]. The authors were able to identify three clusters of decidual stromal cells
labeled dS1, restricted in decidua spongiosa, dS2, and dS3, restricted in decidua compacta.
ACTA2, IGBP1, and DKK1 were found to be markers of these populations, respectively,
and the common marker for the three clusters was the expression of the WNT inhibitor
DKK1. Cognitive receptors for angiogenic factors, expressed in PV1 and PV2 (e.g., ANGPT1,
VEGFA), located in the endothelium, were also detected by ligand–receptor interactions
identification. This analysis also revealed the mechanism of stromal suppression of in-
flammatory responses in decidua—initially, dS2 and dS3 express LGALS9 and CLEC2D
after EVTs invasion, followed by an interaction of these molecules with TIM3 and KLRB1
receptors expressed by subsets of dNKs [21].

In a continuation of the research, Vento–Tormo et al. [21] identified three major subsets
of dNKs (dNK1, dNK2, and dNK3) co-expressing tissue-resident markers CD49A and CD9.
The expression of CD39, CYP26A1, and B4GALNT1 in dNK1; ANXA1 in dNK2; ITGB2
in dNK2 and dNK3; and CD160, KLRB1, and CD103 in dNK3 was found. There was
also evidence to suggest the involvement of dNK1 in recognition and response to EVT
through the expression of higher levels of KIRs, LILRB1, and cytoplasmic granule proteins.
Furthermore, increased expression of CSF1 in dNK1, XCL1 in dNK2 and dNK3, and CCL5
in dNK3 was found. For a better understanding of decidual prevention mechanisms to
inflammatory responses, Vento–Tormo et al., found a high expression of SPINK2 by dNK1
cells and ANXA1 by dNK2 and dNK3 cells. In addition, a joint role of dNK1 in the creation
of extracellular ATP by HLA-G+, and the conversion of ATP to adenosine by CD39 and
CD73 to prevent immune activation, have been hypothesized [21].

New insights into first- and second-trimester placental endothelial cells during normal
pregnancy have been found, leading to an improved understanding of placental endothelial
functions [63]. Li et al. [63] reported new placental endothelial cell subtypes (Endo-1, -2,
and -3). Endo-2 has been identified as a new population of endothelial progenitor cells
in the placenta. Two other clusters of cells Endo-1 and Endo-3 predominated at different
stages of pregnancy and had different metabolic properties. Endo-1 cells are associated
with the formation of immature intervillous vascular beds in early pregnancy and are most
abundant in the first-trimester placenta and decreased after 11 weeks of gestation. Endo-3
cells participate in active placental angiogenesis after the first trimester and gradually
increase with advancing gestational age. Two new additional populations of progenitor
cells were found: SCT progenitor cells (VCT-5), inactively proliferating cells that existed in
the inner villous layer, and EVT progenitor cells (VCT-3), actively proliferating cells located
where the column begins to form and maintained a metastable EMT phenotype [63].

A few studies have investigated the cellular composition of the full-term placenta in
normal pregnancy in single-cell resolution. These results provide new insights into the
molecular mechanisms of physiological and pathological labor. Unknown placental and
decidual cell subtypes and functions were also found.

For example, Wang et al. [62] provided a comprehensive molecular and cellular
map of the maternal–fetal interface of the full-term placenta. They performed the single-
cell transcriptomic analysis of the full-term placenta and revealed heterogeneity of the
CTBs and stromal cells from the fetal section, middle section, and maternal section of
the maternal–fetal interface [62]. The authors identified a new subpopulation of CTBs,
TPLCs, that exist in the full-term placenta and are mainly distributed in the middle section.
These subpopulations can serve as potential cellular models for further investigation of
pathological mechanisms [62].
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Pique–Regi et al. [75] used scRNA-seq to profile the placental villous, basal plate,
and chorioamniotic membranes in women with and without labor at term and found
significant differences in cell type composition and transcriptome profiles among placental
compartments and between study groups. The authors reported for the first time that
npiCTB (non-proliferative interstitial cytotrophoblasts) were detected in placental villi
in a single cluster, which may indicate specific functions of these cells that should be
inspected in the future [75]. In addition, a new type of lymphatic endothelial decidual
cells (LEDs) was identified as a distinct cluster in the chorioamniotic membranes of the
full-term placenta. The discovered LED cells have been shown to be involved in the influx
of immune cells into the chorioamniotic membranes, which may indicate the presence of
lymphatic vessels in the sheath [75].

In addition to the placenta, the other pregnancy-related biological samples and tissues
are actively being analyzed using single-cell techniques. Pique–Regi et al. [64] created a
single-cell atlas of the human myometrium and revealed cell–cell communications that are
modulated during the physiologic process of spontaneous labor at term. The main finding
of the study is that nonimmune and immune cells are involved in the contractile and inflam-
matory processes of spontaneous labor at term [64]. This work demonstrated that maternal
whole-blood transcriptome can be used during pregnancy to monitor myometrium-derived
single-cell signatures during gestation is demonstrated [64].

The study of maternal blood is very important for understanding the immune mech-
anisms and biomarkers of placental processes searching. The research of Chen et al. [65]
was the first to create a complete atlas of maternal PBMC focusing on immune adapta-
tion during pregnancy. This study provides a better understanding of the maternal–fetal
immune system mechanisms and pathophysiological processes of disorders during preg-
nancy. The single-cell-derived placental signatures were detected in the maternal blood
circulation [69,75], indicating that maternal blood may be useful in monitoring pregnancy
processes at the cellular level during pregnancy.

Umbilical cord blood is no less important in pregnancy development and its complica-
tions. The latest discoveries include distinct cell populations in the umbilical cord blood,
including erythroid cells, T cells, B cells, erythroid precursor cells, NK cells, and endothelial
progenitor cells, as well as six subpopulations of erythroid cells [66]. These discoveries
will help to improve the efficiency of cord blood stem cell transplantation by selecting
subpopulations or changing their gene expression. A study of neonatal umbilical cord
blood immune cells revealed a difference in gene expression between adult and neonatal T
and B cell subtypes [67]. An increased expression of HBG2, NFKBIA, JUN, and TNFAIP3
genes was found in neonatal T cells, whereas NKG7, GNLY, GZMH, HLA-DPB1, and CCL5
were found in adult T cell subtypes. In addition, a difference between B cell subtypes has
been investigated: in neonatal ones, expressions of HBG2, NFKBIA, JUN, FOS, and TNFAIP3
were increased. However, adult B cells expressed IGHA1, IGHG2, IGHG4, IGKC, and IGLL5
increasingly. This research provides a better understanding of neonatal immune tolerance.

There are other studies, in which scRNA-seq demonstrates itself as a tool for studying
the dynamics of developmental processes [84,85], identifying new gene regulation mech-
anisms [86], and discovering new cell types [87,88] during physiological pregnancy. In
addition, scRNA-seq helps to obtain information about various gestation pathologies.

3.2. Results of the scRNA-Seq Studies of Pregnancy Complications and Pregnancy-Associated
Diseases
3.2.1. Hyperglycemia in Pregnancy

Hyperglycemia in pregnancy is well-known to be associated with adverse long-term
health outcomes both for mother and offspring. Women with this condition have an
increased risk of pre-eclampsia, gestational hypertension, hydramnios, and obstructed labor.
Hyperglycemia can cause fetal hypoglycemia and hyperinsulinemia, the development of
malformations in the fetus [89]. This condition can result from either pre-existing diabetes
(Type 1 and Type 2 diabetes) or insulin resistance developed during pregnancy that might
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be classified as gestational diabetes mellitus (GDM). The health problems caused by GDM
are extensive, and it is still difficult to control the occurrence of this disease despite the rate
of new cases of GDM increasing annually [89]. An additional problem is an inconsistency
in the screening and diagnosis of GDM in different countries, which makes it difficult to
estimate this condition [90]. A set of transcriptomic studies of GDM using the scRNA-seq
approach were performed. In the study of Yang et al. [68], the analysis of cell-type-specific
alterations in GDM at the single-cell level in placenta tissues was performed. The results
allowed us to identify nine cell types in the human placenta differing in transcriptome
profile. In addition, several novel characteristics of trophoblast and immune cells were
determined. A significant increase of NK and cytotoxic T cells, an enhancement of M2
(CD206+) macrophages, and a decrease of inflammatory response cells were discovered
in the placenta of patients with GDM. Ligand-receptor interactions in the maternal and
fetal microenvironment, as well as a new marker gene, were reported, including SLC1A2
(expressed in syncytiotrophoblast cells), SLC1A6 (expressed in extravillous trophoblast
cells), and ADRB1 (expressed in villous cytotrophoblast cells) [68]. Interestingly, SLC1A2
and SLC1A6 encode amino acid transporters that are involved in the uptake of L-glutamate,
L-aspartate, and D-aspartate [68]. These findings make it possible to reveal previously
unknown pathogenetic mechanisms of the disorder, including the cellular functions and
intercellular interaction in GDM, which can facilitate the development of new approaches
to the prevention and treatment of GDM.

Current data suggest that GDM shares a common etiology with Type 2 diabetes (T2D).
GDM and T2D have similar pathophysiological mechanisms, including β-cell dysfunction,
insulin resistance, adipose tissue dysfunction, gluconeogenesis, and oxidative stress [91].
The family history of T2D is known to significantly increase the risk of the development
of GDM [92]. Women who experience GDM have an increased risk of developing T2D
after pregnancy [93]. The pregnancy is physiologically associated with a slow increase in
insulin resistance as a physiologic adaptive process that ensures the supply of glucose to the
rapidly growing fetus [94]. At the same time, the restoration of maternal insulin sensitivity
after childbirth is an important physiological and metabolic adaptation of women’s health.
However, in genetically predisposed women, pregnancy can act as an environmental stress
factor catalyzing the progression of diabetes. Given that, the pathophysiology of GDM
appears to be largely similar to that of T2D. It might be crucial to study the genetic and
environmental factors associated with T2D in relation to the risk of the development of
hyperglycemia in pregnancy. The findings of the transcriptomic studies of T2D using the
scRNA-seq approach were reviewed by Tonyan et al. [10]. The application of single-cell
sequencing technology has shown the high proliferative capacity of pancreatic progeni-
tor cells and their developmental heterogeneity and dedifferentiation processes in adult
T2D patients. Segerstolpe and colleagues [87] performed the transcriptome analysis of
the pancreatic cells obtained from healthy individuals and T2D patients and found the
downregulated expression of INS and FXYD2 genes and the upregulated expression of
GPD2 and LEPROTL1 in the β-cells of T2D individuals [87]. In another study, including the
transcriptome profiling and analysis of 638 single islet cells, the researchers have shown the
decreased expression of INS along with STX1A in β-cells, as well as the upregulated expres-
sion of CD36 and a downregulated expression of GDA in α-cells of T2D patients compared
to healthy donors [95]. In a recent work by Li and colleagues, the new potential biomarkers
of T2D (MTND4P24, MTND2P28, and LOC100128906) were identified [96]. Future research
using the single-cell transcriptome profiling of the different types of pancreatic cells may
provide a deeper understanding of the pathogenetic processes of the factors determining
the development of hyperglycemia in pregnancy, and, thereby, it might help to develop the
strategies for the prevention and targeted therapy of diabetes in the future.

3.2.2. Preeclampsia

Preeclampsia is a complication of pregnancy characterized by the onset of hypertension
and proteinuria after 20 weeks of gestation. It is accompanied by maternal multi-organ
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damage and uteroplacental dysfunction. Preeclampsia affects 5–8% of pregnant women
and is one of the predominant causes of maternal and neonatal mortality and morbidity
worldwide [97]. Even though the origin and pathogenesis of preeclampsia have been
extensively investigated, they remain unclear to date.

Several studies have reported scRNA-seq analysis in preeclampsia. Since trophoblastic
dysfunction plays an important role in preeclampsia pathogenesis, these works have
focused on the analysis of trophoblast cell populations and their transcriptomic profiles.

Tsang et al. [69] created a single-cell transcriptome atlas of the full-term normal
and early-onset preeclamptic placentas. A significant increase in variability and levels
of expression of cell death-related genes in preeclamptic EVTBs was demonstrated. In
addition, an integrative analysis using maternal plasma cell-free RNA was used to examine
the cellular heterogeneity of placentas from full-term and early preeclampsia. This study
demonstrated the potential for interpreting cell-free plasma RNA using transcriptome data
from single cells [69].

Zhang et al. [70] found 610 differentially expressed genes between SCTs from preeclamp-
sia and healthy pregnancies placenta tissues. In addition, 347 differentially expressed genes
were identified in VCTs, and 283 genes in EVTs. The gene set enrichment analysis showed that
in SCTs, endoplasmic reticulum-signaling pathways are upregulated in preeclampsia, which
may be related to hypoxia in the placenta caused by narrow spiral arteries. The differentially
expressed genes in VCTs and EVTs were mainly involved in immune responses, confirming
the association of preeclampsia with defects of the immune system in the placenta. Three new
subtypes of VCTs were also identified: VCT-1, VCT-2, and VCT-3. Several characteristics of
each cell subtype were determined. An increased expression of genes related to the cellular res-
piratory chain was found in VCT-2 (villous cytotrophoblast subtype). VCT-3 is involved in the
catabolism process of nuclear-transcribed mRNA and cotranslational targeting of the protein
to the membrane [70]. It was reported that VCT-2 cells are increased in the preeclampsia pla-
centa. Through gene set enrichment analysis, it was found that the proteasomes, spliceosomes,
ribosomes, and mitochondria are abnormally active in VCT-2 cells [70].

Another study showed that the genes downregulated in SCTs from women with
severe early-onset preeclampsia are involved in the inflammatory response and immune
response pathways, while the protein folding, the cell cycle, gene expression, and female
pregnancy pathways are associated with upregulated genes. In preeclampsia VCTs, the
expression of genes involved in the cellular protein metabolic processes and regulation of
apoptotic processes are altered. Proinflammatory, immune, and oxidative stress-related
pathways were activated in EVTs from women with preeclampsia. For the first time, the
transcriptional factors CEBPB and GTF2B were described, and their involvement in EVTs
dysfunction in preeclampsia was reported. These molecules and their target genes showed
significantly decreased levels in EVTs in women with preeclampsia. It was found that
knockdown of the CEBPB and GTF2B genes reduced cell viability after 48 h, and cell
invasion was also reduced [71]. After further in vitro cell experiments, it was found that
CEBPB and GTF2B can regulate cell apoptosis and invasion, which may be involved in the
preeclampsia pathological processes [71].

Based on a comparative analysis of gene expression, gene pathway analysis, and
literature data, Wang et al., hypothesized that transcription factor PRDM6 may play a role
in the differentiation of endovascular EVTs (enEVTs) and that downregulation of this gene
leads to dysregulation of the differentiation of these cells and preeclampsia [62].

Thus, the first data about the trophoblast cell differences and their transcriptional and
functional heterogeneity between preeclampsia and normal pregnancy appeared. These
studies were performed in small groups; however, their findings provide new insights
into the molecular mechanisms of preeclampsia. In addition to trophoblast dysfunction,
preeclampsia can also be caused by decidual cell defects, so it is important to analyze other
cell types at the maternal-fetal interface in women with preeclampsia using scRNA-seq
technologies to investigate its pathogenesis. Future studies are needed to test the potential
of placental single-cell signatures of maternal circulation in the diagnosis of preeclampsia.
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3.2.3. Preterm Labor

Preterm labor is labor between 20 and 37 weeks of gestation, occurs in approximately
12% of all pregnancies, and can lead to preterm birth, which increases childhood morbid-
ity and mortality [98]. Clinical and experimental evidence suggests that preterm labor is
caused by three main pathogenic mechanisms: pathological changes in the cervix, abnormal
activation of the decidua and membranes, and impaired coordination of uterine contrac-
tions [98]. However, the molecular basis of these processes is not yet well understood.
Many studies have focused on identifying the causes and mechanisms of preterm labor, as
well as the search for its effective predictive biomarkers [99].

Pique–Regi et al. [75] compared each cell type of placental tissue in preterm and term
labor. Several differentially expressed genes were found in EVTs and CTBs, but the reasons
for this observation are unknown. In addition, several differentially expressed genes were
detected in maternal macrophages. A significant increase in the inflammation-associated
NFKB1 gene expression was reported in maternal macrophages from women with term
labor compared to non-labor controls. In addition, this increase was more pronounced in
preterm delivery. These findings are consistent with previous studies showing the role of
inflammation and different types of immune cells in the pathophysiology of preterm labor.
Based on experimental data and public datasets Pique–Regi et al. [75] evaluated placental
single-cell signatures in maternal circulation. The mean level of the single-cell signatures of
macrophages, monocytes, activated T cells, and fibroblasts was higher in the circulation
of women with preterm labor compared to controls, suggesting that placental single-cell
signatures from maternal circulation may be a potential non-invasive tool to predict preterm
labor [75]. Future studies in a larger cohort are required to confirm these findings.

3.2.4. Recurrent Pregnancy Loss

Recurrent pregnancy loss, defined as the failure of two or more consecutive clinical
pregnancies before 20 weeks of gestation, is a commonly occurring disorder affecting
1–5% of pregnancies [100,101]. Approximately 40–50% of cases remain unexplained [102].
Risk factors for recurrent pregnancy loss include chromosomal abnormalities, maternal
reproductive tract abnormalities, maternal endocrine abnormalities, immune dysfunction,
infections, cervical insufficiency, and environmental exposures [103]. Numerous stud-
ies have shown that recurrent pregnancy loss is associated with impaired endometrial
decidualization, placental dysfunction, and immune microenvironment disorder at the
maternal-fetal interface [104]. However, the mechanisms by which these pathological
conditions lead to recurrent pregnancy loss are not well understood [72].

Some studies have presented the decidual cell composition of the maternal-fetal inter-
face at single-cell resolution for patients with recurrent pregnancy loss, giving a detailed
characterization of varied decidual cells and their functions and communications [72–74].

Guo et al. [72] first reported differential distributions of decidual cell subsets between
patients with recurrent pregnancy loss and normal pregnancies. They found differences in
the proportions of the dNK cell subsets between research groups. Three known subsets of
dNK cells (dNK1-3) and a group of proliferating natural killer cells (dNKp) were detected
in the decidua. dNK1 cells with growth-supporting activity were decreased, while pro-
inflammatory dNK3 cells that produce cytokines were increased in recurrent pregnancy
loss [72]. In addition, one of the dNKp subset cells, dNK2-like (Path T) cells, which can
transform into dNK1 cells, decreased in recurrent pregnancy loss. Thus, the angiogenic
functions of dNK cells are weakened, while pro-inflammatory functions are enhanced
in recurrent pregnancy loss decidua. A decrease in macrophage populations was also
observed in recurrent pregnancy loss. Macrophages were divided into two cell subtypes
(mac1 and mac2). The mac1 cells increased and the mac2 cells decreased during recurrent
pregnancy loss. An analysis of differentially expressed genes revealed that genes involved
in “T cell chemotaxis” were increased in both mac1 and mac2 cells, while genes involved in
“NK cell chemotaxis” were decreased in mac2 cells from patients with recurrent pregnancy
loss, suggesting that macrophages aggregate with dNK cells in the normal decidua, whereas
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under pathological conditions, macrophages co-localize with T cells. An analysis of T cells
revealed enhanced cytokine-mediated signaling pathways and pro-inflammatory properties
in different T cell subsets from patients with recurrent pregnancy loss [72].

Wang et al. [73] performed scRNA-seq of decidual and peripheral leukocytes in
normal and unexplained recurrent miscarriages in the first trimester. Consistent with
Guo et al. [72] conclusions, Wang et al. [73] also reported that the dNK1 subset, which
supports embryonic growth, is decreased in proportion, while the ratio of the dNK3 subset
with a cytotoxic and immune-active signature is significantly increased in patients with
recurrent miscarriages. Comparison of the differential gene expression demonstrated
significantly increased expression of inflammation-related genes in dNK cells of women
with recurrent miscarriages. The newly identified dNK4 subset has higher expression of
several pro-inflammatory factors and is uniquely accumulated in the recurrent miscarriages’
decidua, indicating their enhanced cytotoxicity in pregnancy pathology. An analysis of
differentially expressed genes in macrophages showed that macrophages have mainly pro-
inflammatory properties in recurrent miscarriages. An analysis of peripheral leukocytes
demonstrated the cytotoxic properties of T cells, NK-cells, and mucosal-associated invariant
T cells in peripheral blood, suggesting that recurrent miscarriages are associated with a
pro-inflammatory state and activation of the immune system [73].

Du et al. [74] profiled the transcriptomes of about 66,078 single cells from decidua
of patients with recurrent spontaneous abortion and showed that this is associated with
abnormal decidualization and impaired communication between stromal cells and other
cell types, such as abnormal activation of macrophages and NK cells. They identified
five clusters of decidualized stromal cells (DS1–DS5) and reported changes in the number
of decidualized stromal cells in pregnancies with recurrent spontaneous abortion. The
number of DS1 and DS2 is reduced, whereas the number of DS5 increased in recurrent
spontaneous abortion decidua. An analysis of differentially expressed genes indicates that
the genes upregulated decidual stromal cells of recurrent spontaneous abortion are involved
in cellular senescence, ferroptosis, apoptosis, endocytosis, and autophagy. Abnormal
activation of macrophages and NK cells is also observed in recurrent spontaneous abortion
samples. NK subsets of patients with recurrent spontaneous abortions have more active
genes involved in FASLG- and TRAIL-signaling pathways that may contribute to apoptosis
of their targets and NK killing, suggesting that activated NK cells may cause stromal cell
death. The upregulated genes of macrophage subset Macro1 are involved in TNFα- and
NFkB-signaling pathways enriched genes of macrophage subset Macro3 participate in
phagosome and antigen processing and presentation pathways [74].

These studies confirmed that recurrent miscarriages are associated with a pro-inflammatory
state and immune activation of the decidua. Several molecular mechanisms associated with
pregnancy loss have also been revealed. The obtained results can be used to improve strategies
for the prevention, diagnosis, and treatment of adverse pregnancy outcomes. Early therapeutic
correction of decidual immune cell functions may help to save the pregnancy.

3.2.5. Conditions Associated with an Increased Risk of Pregnancy Complications

Currently, in addition to common pregnancy complications, scRNA-seq is actively
used for the study of different reproductive diseases. For example, scRNA-seq has allowed
identifying novel molecular and cellular mechanisms involved in polycystic ovary syn-
drome (PCOS), which is a common endocrine disorder often associated with diabetes,
obesity, metabolic disorders, and various cardiovascular diseases [105]. This disease occurs
in about 15–20% of women, and it is associated with an increased risk of miscarriage,
gestational diabetes mellitus, hypertensive disorders of pregnancy, preterm delivery, and
the birth of small gestational-age infants [106]. Approximately 70% of cases of PCOS
remain undiagnosed despite the incidence of the disease [107]. The causes of PCOS are still
not precisely known, but it is more commonly classified as a complex polygenic disorder
caused by the environment, lifestyle, or heredity [105].
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The scRNA-seq analysis of cells in patients with polycystic ovary syndrome could
clarify the mechanisms of low-quality oocyte formation. It was found that the expression of
genes associated with the process of meiosis, such as EGFR, PGR, PGRMC1, PLCZ1, SFRP4,
ZMIZ1, and ZSCAN4, were reduced in patients with the disease, while the expression of
genes associated with DNA repair, such as XRCC1, LIG, and RAD54L, on the contrary,
were elevated. Abnormalities in mitochondrial genes at the basic stage of GV were also
identified. This study allowed to understand more precisely the mechanisms of oocyte
formation with reduced quality and was another step toward a better understanding of the
disease [76,77].

In patients with polycystic ovary syndrome, the entire cycle of germ cell development
and maturation is disrupted, which is often reflected in the quality of oocytes. Until now,
this process has not been fully studied, but scRNA-seq methods have revealed new insights
into changes in oocyte quality in patients with PCOS [77]. An analysis of mitochondria
as participants in the oocyte maturation [108] allowed the clarification of the processes
of mitochondrial abnormalities leading to a decrease in oocyte quality. It was found
that mitochondrial function is activated prematurely at the GV stage during maturation.
Early activity leads to the production of metabolites detrimental to the oocyte, resulting
in its retention. This is another stepping stone to the possibility of treatment in patients
with PCOS.

In addition, scRNA-seq techniques are successfully applied to get new data regarding
the immune response of placental cells to infection during pregnancy. In a study of placental
resistance to SARS-CoV-2, cell subsets were found that express various factors associated
with response to infection [78]. For instance, it was found that a subset of STB in the first
trimester and EVTs in the second-trimester human placenta express SARS-CoV-2 binding
receptor ACE2 and the S protein priming protease TMPRSS2. In addition, all placental
cells express the BSG/CD147, the alternate receptor for SARS-CoV-2, suggesting that more
than one mechanism may operate for viral entry. Additionally, the term placenta expresses
ACE2, DPP4, and ANPEP along with the viral S protein proteases [78].

4. Conclusions

scRNA-seq is the molecular technology that allows the analysis of gene expression
of the single-cell resolution. The method has given a powerful push to the application of
transcriptomic methods in studies of normal physiology and disease conditions. Currently,
scRNA-seq is actively used for the study of cellular heterogeneity, the discovery of new
cell types, and other tasks. The number of experimental and computational methods for
the expression analysis of individual cells is actively growing. ScRNA-seq seems to be a
promising technology for studying the pathogenetic mechanisms of polygenic reproductive
disorders, as well as the conditions complicating the course of the pregnancy. Active
research in the field of pregnancy-associated disorders using single-cell analysis methods
leads to a rapid accumulation of new findings. Compared with bulk RNA-seq, scRNA-seq
technology has the advantages of detecting cellular heterogeneity and revealing the hidden
expression differences, and cellular interactions in the tissue. For reproductive diseases
such as gestational diabetes mellitus, pre-eclampsia, recurrent pregnancy miscarriages,
and polycystic ovary syndrome, as well as Type 2 diabetes, which is known to be a severe
complicating factor of pregnancy development, intriguing results have been reported in the
recent scRNA-seq studies [68,69,77,108]. This will lead to the identification and monitoring
of the various pregnancy complications course more quickly and accurately.

Despite the recent progress, scRNA-seq methods still have room for improvement,
especially in terms of the number of cells analyzed, transcript coverage, and noise reduc-
tion. Another problem with scRNA-seq is the consistency of discoveries among different
datasets, which can lead to false recognition of different cell populations and subpop-
ulations. Concerning studies of pregnancy-associated disorders, there are also unique
problems in scRNA-seq analysis, such as the persistent variability of gene expression at
different gestational ages, the complication of separating changes into pregnancy-related
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or chronic diseases-associated, and the demultiplexing of maternal and fetal identity in
the placental single-cell data without genetic information. These limitations of the method
make the interpretation and analysis of data challenging and predicate the need for the
development of new tools and technologies to enhance the reproducibility of results of
scRNA-seq studies. Undoubtedly, scRNA-seq technology has enormous potential to im-
prove our understanding of the fundamental basis of reproductive diseases and to reveal
the mechanisms of gene regulation and interactions. Today, the prominent findings can be
obtained by combining the use of the scRNA-seq method with the bulk RNA-seq approach,
which may help avoid the limitations of both methods. Further research using the sequenc-
ing of individual cells might be required to fully evaluate the features and capabilities of
this technology.
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