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Abstract: The Multidisciplinary Ophthalmic Genetics Clinic (MOGC) at the University of Michigan
Kellogg Eye Center aims to provide medical and ophthalmic genetics care to patients with inher-
ited ocular conditions. We have developed a clinical and referral workflow where each patient
undergoes coordinated evaluation by our multidisciplinary team followed by discussions on diag-
nosis, prognosis, and genetic testing. Testing approaches are specific to each patient and can be
targeted (single-gene, gene panel), broad (chromosomal microarray, whole-exome sequencing), or a
combination. We hypothesize that this clinic model improves patient outcomes and quality of care.
A retrospective chart review of patients in the MOGC from July 2020 to October 2022 revealed that the
most common referral diagnoses were congenital cataracts, optic neuropathy, and microphthalmia,
with 52% syndromic cases. Within this patient cohort, we saw a 76% uptake for genetic testing,
among which 33% received a diagnostic test result. Our results support a tailored approach to genetic
testing for specific conditions. Through case examples, we highlight the power and impact of our
clinic. By integrating ophthalmic care with medical genetics and counseling, the MOGC has not only
helped solve individual patient diagnostic challenges but has aided the greater population in novel
genetic discoveries and research towards targeted therapeutics.

Keywords: ophthalmic genetics; medical genetics; inherited ocular disorders; microphthalmia; congenital
cataracts; optic neuropathy; anterior segment dysgenesis; Bosch–Boonstra–Schaaf syndrome; nystagmus

1. Introduction

Patients affected by ocular genetic conditions often require complex care that is beyond
the scope of an ophthalmologist’s role alone [1]. Substantial genetic diagnostic testing,
familial counseling, systemic disease monitoring, and low-vision guidance need to be
completed additionally [1]. Inaccurate referral diagnoses are still relatively common in
30–50% of cases, highlighting the importance of accurate eye exams and appropriate test-
ing [2,3]. Overlooking ophthalmic features of genetic syndromes can be detrimental given
that genetic disease is the most common cause of blindness in young children in developed
countries, comprising 50% of all childhood blindness [1]. For example, Cardiac Urogenital
Syndrome (CUGS), a genetic condition caused by pathogenic variants in the MYRF gene,
was initially characterized by congenital diaphragmatic hernia, congenital heart defects,
and urogenital defects without clear ocular differences noted [4–7]. Subsequent reports
of familial nanophthalmos were noted to be caused by pathogenic variants in this same
gene, and it is now known that the ocular features of CUGS are among the most penetrant
and one of the most treatable features of this syndromic condition [8–11]. Similarly, sys-
temic features can be overlooked in conditions that are thought to cause just ophthalmic
abnormalities. For example, a family with a clinical diagnosis of Juvenile Open-Angle
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Glaucoma (JOAG) was identified to have a pathogenic DDX58 variant with the proband’s
father exhibiting systemic features of Singleton–Merten syndrome, including psoriasiform
skin rash, arthritis, spontaneous tendon rupture, and vascular calcifications, in addition to
the ophthalmic findings [12]. This overarching diagnosis allowed for targeted therapeu-
tics to be started to treat these symptoms, as DDX58-related disease represents a Type I
interferonopathy [12].

Much of the care for patients with inherited eye disorders is typically delivered in
an uncoordinated manner by different health care providers, who may even work at
different hospitals [1]. These silos within the system can lead to the duplication of efforts
and a less holistic approach to patient care, leading to additional burdens for patients and
their families [1]. In addition, an inaccurate ophthalmic diagnosis can impact the medical
geneticist’s evaluation, as correct phenotyping is critical for ordering and interpreting
genetic testing [13]. The creation of multidisciplinary ophthalmic and genetics clinics is an
effort to address these potential barriers to provide efficient care for patients with inherited
ocular disease and genetic syndromes with ocular features. To date, few of these clinics
have been described [1,2,13].

Here, we characterize the multidisciplinary ophthalmic genetics clinic (MOGC) at
the University of Michigan Kellogg Eye Center, started in July 2020 as a complementary
program to an existing retinal dystrophy clinic. We highlight a novel clinic model featuring
integrated care with an ophthalmic geneticist, medical geneticist, and genetic counselor. We
share successful case examples that demonstrate the value of this care team, and evaluate
diagnostic accuracy and genetic testing patterns within our patient population. These
results illustrate the advantages of a multidisciplinary approach to patients with inherited
ocular conditions.

2. Materials and Methods

A cohort study using data from a retrospective chart review of patients referred to the
Multidisciplinary Ophthalmic Genetics Clinic at the University of Michigan Kellogg Eye
Center between July 2020 and October 2022 was performed (n = 71). Clinical data includ-
ing the following were collected: prenatal/birth/developmental history, three-generation
pedigree, comprehensive physical exam findings (including ocular and systemic), diag-
nostic radiology imaging, biochemical tests, and genetic testing results. Where indicated,
ophthalmic imaging, visual field testing, and electrophysiologic testing were performed,
including spectral domain optical coherence tomography (Heidelberg Spectralis, Franklin,
MA, USA), Optos wide-field autofluorescence and color imaging (Dunfermline, UK), and
Bscan or ultrasound biomicroscopy (Ellex EyeCubed, Minneapolis, MN, USA). Genetic
testing approaches, uptake, and results were evaluated for all patients with ocular findings
who had been evaluated in the clinic (n = 71). Diagnostic rate was evaluated using estab-
lished American College of Medical Genetics criteria, and compared to other published
panel-based testing utilized by other practices, including the Oculome test, Cat-Map testing
for cataracts, and anterior segment dysgenesis panel testing [14–17].

3. Results
3.1. The Multidisciplinary Ophthalmic Genetics Clinic

The Multidisciplinary Ophthalmic Genetics Clinic (MOGC) at Kellogg was created to
provide medical and ophthalmic genetics care to patients with inherited ocular conditions.
MOGC focuses on syndromic and other ocular conditions for both pediatric and adult
patients, and is complementary to the existing retinal dystrophy clinic at the Kellogg Eye
Center, whose scope centers more on nonsyndromic retinal conditions such as retinitis
pigmentosa, cone and cone–rod dystrophy, Stargardt disease, and macular dystrophy.
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Initially, the clinic started as a hybrid virtual/in-person model (with the ophthalmol-
ogy exam and testing in clinic and the medical genetics and genetic counseling delivered
virtually) during the COVID-19 pandemic and transitioned to a fully in-person monthly
clinic as of January 2022. The clinic currently sees referrals primarily from ophthalmol-
ogists for a wide variety of inherited ocular diseases and systemic genetic diseases fea-
turing ocular involvement including hereditary optic neuropathy, congenital cataracts,
microphthalmia, coloboma, anterior-segment dysgenesis, albinism, and syndromic retinal
dystrophy (Figure 1). Our core clinical team consists of an ophthalmic geneticist, a medical
geneticist, and a genetic counselor, with support from a clinic scheduler, ophthalmic techni-
cians, and an electrophysiologist. We developed a clinical and referral workflow (Figure 2),
which depicts our decision trees for referral and genetic testing. The MOGC also has the
advantage of seeing patients with systemic signs and symptoms (Figure 2), suggesting a
possibly syndromic condition (i.e., Stickler syndrome). Each patient undergoes coordinated
evaluation by our ophthalmic genetics team followed by discussions on diagnosis, prog-
nosis, and genetic testing. Below, we highlight several familial cases that demonstrate the
utility of the multidisciplinary approach.
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Figure 1. Referral patterns in the clinic. (A) Breakdown of the referral diagnoses for the 71 patients
seen at the MOGC between July 2020 and October 2022. Categories are as follows: ASD (anterior-
segment dysgenesis) including aniridia; Axenfeld–Rieger syndrome, Peters anomaly; CC (congenital
or juvenile cataract); CD (corneal dystrophy) including Schnyder crystalline dystrophy, posterior
polymorphous corneal dystrophy; CTD (connective tissue disorder), i.e., Stickler syndrome, osteogen-
esis imperfecta, and ectopia lentis; MAC (microphthalmia/anophthalmia/coloboma); N (nystagmus),
including a broad set of diagnoses, i.e., albinism, Leber Congenital Amaurosis, optic neuropathy, and
foveal hypoplasia; ONA (optic nerve anomaly/atrophy), i.e., optic nerve hypoplasia and morning
glory anomaly; RD (retinal degeneration), including macular dystrophy, cone–rod dystrophy, and
retinitis pigmentosa; RVD (retinal vascular disorder), including persistent hyperplasia of primary
vitreous and familial exudative vitreoretinopathy. * Note percentages sum up to above 100% as some
patients were referred for more than one diagnosis. (B) Fraction of patients with purely ocular vs.
syndromic presentations. More than half of the patients (52%) seen in the MOGC had a syndromic
presentation at their initial visit.
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Figure 2. Diagram demonstrating multidisciplinary ophthalmic genetics clinic workflow from referral
to follow-up. OCT, optical coherence tomography; ERG, electroretinography; ARS, Axenfeld–Rieger
Syndrome; CMA, chromosomal microarray; WES, whole-exome sequencing.

3.2. Approaches to Genetic Testing and Diagnostic Yield

The scope of genetic testing can be as targeted as single gene panels to as broad as
whole-exome sequencing. The MOGC team works to balance the practical considerations
of testing, including financial implications and turnaround time, with diagnostic capacity.
The result is a varied testing strategy that is patient-specific (Figure 3). Within this patient
cohort, we saw a 76% uptake in genetic testing, if recommended, among which there were
diagnostic results in 33% of cases (Figure 3). Diagnostic yield in the MOGC for specific
referral conditions varied, with the greatest success seen in anterior-segment dysgenesis
patients (Table 1). For those patients who chose not to undergo genetic testing, the reasons
included both personal (i.e., patient deferral) and financial (i.e., insurance denial), though
a top reason also included a logistical barrier (i.e., returning DNA testing kits) (Figure 3).

Table 1. Diagnostic test results for MOGC referral conditions with values > 10%; note that any results
which are “pending” at the time of this manuscript were excluded (n = 4).

Referral Condition Diagnostic Yield, % (n)

Anterior-Segment Dysgenesis (ASD) 57% (n = 4/7)
Nystagmus (N) 33% (n = 2/6)

Optic Nerve Anomaly/Atrophy (ONA) 30% (n = 3/10)
Congenital or Juvenile Cataract (CC) 36% (n = 4/11)

Retinal Dystrophy (RD) 20% (n = 1/5)
Microphthalmia/Anophthalmia/Coloboma (MAC) 13% (n = 1/8)

Corneal Dystrophy (CD) 0% (n = 0/2)
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Figure 3. Genetic testing outcomes and strategies. (A) Patient testing approach categorized as
follows: Targeted—single-gene, gene panel; Broad—chromosomal microarray (CMA), whole-exome
sequencing (WES); Combination—both targeted and broad testing recommended. Patients for whom
there was no testing approach recommended (“None”) were cases in which no genetic testing was
clinically indicated (n = 3). (B) Of the patients who were given a recommendation to undergo genetic
testing via one of the approaches highlighted above (n = 67)—e.g., targeted, broad, combination—
76% (n = 51/67) moved forward. Among these patients, “previously done” refers to the patients
who had undergone complete genetic testing prior to coming to the MOGC; “partial testing” refers
to patients who completed a portion of recommended testing; “yes” refers to those patients who
completed all the recommended testing. (C) Patients who did not move forward with genetic testing
(n = 16) had a variety of reasons that ranged from personal barriers (“deferred”, “lost to follow up”,
“pending testing kit return”) to systemic barriers (“insurance denial”). (D) Of the patients who
underwent all recommended genetic testing and whose results are not still pending (n = 48), the
MOGC demonstrated a diagnostic yield of 33% (n = 16/48).

3.3. Case Reports
3.3.1. Syndromic Optic Neuropathy

An 11-year-old male presented to our clinic with a history of visual impairment,
nystagmus, and esotropia with abduction deficits. His vision loss had been grossly stable
until the age of presentation and he had previously tried vision therapy for two years with
no significant improvement. His past medical history was significant for developmental
delay requiring interventions (speech–language pathology, physical and occupational
therapy, and an individual education plan in school). He had a history of febrile seizures
between 18 months and 5 years of age that were subsequently resolved. In the clinic, his
ocular exam was notable for an incomitant esotropia, bilateral abduction deficits, latent
nystagmus, and poor visual acuity bilaterally (VA 20/200 OD 20/250-300 OS). A slit-
lamp exam showed mild ptosis with an unremarkable anterior-segment exam and normal
intraocular pressure (IOP). A fundus exam revealed bilateral loss of foveal light reflex, optic
disc pallor, and moderate cupping (Figure 4A,B). A physical exam showed mild dysmorphic
features (low-set ears, anteriorly displaced upper teeth, slight upslant to palpebral fissures,
micrognathia), hypotonia, and mild gait instability. There was no significant family history
of any relevant ocular or systemic conditions.
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Figure 4. Clinical imaging in highlighted cases (A,B) Case 1 fundus exam photographs demonstrating
optic disc pallor and moderate cupping bilaterally. (C–H) Case 2; (C,D) External photographs demon-
strating an enlarged and thinned cornea, central descemetocele, and peripheral neovascularization.
Poorly visualized are aniridia and posterior embryotoxon. (E,F) Anterior-segment UBM showing
a cystic iris stump (E) and peripheral synechiae (F), consistent with Axenfeld–Rieger syndrome.
(G,H) Proband’s mother’s corectopia and iris atrophy bilaterally. Additionally, a Descemet tear is
appreciated in the right eye (G). (I–K) Case 3 (I,J) RetCam photos showing granular pigment changes
and vascular attenuation in both eyes, with decreased foveal light reflex. (K) OCT imaging of the
right eye showing poor definition of the ellipsoid zone as well as thinning of the outer nuclear layer
in the right eye.

The patient was diagnosed with syndromic optic atrophy and subsequently underwent
genetic testing. Chromosomal microarray testing was negative, and whole-exome sequenc-
ing revealed a single de novo pathogenic variant in the NR2F1 c.90_99del (p.Arg31Alafs*85)
associated with Bosch–Boonstra–Schaaf Optic Atrophy Syndrome (BBSOAS), an autoso-
mal dominant condition [18,19]. The haploinsufficiency of NR2F1, a transcription factor
for neural development, can lead to several key features of BBSOAS—developmental
delay, autism-spectrum disorder, and seizures—and ocular findings such as optic atro-
phy/hypoplasia and cortical vision loss consistent with our patient’s phenotype [19].
Identifying this diagnosis led to several positive benefits for the patient and his family.
First, the constellation of seemingly unrelated symptoms now fit within the context of
one diagnosis, and a clear explanation for his ocular and systemic features was identified.
Second, he was able to follow up with the low-vision clinic, establish care with a BBSOAS
specialist for further clinical care, and even join the BBSOAS patient foundation. Third,
his parents learned that this was a de novo variant with low risk of recurrence for future
pregnancies. Fourth, the patient was evaluated for other ocular features of BBSOAS such
as alacrimia.

3.3.2. Familial Anterior Segment Dysgenesis

The patient was born via cesarean section at 36 weeks and 5 days due to maternal
cholestasis. Neonatal intensive care unit physicians noted bilateral absent red reflex and
transferred the patient to the University of Michigan for further evaluation. On day 1 of life,
a bedside exam showed bilateral corneal opacification and central descemetoceles. A lim-
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ited view into the anterior chamber at that time showed bilateral aniridia and prominent
posterior embryotoxon. The IOP measurement was inaccurate due to the abnormal cornea,
but was significantly elevated by palpation, and the patient was started on dorzolamide-
timolol and latanoprost. On day 4 of life, the patient was scheduled for an exam under
anesthesia with a possible surgical IOP-lowering intervention. The eye was found to be too
thin and small for safe incisional surgery, and transscleral contact cyclophotocoagulation
was performed.

She was subsequently referred at 5 months of age to the MOGC for genetic evaluation
for her severe anterior-segment dysgenesis and secondary glaucoma. She was confirmed to
have microphthalmia, bilateral partial aniridia, and bilateral congenital glaucoma in the
setting of ongoing growth delays, feeding difficulties, hypotonia, and atrial septal defect.
On ocular exam, the patient was aversive to light and found to have horizontal pendular
nystagmus. IOP in the right eye was mildly elevated to 22 mmHg, and normal in the left eye
(18 mmHg). A slit-lamp exam showed lagophthalmos with corneal thinning and protrusion
OU, diffuse corneal haze with overlying keratinization and posterior embryotoxon OU,
and peripherally shallow anterior chamber OU (Figure 4C,D). There was no view of the
fundus. Ultrasound biomicroscopy (UBM) demonstrated numerous iris cysts in the right
eye, with a hypoplastic iris seen in the left eye (Figure 4E,F). A physical exam showed
mild dysmorphic features (low-set and posteriorly rotated ears, midfacial hypoplasia, deep
palmar creases) and hypotonia. Growth parameters were notable for 12th percentile head
circumference (corrected for gestational age), 2nd percentile weight, and <1st percentile
for length.

Notably, the patient’s 24-year-old mother had a clinical diagnosis of Axenfeld–Rieger
syndrome based on signs of anterior-segment dysgenesis along with a history of dental
caries, but she had never undergone prior genetic testing. The mother had a history
of glaucoma and extraocular muscle surgery, and was not taking any topical glaucoma
medications at the time of data collection. An ophthalmic evaluation of the patient’s mother
showed corectopia, iris atrophy, and Descemet tears in the right eye (Figure 4G,H), along
with a normal foveal contour on optical coherence tomography and fundus exam. The
proband’s 3-year-old maternal half-brother additionally had a history of a corneal ulcer of
unknown etiology and speech delay.

Family history and the patient’s clinical presentation were suggestive of FOXC1-
related anterior-segment-dysgenesis syndrome given the systemic findings, along with
congenital glaucoma and normal foveal architecture. She underwent panel-based testing,
which revealed a pathogenic FOXC1 c.135dup (p.V46Rfs*37) variant, inherited from her less
severely affected mother. Given the severity of the proband’s phenotype, broad testing with
chromosomal microarray and exome sequencing was conducted to rule out a dual diagnosis.
This did not reveal any additional pathogenic variants, suggesting the FOXC1 variant was
the sole genetic cause of the patient’s disorder. The family was counseled that FOXC1
can be associated with hearing loss, brain anomalies, hypotonia, and failure to thrive in
addition to ocular anomalies that would require continuous monitoring [15]. Heterozygous
variants such as the one identified in both the patient and the patient’s mother have been
associated with a spectrum of anterior-eye-segment defects, including Axenfeld–Rieger
syndrome [15]. This genetic diagnosis highlighted the spectrum of the anterior-segment-
dysgenesis disorders, and the value of testing and counseling for family planning.

3.3.3. Infantile Nystagmus Secondary to Retinal Disorder

A 6-month-old male with an unexplained history of nystagmus and congenital es-
otropia presented to the MOGC after referral from pediatric ophthalmology. His mother
reported that shortly after birth, the patient had intermittent episodes of ocular shaking in
both horizontal and vertical directions, worse when the patient was agitated. Pregnancy
was uncomplicated and development was otherwise normal. The patient had no known
family history of ocular deficits or syndromic conditions. He was given glasses for high
hyperopia which seemed to improve, but not correct, visual behavior and strabismus.
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The slit-lamp exam was unremarkable; however, a fundus exam showed bilateral blunted
foveal light reflex (FR), mild vascular attenuation, and granular pigment changes with
few areas of pigment clumping (Figure 4I,J). OCT showed a poor definition of ellipsoid
zone (EZ) in both eyes (Figure 4K), and electroretinography (ERG) showed evidence of
severe reductions in both scotopic and photopic function. Together, these results suggested
a severe retinal degeneration consistent with a diagnosis of Leber congenital amaurosis
(LCA) [20]. The patient underwent genetic testing with a Blueprint Genetics Retinal Dystro-
phy panel, which uncovered two likely pathogenic variants in RPGRIP1 c.1437_1440dup,
p.(Val481Serfs*13) and c.3652G>T, p.(Glu1218*), which were consistent with his clinical
diagnosis. Segregation analysis revealed that each parent contributed one disease-causing
allele, confirming the diagnosis of RPGRIP1-related LCA.

Evaluation and diagnosis in the MOGC provided a number of benefits for the patient
and his family. First, functional testing and detailed retinal evaluation narrowed the
diagnosis of his vision loss to LCA from a wide differential diagnosis for nystagmus and
visual impairment (including albinism, optic neuropathy, foveal hypoplasia, congenital
nystagmus, and retinal dystrophy), and provided more information about the prognosis
and visual function of the patient. Second, he began treatment with orientation specialists,
started occupational therapy, and worked with a developmental therapist due to his low
vision. He was also equipped with braille reading material. Third, his parents learned
about their risk for future pregnancies given the genetic nature of the patient’s condition,
and were informed of the patient’s own reproductive risks, as all of his children would
be carriers. Fourth, while there is no treatment approved at this time, the family is now
exploring investigative gene-therapy trials that will help further research into this condition
and hopefully provide a possible cure in the future [21].

4. Discussion

As information on human genetic disorders increases, it is clear that inherited ocular
conditions have significant genetic heterogeneity [2]. As such, the diagnostic odyssey for
these patients can take upwards of several years, with multiple medical care providers and
diagnostic tests [2]. The creation of the MOGC improves healthcare delivery along three
dimensions: in clinical care, for patients to have streamlined appointments with multiple
providers who communicate directly in a single location; in research, as patients who
underwent testing contribute to gene discovery, clinical phenotyping, and biobanking; and
in education, to expose medical trainees of all types to these rare diagnoses. All of these
help provide extensive and comprehensive ophthalmic genetic care to patients in need.

A challenge in ophthalmic genetics”care’Is the heterogeneity in genetic diagnostic rate,
with very low diagnostic rates for certain conditions. One way to address this challenge
without a specialized clinic is to create a targeted panel that tests for all ophthalmic con-
ditions. The Oculome sequencing panel is an example of one such test [14]. This panel
was developed to screen for over 420 pediatric genetic ocular diseases, many of which
overlap with those seen in the MOGC (e.g., ASD, MAC, CC, RD) [14]. A study assessing
this panel demonstrated the diagnostic yield to be 24.5% (n = 68/277), with the solve rate
depending on phenotypic subtype [14]. In comparison, the MOGC had diagnostic results
in 33% of cases (n = 16/48), which includes syndromic conditions in addition to ocular
diseases. This was largely due to the multidisciplinary medical and ophthalmic nature
of the team, in addition to the variety of testing that was able to be offered to patients.
This multidisciplinary approach allows for the identification of syndromic conditions that
would otherwise be missed due to ophthalmic features that are often overlooked, such as
the confirmed genetic diagnosis of Axenfeld–Rieger in a family with phenotypic spectrum
severity or the conclusion of a long diagnostic journey for the patient with Bosch–Boonstra
Optic Atrophy. The patient with RPGRIP1-related LCA was appropriately directed towards
resources such as options for possible gene therapy. For the pediatric ophthalmologists
managing many of these patients’ primary ocular care, having a diagnosis improves the
ability to counsel patients on prognosis regarding future vision, while additional test results
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help with clinical management. As illustrated in the case reports highlighted above, the
MOGC’s multidisciplinary approach allows for increased research into rare conditions,
similar rates of diagnosis, and better outcomes for patients.

Advances in genetic testing over the last decade have helped improve diagnostic
capacity for genetic disorders with a scope spanning from narrow tests such as single-gene
targeted testing and gene panels to broad tests such as exomes and genomes [17]. In reality,
there are practical considerations between panel-based and exome sequencing. In the
MOGC experience, panel tests have a 3–4-week turnaround time and are frequently covered
by insurance, while exome sequencing has a turnaround time of 3–4 months for results and
a higher rate of insurance denial, leading to higher out-of-pocket costs [22,23]. Our team
at MOGC works together to efficiently utilize genetic testing following evaluation by all
providers, especially since clinical features vary significantly based on the affected gene,
which can impact gene-specific management plans [15]. For example, in a study assessing
phenotypic variability among 128 individuals with clinical Axenfeld–Rieger Syndrome,
Reis and colleagues examined causative variants in PITX2 and FOXC1 gene-coding regions
via Sanger sequencing and/or research-based exome sequencing [15]. Exome sequencing
was completed in 41% (n = 24/59) of PITX2 and 57% (n = 39/69) of FOXC1 probands [15].
Patients seen in the MOGC for a diagnosis of anterior segment dysgenesis (ASD) were
similarly recommended to undergo targeted testing based on their phenotype prior to
completing broad testing such as whole-exome sequencing. Fifty-seven percent of patients
with ASD who completed testing were identified to have a diagnostic variant following
this approach (half with targeted-only testing, half with a combination targeted to reflex
broad testing). Methods to evaluate the genetic cause of Mendelian forms of cataract also
exist, such as Cat-Map, an online chromosome map and reference database for inherited
(and age-related) forms of cataract [16]. In a clinical setting, it is useful to differentiate
between “syndromic” and “non-syndromic” forms of cataract based on the presence of
nonocular anomalies in a patient, as the genotypes are distinct and can inform testing
approach [16]. In the MOGC, for a referral diagnosis of congenital cataract, 64% of patients
had an ocular-only presentation (n = 9/14) and were counseled to undergo specific gene
panel testing initially. Of those with an ocular-only presentation who completed genetic
testing (n = 6/9), 50% (n = 3/6) had a diagnostic test result. Being able to complete targeted
testing for patients and then broaden if testing is nondiagnostic allows for lower use of
healthcare resources (fewer patients needing insurance authorization), and a more rapid
turnaround time for patients who receive a genetic diagnosis on initial testing [13,22–24].

Administratively, there are numerous advantages to the MOGC that can also be
characterized. The ophthalmic geneticist works in conjunction with the medical geneticist
and genetic counselor on testing strategies (selecting correct panels, interpreting test results).
The medical geneticist can give input on dysmorphology, syndromic differential diagnoses,
and metabolic testing for systemic phenotyping. The genetic counselor educates the patient
on testing options, result implications, and explains testing results. Patients can also be
enrolled in research studies for gene discovery, genotype–phenotype correlations, and
treatment studies from the in-house research team. This team structure is similar to other
Ocular Genetics Programs such as the one established at the Hospital for Sick Children
in Toronto, which in its first decade saw more than 6000 families [1]. Data collected by
that clinic showed that upwards of 95% of patients not only were satisfied with their visit,
but would recommend the clinic to others primarily due to the ease in having a single
appointment with both the medical genetic and ophthalmic genetic providers [1]. The
importance of same-day pretest genetic counseling to discuss implications of testing cannot
be stressed enough, maybe even more so for those patients who defer genetic testing, as
this counseling gives them the ability to make their decision following clear education on
what it will mean for them and their care.

The multidisciplinary approach provides patient-centered care and may lead to faster
diagnoses given the ability to address both ocular-only and syndromic presentations. There
are certainly challenges to the MOGC that require further study. For example, the care
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model is time- and resource-intensive with no reward in the traditional fee-for-service
reimbursement system, which can limit provider availability. There is also a long wait
time for appointments as the clinic is referral-based. Once patients are in the clinic, they
can choose not to undergo genetic testing or, as seen in 38% of patients in this category,
there may be an issue getting the DNA sample/testing kit returned. This barrier could be
addressed by having patients draw blood or do the buccal swab/saliva test directly at the
visit. Uncertain genetic testing results (variants and genes of uncertain significance) may
limit diagnostic rate, but also present an opportunity for the better classification of genetic
variants and research efforts to establish gene–disease relationships. The lower diagnostic
yield for specific conditions seen in clinic compared to those reported in the literature could
be attributed to a more complicated patient mix, as some of the cases were referred by other
physicians who had reached the end of possibilities for testing. We have the opportunity
for gene discovery research or functional validation in animal models or patient-derived
organoid models to help clarify the definitive disease cause. Ultimately, the creation and
maturation of more interdisciplinary clinics will improve the generation of specific testing
results that can contribute to clinical genetic research.

5. Conclusions

The study goal was to evaluate whether our MOGC provides advantages to patients
with inherited ocular conditions. The benefits of the clinic for patients outweigh admin-
istrative and systemic hurdles. We have found that a multidisciplinary approach has not
only helped solve diagnostic odysseys, but has also helped discover new genetic conditions.
We are motivated to share our experience in creating this program with other academic
institutions so that we may develop a preferred practice pattern and improve diagnosis,
risk prediction, drug development, and overall patient care and satisfaction in this popula-
tion. Further research is planned to assess the patient experience and improve quality of
care delivery.
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