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Abstract: In recent years, Spodoptera frugiperda (S. frugiperda, Smith) has invaded China, seriously
threatening maize production. To explore an effective method to curb the further expansion of the
harm of the S. frugiperda, this experiment used maize seedlings of the Zhengdan 958 three-leaf stage
(V3) of maize as the material to study the effect of coronatine (COR) on the ability of maize to resist
insects (S. frugiperda) at the seedling stage. The results showed that when maize was sprayed with
0.05 µM COR, the newly incubated larvae of S. frugiperda had the least leaf feeding. It was found that
0.05 µM COR significantly increased the contents of abscisic acid (ABA) and jasmonate (JA) in maize
leaves through the determination of hormone content. Moreover, transcriptome sequencing revealed
that the expression of six genes (ZmBX1, ZmBX2, ZmBX3, ZmBX4, ZmBX5 and ZmBX6), which are
associated with the synthesis of benzoxazinoid, were upregulated. Nine genes (ZmZIM3, ZmZIM4,
ZmZIM10, ZmZIM13, ZmZIM18, ZmZIM23, ZmZIM27, ZmZIM28 and ZmZIM38) of JA-Zim Domain
(JAZ) protein in the JA signal pathway, and seven genes (ZmPRH19, ZmPRH18, Zm00001d024732,
Zm00001d034109, Zm00001d026269, Zm00001d028574 and Zm00001d013220) of ABA downstream
response protein Group A Type 2C Protein Phosphatase (PP2C) were downregulated. These results
demonstrated that COR could induce anti-insect factors and significantly improve insect resistance
in seedling maize, which laid a theoretical foundation for further study of the mechanism of COR
improving insect resistance in seedling maize, and provided data references for the use of COR as
an environmentally friendly pest control method.

Keywords: coronatine; maize; Spodoptera frugiperda; RNA-seq; insect resistance mechanism

1. Introduction

S. frugiperda is a global migratory agricultural pest that causes damage to a wide range
of crops, spreads swiftly, and has a broad impact [1–4]. It seriously threatens maize produc-
tion [5–7]. S. frugiperda has migrated to China from Myanmar and spread to 26 provinces
(municipalities and autonomous regions) [8,9]. The unexpected invasion and fast spread
of S. frugiperda has posed significant challenges to preventative and control efforts [10].
To control S. frugiperda, a variety of pesticides such as organophosphorus, carbamates,
pyrethroids, avermectins, amides, spinosad, and others are utilized [11]. However, there
are food safety and ecological safety problems in the use of chemical pesticides, and the field
populations of S. frugiperda have varying degrees of resistance to chemicals [12]. Therefore,
it is urgent to develop new agents and methods to control S. frugiperda.

COR is a phytotoxin generated by Pseudomonas syingae pathovars [13–15], with a sim-
ilar function as JA [16,17]. It has been demonstrated that COR is an analog of JA, and is
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1000 times more active [18,19]. Recent studies have shown that COR can regulate maize
morphogenesis and promote maize growth at the seedling stage [20]. It can also improve
lodging resistance and enhance maize resistance to low temperature and drought [21–23].
However, it has not been reported that COR can improve pest resistance of maize at the
seedling stage. Studies have shown that when plants suffer from pests, elicitors and injury
signals, they promote the synthesis of JA [24]. JA receptor COR insensitive 1 (COI1) can
mediate the opening of the plant defense response [25] and COR is an effective agonist of
COI1. Therefore, we hypothesize that COR treatment may activate the downstream signal
transduction pathway of the elicitor and induce the synthesis of insect-resistant metabolites
and stress-resistant plant hormones, which is like that of the elicitor itself.

The role of COR in improving maize insect resistance at the seedling stage was studied
by using chemical regulation. This study focused on the biosynthesis of plant hormones
and other insect-resistant secondary metabolites, especially JA and benzoxazines. This
study was done to find out how COR makes maize resistant to S. frugiperda and how it
works on a molecular level. This would give a basis for applying the plant growth regulator
to maize production to stop pests.

2. Materials and Methods
2.1. Plant and Insect Materials

The hybrids of maize ZD958 used in our experiment were collected from the Henan
Golddoctor Seeds Co., Ltd., which were cultivated in Beijing (40◦10′ N, 116◦20′ E), China,
during April of 2022. The maize was cultivated in the greenhouse with 25 ◦C/18 ◦C
day/night temperature and 16 h/8 h photoperiod. The eggs of S. frugiperda were collected
from the Henan Jiyuan Baiyun Industry Co., Ltd. (Jiyuan, China).

2.2. The Method of COR Treatment

COR was purified by the Centre for Crop Chemical Control and the purity was >99%,
measured with high-performance liquid chromatography (Milford, MA, USA). COR was
diluted to different concentrations by water before foliar spraying. The time of spraying
COR was the third day after the 3rd leaf was fully deployed. At this time, the maize was
at the seedling stage (about 21 days after sowing) and the third and fourth leaves did not
easily lose water and deform, so it was convenient to measure the notch area of the maize
leaves later. According to the work of He et al., after spraying, COR will enter plant tissues
and be transported from shoot to root, and the COR content of maize leaves and stems
reached the highest value at 24 h after the application of COR [26]. The pattern of COR
distribution in different maize seedling tissues can be found in ‘Figure S3’ from He’s article.
The total amount of liquid was 2 mL·plant−1. The maize treated with the same amount of
water was the control. Tween was added at 0.5‰ to promote the absorption of the solution
by maize leaves.

2.3. Determination of the Feeding Amount of the Newly Hatched Larvae of S. frugiperda on the
Leaves of Maize Sprayed with COR

Five experimental groups were set up for COR treatment with maize, viz., 0.01 µM,
0.05 µM, 0.1 µM, 1 µM and 2 µM, and 1 control group was set up for water treatment.
After 24 h of COR treatment, three leaves with the same growth (the fourth) from each
group were washed with clean water to exclude the effect of COR odor and fed ten newly
hatched larvae of S. frugiperda (divided into three groups of biological repetitions). To
prevent the larvae from running out, we sealed the petri dish containing the maize leaves
and larvae with a sealing film. After 24 h, the engraving area of the maize leaves were
photographed and measured using image J and compared between groups. Considering
the effect of water loss, the original engraving area was reduced according to the wilting
rate. Mathematical statistics and drawing were done through the Windows version of
GraphPad Prism (V7.0) (San Diego, CA, USA).
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2.4. Determination of Endogenous Plant Hormones in Maize Leaves

There were two treatments: 24 h after treatments of the 0.05 µM COR and water
treatment group, twelve leaves with similar growth (the third and fourth leaves) were
taken from each of the two groups, and the contents of endogenous plant hormones in the
0.05 µM COR treatment group and water treatment group were measured by enzyme-linked
immunosorbent assay (ELISA) [27]. They were divided into three groups of biological
repeats with four leaves each. The antigens, antibodies, hormone standards and horseradish
peroxidase (HRP)-labelled secondary antibodies were provided by the Crop Chemical
Control Research Center of China Agricultural University.

2.5. RNA Extraction and Library Preparing

RNA extraction and library preparing proceeded according to the method of Ren et al. [21].
Total RNA was extracted using Trizol (Invitrogen, Carlsbad, CA, USA) based on the manual.
Then it was purified by magnetic stand (Invitrogen, Carlsbad, USA). The purified total RNA
was stored in a −80 ◦C freezer. The libraries of sequencing were constructed following the
instructions of the manufacturer.

The library construction proceeded accorded to the protocol of Illumina, and synthetic
cDNA was treated with end-repair and phosphorylation. PCR for 15 cycles using NEB’s
Phusion DNA polymerase and selection of size was performed for target fragments of
cDNA on 2% agarose. All libraries of paired-end sequencing were sequenced using the
HiSeq xten.

2.6. RNA-Seq Data Analysis

To align the paired-end readings and ensure the quality of readings, we trimmed the
readings of paired ends with the SeqPrep (https://github.com/jstjohn/SeqPrep, accessed
on 22 May 2022) and filtered the illumina readings with the Sickle (https://github.com/
najoshi/sickle, accessed on day month year.). Then, the mapping of readings to the
reference genome was performed using the Hisat2 [28]. The unique mapped readings were
processed using Cufflinks (V2.2.0) (San Diego, CA, USA) [29]. Fragments per kilobase of
transcript per million mapped reads (FPKM) was used to indicate the gene expression level.
The genes whose FPKM values were greater than 1 were selected, and then the scatter
plot was drawn and the R2 between biological replicates was calculated by the Pearson
algorithm with omicshare (https://www.omicshare.com, accessed on 22 May 2022).

Three biological repeats were set for each treatment (water and 0.05 µM COR). Each
replicate was obtained by pooling samples from at least three plants. To ensure the reliability
of the analysis results, the genes with FPKM values > 0 in all the six samples were chosen
to draw the correlation map (Figure S1). According to the correlation values between each
two biological repeats, we eliminated a set of data in each treatment (control3, COR3).

In the Lianchuan biological cloud platform (https://www.omicstudio.cn., accessed on
25 May 2022), the genes with FPKM values > 0 in the remaining four samples were selected
for PCA analysis and cluster analysis (the data were processed by log2 and normalized
by Z-score).

2.7. The Analysis of Differential Expression

Each transcript’s expression level was indicated by FPKM value. Then the differentially
expressed genes were calculated by Cuffdiff (http://cufflinks.cbcb.umd.edu/, accessed on
22 May 2022) [30].

2.8. Functional Enrichment Analysis

All the differentially expressed genes were chosen to have a KEGG enrichment analysis
by David [31].

https://github.com/jstjohn/SeqPrep
https://github.com/najoshi/sickle
https://github.com/najoshi/sickle
https://www.omicshare.com
https://www.omicstudio.cn
http://cufflinks.cbcb.umd.edu/
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3. Results
3.1. Insect Resistance of COR with Different Concentrations

Experimental-group maize seedlings of Zhengdan 958 three-leaf stage (V3) were
treated with COR of 0.01 µM, 0.05 µM, 0.1 µM, 1 µM and 2 µM and control group maize
leaves were treated with water. After one day, the newly hatched larvae of S. frugiperda
were fed with the leaves. It was found that the leaf notch area treated with 0.05 µM COR
for 24 h was significantly different from that of the control group (Figure 1b), and the notch
area per unit time per unit count of insects decreased by 67.8% compared with the control
group, which was the smallest of all the groups. The notch area per unit time per unit count
of insects of other concentration treatment groups was also decreased, but there was no
significant difference between them and the control group (Figure 1c). The results showed
that the treatment of 0.05 µM COR could significantly improve the insect resistance of
maize at seedling stage and prevent the decrease of photosynthetic effective area caused by
insect feeding.
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Figure 1. The notch area of maize leaves sprayed with different concentrations of COR per unit time
per unit count of insects. (a) The protocol of insect feeding on maize seeding. (b) Comparison of
the state of maize leaves fed by the newly hatched larvae of S. frugiperda for 24 h. (c) Comparison
of control and 0.05 µM COR treatment on seedling insect feeding phenotypes. (d) The notch area
of maize leaves per unit time per unit count of insects. The notched areas of maize leaves were
photographed with blade scanner and measured using image J. The data were analyzed by one-way
ANOVA and Tukey multiple comparisons. * Indicates that the difference is significant, and the
significant degree α is 0.05.
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3.2. Changes in Endogenous Plant Hormones

To clarify the mechanism of COR improving the insect resistance of maize at the
seedling stage, we determined the contents of five endogenous plant hormones, ABA, JA,
indole acetic acid (IAA), gibberellic acid (GA) and zeatin riboside (ZR). After spraying
0.05 µM COR or water for one day, the contents of ABA and JA in maize leaves in the
treatment group were significantly higher than those in the control group, increasing by
461.8% and 44.3% respectively (Figure 2a,b), while the levels of other hormones did not
change (Figure S2). This indicates that the ABA and JA may relate to the improvement of
insect resistance of maize.
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Figure 2. Effect of COR on endogenous hormone contents in maize seedings. (a,b) Changes of
ABA (a) and JA (b) contents in maize leaves induced by 0.05 µM COR. The data were presented as
means ± SE (n = 3) and analyzed by Student’s t-test. SE is represented by error bars. * Indicates that
the difference is significant, and the significant degree α is 0.05.

3.3. Overall Analysis of Transcriptome in Response to COR Treatment

To further analyze the molecular mechanism of COR improving the insect resistance
of maize seedlings, we obtained the transcriptome data of maize seedlings treated with
0.05 µM COR and water for 24 h. There were two biological repeats for each treatment,
each of which came from six leaves (the third leaf and the fourth leaf) from three different
plants. In total, 189 million reads were generated on the illumina sequencing platform,
and then mapped to the maize B73 reference genome [32]. An average 81.48% of reads
were mapped and an average 55.02% of reads were mapped uniquely (Table 1). Then, the
uniquely mapped reads were further used to calculate the normalized gene expression level
as FPKM. The data of four samples were analyzed by principal component analysis (PCA)
and cluster analysis, and the results showed that the difference between groups was greater
than that within groups (Figure 3a,b). The comparison of two biological replicates showed
that their FPKM values were highly correlated (average R2 = 0.963, Figure 3c,d). Therefore,
we used the average FPKM value as the expression level of the treatment and control. In
order to reduce the impact of transcription noise, it was only when the FPKM value of
a gene was greater than 1 that we considered it to be expressed. In total, 18,741 genes
including 1371 transcription factors (TFs) expressed in at least one of the groups. The above
conclusions show that the results of the transcriptome sequencing are sufficient to support
further data analysis.
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Table 1. RNA-seq readings: summary of mapping results.

Mapped Readings Unique Mapped Readings

Sample Raw Readings Number % Mapped Number % Mapped

control1 46,020,064 37,748,120 82.03 25,691,854 55.83
control2 46,188,984 37,766,492 81.77 25,679,736 55.68
COR1 51,153,190 41,618,084 81.36 27,964,204 54.67
COR2 45,283,680 36,566,492 80.75 24,400,408 53.88

Control1 and control2 are two biological duplicates of control group and COR1, COR2 are two biological duplicates
of 0.05 µM COR treatment group.
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Figure 3. Intra-group correlation and inter-group difference. (a,b) PCA analysis and cluster analysis
by complete cluster. (c,d) Take the log2 (FPKM) value of control1 as the abscissa, the log2 (FPKM) value
of control2 as the ordinate, and the log2 (FPKM) value of COR1 as the abscissa and the log2 (FPKM)
value of COR2 as the ordinate to draw the scatter charts and calculate the correlation coefficient.

3.4. Identification of Differentially Expressed Genes after COR Treatment

We took fold change larger than 2 or less than 1/2, expression in at least one sample
and q-value smaller than 0.05 as the criteria for screening differentially expressed genes.
Compared with the control group, there were 170 upregulated genes and 734 downregu-
lated genes after 0.05 µM COR treatment (Figure 4a, Data sets 1). KEGG enrichment analysis
showed that the differentially expressed genes were significantly enriched into eight cat-
egories (p < 0.05) (Figure 4c). The biosynthesis of secondary metabolites (zma01110), the
benzoxazinoid biosynthesis (zma00402), which plays role in plant defense, and the plant
hormone signal transduction (zma04075), which relates to the response to biotic and abiotic
stress [33] were significantly enriched (Figure S3), indicating that the mechanism of COR
improving the insect resistance of maize seedlings is related to insect-resistant substances
and plant hormones.
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3.5. Expression of Genes Related to the Biosynthesis of Benzoxazines

To further understand the correlation between the metabolism of insect-resistant
substances and the enhancement of the insect resistance of maize seedlings, we paid
attention to the differential expression of genes related to the biosynthesis of benzoxazines,
which are the most important secondary defense metabolites in Gramineae [34–37]. After
spraying 0.05 µM COR, the expression of ZmBX1, ZmBX2, ZmBX3, ZmBX4, ZmBX5 and
ZmBX6 (Table S1) related to the synthesis of benzoxazines was upregulated by 63.7%,
455.2%, 89.8%, 77.9%, 122.2% and 43.2%, respectively (Figure 5). It is suggested that the
synthesis of anti-insect active substance benzoxazines is one of the potential mechanisms
of COR to enhance the insect resistance of maize at the seedling stage.
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Figure 5. Expression of genes related to the anabolism of benzoxazines. The data were normalized by
log2 and Z-score; the closer to 1, the higher the relative gene expression, and the closer to−1, the lower
the relative gene expression. Control1 and control2 are two biological duplicates of control group and
COR1, COR2 are two biological duplicates of 0.05 µM COR treatment group. The enzymatic reaction
pathway is shown with arrows.

3.6. Expression of Genes Related to JA and ABA in Maize

In order to explore the role of plant hormones in improving the insect resistance of
maize at seedling stage, we analyzed the differentially expressed genes related to plant
hormones (Table S2). Of all the plant hormones, we found the most significant changes in
the expression of genes related to JA and ABA (Figure S4).

The components of the JA signal transduction pathway, especially JAZ proteins, play
an important role in plant response to elicitors [38]. ABA plays an important regulatory
role in plant response to a variety of biotic and abiotic stresses [39,40]. We found that most
genes related to ABA and JA biosynsynthesis and anabolic metabolism were downreg-
ulated. The nine JAZ family genes ZmZIM3, ZmZIM4, ZmZIM10, ZmZIM13, ZmZIM18,
ZmZIM23, ZmZIM27, ZmZIM28 and ZmZIM38 encoding negative regulatory proteins of the
JA signal pathway were downregulated by 74.0%, 66.1%, 53.8%, 69.8%, 79.6%, 59.7%, 76.8%,
60.1% and 59.0%, respectively, and five genes of the MYC2 family, ZmMYC7, ZmBHLH108,
ZmBHLH116, and ZmBHLH91 and ZmBHLH57 were downregulated by 59.5%, 87.8%, 90.9%,
67.4% and 77.8%, respectively. (Figure 6a). The genes ZmPRH19, ZmPRH18, Zm00001d024732,
Zm00001d034109, Zm00001d026269, Zm00001d028574 and Zm00001d013220 of seven negative
regulatory proteins encoding ABA signal transduction group A group 2C protein phos-
phatase (PP2C) were significantly downregulated by 67.4%, 64.1%, 55.9%, 56.3%, 56.0%,
73.8%, 62.5%, respectively, (Figure 6b), indicating that COR can improve the insect resistance
of maize at the seedling stage through ABA and JA signal pathways.
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4. Discussion

Plants have developed internal systems to respond to adversity in order to adapt to
stress. Plants may withstand herbivore invasions, such as those caused by insects, in the
wild by perceiving and reacting to elicitors [41]. The JA signaling pathway components
are critical in a plant’s response to elicitors. COR has substantial scientific significance
to knowledge about the mechanism that plants induce for insect resistance, since it can
bind to the JA receptor COI1 and has stronger biological activity than JA, which may help
in developing crop resistance to insects. However, it is worth noting that coronatine can
promote pseudomonas virulence by inhibiting salicylic acid accumulation, and spraying for
insect resistance will make it susceptible to Pseudomonas [42]. Therefore, the application
of coronatine in production needs further consideration.
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4.1. COR can Effectively Improve the Insect Resistance of Maize at the Seedling Stage

It was observed in this study that foliar spraying of maize seedlings with 0.05 µM COR
might greatly boost insect resistance. Based on the finding, we think the further research
on COR may help in developing crop resistance to insects and to reduce S. frugiperda in
ecologically friendly grassland.

4.2. The Enhanced Synthesis of Benzoxazines May Be One of the Reasons for the Improvement of
the Insect Resistance of Maize at the Seedling Stage

We discovered that ZmBX1, ZmBX2, ZmBX3, ZmBX4, ZmBX5 and ZmBX6 genes were
considerably upregulated in leaves one day after spraying with 0.05 µM COR. These genes
encode proteins that catalyze the production of benzoxazines in maize. The increased
synthesis of benzoxazines generated by upregulated expression may contribute to maize
seedling insect resistance.

4.3. COR May Improve the Insect Resistance of Maize at the Seedling Stage through the ABA and
JA Signal Pathways

JA plays a key role in the elicitor signal transduction pathway, and is important in
plant response to insect pests [43–45]. Through the negative regulation of the JAZ protein,
plants can enhance their stress resistance [46,47]. Moreover, JA works as a signal transducer
in the induction of the accumulation of benzoxazines [48]. It was found that after treating
with 0.05 µM COR for one day, the expression of nine JAZ protein genes were significantly
downregulated, and the JA content in maize leaves increased significantly. This may be
the reason for the enhanced anabolism of benzoxazines. In addition, the content of ABA
in maize leaves related to stress response increased one day after spraying with 0.05 µM
COR, while the expression of PP2Cs, an inhibitor of ABA signal pathway, decreased. These
changes in hormones and signals may be an important mechanism for the enhancement of
insect resistance of maize at the seedling stage induced by COR. According to the result,
we proposed the possible mechanism of COR-induced insect resistance in maize (Figure 7).
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5. Conclusions

Through transcriptional sequencing and measuring the content of stress-resistant
phytohormones, this study examines the effects of various concentrations of COR on
the insect resistance of maize at the seedling stage. It also discusses the mechanism by
which COR improves the insect resistance of maize at the seedling stage. Theoretically, the
findings support COR-based environmentally friendly pest control.
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(b) and (c): Changes of IAA (a), GA (b) and ZR (c) contents in maize leaves induced by 0.05 µM COR.
The data were presented as means ± SE (n = 3) and analyzed by Student’s t-test. SE is represented by
error bars. * Indicates that the difference is significant, and the significant degree α is 0.05. Figure S3:
The expression of genes related to biosynthesis of secondary metabolites, benzoxazinoid biosynthesis
and plant hormone signal transduction in KEGG database. The data were normalized by log2 and
Z-score; the closer to 1.5, the higher the relative gene expression, and the closer to −1.5, the lower the
relative gene expression. Figure S4: Enrichment analysis of genes related to plant hormones. Table S1:
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