Supplementary Materials

Influence on stem cell origin and methodology on individual stemness signatures

Individual human or mouse stemness signatures were clustered based on the significance of the pairwise
overlap of their genes. In total, 119 of the 210 pairwise comparisons for human, and 148 of the 210
comparisons for mouse signatures led to the detection of significant overlap, with adjusted p-value < 5-1072,
i.e. logio(adjusted p-value) <-3.1 in Figure S1.

For human stemness signatures, two main clusters were detected (Figure S1A). The first cluster (Cpl) is
mainly composed of pluripotent stemness signatures derived from gene expression profiling
(Hs_ESC Bhattacharyall], Hs ESC Assou[2], Hs ESC Wong[3], and Hs_SC_Palmer[4]). It also includes
PluriNet[5] data which is a computationally derived protein network shared by different types of pluripotent
cells (embryonic stem cells, embryonal carcinomas, and induced pluripotent cells). Interestingly, gene sets
for cancer cells (Hs _EC Skotheim[6], Hs SC Shats[7], and Hs ESC EC Sperger[8]) are also part of this
cluster, implying similarity of gene expression profiles between pluripotent and cancer cells.

The second main cluster (Cn2) is more heterogeneous. There is a sub-cluster composed of gene sets for
hematopoietic stem cells (HSCs): Hs HSC Toren[9], Hs_HSC Huang[10], and Hs  HSC Novershtern[11].
In a different sub-cluster, the grouping Hs iPSC Shats(7], Hs_ESC Skottman[12], and Hs ESC Sato[13]
might reflect the shared pluripotent nature of ESC and iPSC stem cells. In contrast, other ESCs gene sets
such as Hs ESC Chia[14] do not cluster together with this group, suggesting that the different methods
(microarrays versus RNAi screens) and even the type of microarray platform (Affymetrix versus
customizable spotted microarrays) might influence the results of the clustering (Figure S1A and
Supplementary Table 1). Another sub-cluster is formed by gene sets based on literature curation or text
mining: Reactome, KEGG, and Genecards.

For the mouse stemness signatures, we also obtained two main clusters (Figure S1B). The first cluster (C1),
shows the impact of the methodology factor, namely the type of microarray platform used for the experiment.
While it can be expected that Mm ESC Ramalho[15] is paired with Mm_ESC Fortunel[16] since they share
the same stem cell type, the inclusion of Mm NSC Ramalho[15] in the same sub-cluster points to the
influence of the platform on the detected overlap. Similarly, Mm NSC Fortunel[16] and
Mm_RPC Fortunel[16] clusters with Mm_HSC Ramalho[15], while Mm_NSC Ivanova[17] clusters with
Mm_HSC Ivanova[l7].

The second cluster comprises ESC gene sets and a gene set for spermatogonial stem cells (SSCs), the
Mm_SSC Kokkinaki[18]. This is following previously published results[19] indicating that SSCs acquire

pluripotent stem cell properties when cultured in vitro. This finding cannot be explained as the result of the



technological platform used, since most ESC sets of the cluster were obtained from iRNA screens, while the
Mm_SSC Kokkinaki set is the product of an Affymetrix microarray experiment (Figure S1B and
Supplementary Table 1).
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Figure S1 — Significance of overlap of genes between individual stemness signatures
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Significance of overlap of genes, shown as logio(adjusted p-value), between individual stemness

signatures for human (A) and for mouse (B). Chl and Ch2 are clusters for human, while Cm1 and Cm2

are clusters for mouse signatures. Row and Column dendrograms are based on the Euclidean distance

between cluster objects and are derived by complete linkage as an agglomeration method. Number of

genes common to a pair of stemness signatures is shown inside each square.
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Figure S2 — Distribution and significance of stemness scores for human genes. Observed scores for
human stemness signatures (A), average scores for randomly drawn gene lists of the same size (B),
empirical FDR based on comparison of observed and expected distribution of scores (C). A minimum

FDR of 1-107 (i.e. the inverse of the number of random draws) was set.
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Figure S3 — Distribution and significance of stemness scores for mouse genes. Observed scores for
mouse stemness signatures (A), average scores for randomly drawn gene lists of the same size (B),
empirical FDR based on comparison of observed and expected distribution of scores (C). A minimum

FDR of 1-107 (i.e. the inverse of the number of random draws) was set.
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Figure S4 — Association of human and mouse genes with stemness signatures. In the checkerboards,
red colour indicates the inclusion of genes (row) in stemness signature (column). The evidence for the
stemness signatures (Computational, Literature, Expression, RNA1) and the type of stem cell based on their
potency (Pluripotent, Multipotent, Mixed) is annotated on top of the checkerboards. (A) The 30 human
genes with the highest pluripotency score. (B) The 30 human genes with the highest multipotency scores.
(C) The 30 mouse genes with the highest pluripotency score. (D) The 30 mouse genes with highest

multipotency score.
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Figure S5 — Human and mouse genes specific to pluripotent or multipotent stemness signatures. In

the checkerboards, red colour indicates the inclusion of genes (row) in stemness signature (column). The

evidence for the stemness signatures (Computational, Literature, Expression, RNA1) and the type of stem

cell based on their potency (Pluripotent, Multipotent, Mixed) is annotated on top of the checkerboards. (A)

The 30 human genes, which have the highest pluripotency score but do not appear in stemness signatures

for multipotent stem cells. (B) The 30 human genes, which have the highest multipotency score but do not

appear in stemness signatures for pluripotent stem cells. (C) The 30 murine genes, which have the highest

pluripotency score but do not appear in stemness signatures for multipotent stem cells. (D) The 30 murine

genes, which have the highest multipotency score but do not appear in stemness signatures for pluripotent

stem cells.



Functional Analysis of integrated stemness signatures

Human and mouse ISSs genes showed significant enrichment in biological processes related to the
characteristic properties of stem cells. For example, processes related to mitosis, cell cycle, and DNA
replication underlying self-renewal (in bold in Figure S4A). Molecular functions related to nucleotide and
ATP binding are strongly overrepresented, suggesting the participation of ISS genes in DNA replication and
transcription, as well as in metabolism (in bold in Figure S4B). These signatures are also associated with all
types of cellular components, and one of the most enriched is nucleus. Furthermore, following the
enrichment for the DNA replication process, ISS genes display an enrichment for the MCM complex, a
hexameric protein complex required for the initiation and regulation of DNA replication (in bold in Figure
S4C). Enrichment analysis based on Reactome pathways showed DNA damage/replication checkpoints and
cell cycle phase transitions/regulation which are among the most enriched terms in both human and mouse

(in bold in Figure S4D).
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Figure S6 — Functional characterization of Integrated Stemness Signatures

Biological Processes (A), Molecular Functions (B), Cellular Components (C) and Reactome Pathways
(D) overrepresented (adj. p-value < 5-10-2) on both human and mouse ISSs. Red (top) and green (bottom)
bars represent human and mouse respectively. Bold font highlights functional categories referred to in the
main text: processes related with mitotic cell cycle and DNA replication; molecular functions related with
nucleotide and ATP binding; cellular components related with nucleus and MCM complex; and pathways

involved in DNA damage/replication checkpoints and cell cycle phase transitions/regulation.
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Figure S7 — GO enrichment analysis for genes associated with pluripotency or multipotency

stemness signatures.

Dot plots display the results of GO enrichment analysis based on biological processes for (A) the 200

genes with the highest score in pluripotency or multipotency gene signatures for human, (B) for genes

which were specifically associated with either pluripotency or multipotency human stemness signatures

i.e. which were included in at least 30% of the pluripotency or multipotency signatures, but not in any of

the multipotency or pluripotency signatures for human (C) the 200 genes with the highest score in

pluripotency or multipotency gene signatures for mouse, and (D) for genes which were specifically

associated with either pluripotency or multipotency mouse stemness signatures i.e. which were included

in at least 30% of the pluripotency or multipotency signatures, but not in any of the multipotency or

pluripotency signatures for mouse.
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Figure S8 — Complementary figure to Figure 3.

Interactions of proteins corresponding to genes with a minimum score of 3 in the human ranked list are shown.
Top: Significantly interacting network clusters (p-value < 5-102). Nodes of each cluster are disposed in circles
according to their betweenness centrality. Red nodes represent genes that belong to the human ISS (with score >
4). Edge thickness reflects the interaction confidence score, whereas node size and colour opacity are proportional
to node betweenness centrality and the stemness score of the gene, respectively. Nodes without interactions were
excluded. Nodes that did not interact with the main network were excluded before the clustering analysis. Bottom:

Zoomed pictures of clusters in Figure 2B with high clustering significance and high average stemness scores.
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Figure S9 — Complementary figure to Figure 4.

Interactions of proteins corresponding to genes with a minimum score of 6 in the mouse ranked list are
shown. Left: Significantly interacting network clusters (p-value < 5-102). Nodes of each cluster are
disposed in circles according to their betweenness centrality. Red nodes represent genes that belong to the
mouse ISS (with score > 7). Edge thickness reflects the interaction confidence score, whereas node size
and colour opacity are proportional to node betweenness centrality and the stemness score of the gene,
respectively. Nodes without interactions were excluded. Nodes that did not interact with the main network
and were part of a smaller network (with less than four nodes) were excluded before the clustering
analysis. Right: Zoomed pictures of clusters in Figure 3B with high clustering significance and high

average stemness scores.
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Figure S10 — Stemness association and expression of human Polycomb group (PcG) genes
(A) Checkerboard indicating the inclusion of human PcG genes in stemness signatures. Except PHC!I and PCGF2,

PcG genes were included in only one stemness signature (if at all). Most of the present PcG are included because of

annotations in KEGG and Genecards. (B) Heatmap derived from StemMapper (http://stemmapper.sysbiolab.cu),

which displays expression profiles of PcG genes across for ESCs, iPSC and differentiated cells. For comparison,
NANOG is also displayed in the bottom row. While gene expression changes can be observed for some PcG genes, it

is less prominent compared to the sharp drop in expression of NANOG in differentiated cells.
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Figure S11 — Stemness association and expression of murine PcG genes

(A) Checkerboard indicating the inclusion of mouse PcG genes in stemness signatures. (B) Heatmap derived from

StemMapper (http://stemmapper.sysbiolab.eu), which displays expression profiles of PcG genes across for ESCs,

iPSC and differentiated cells. For comparison, Nanog is also displayed the bottom row.
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