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Abstract: Genomic regions governing grain protein content (GPC), 1000 kernel weight (TKW), and
normalized difference vegetation index (NDVI) were studied in a set of 280 bread wheat geno-
types. The genome-wide association (GWAS) panel was genotyped using a 35K Axiom array and
phenotyped in three environments. A total of 26 marker-trait associations (MTAs) were detected
on 18 chromosomes covering the A, B, and D subgenomes of bread wheat. The GPC showed the
maximum MTAs (16), followed by NDVI (6), and TKW (4). A maximum of 10 MTAs was located
on the B subgenome, whereas, 8 MTAs each were mapped on the A and D subgenomes. In silico
analysis suggest that the SNPs were located on important putative candidate genes such as NAC
domain superfamily, zinc finger RING-H2-type, aspartic peptidase domain, folylpolyglutamate syn-
thase, serine/threonine-protein kinase LRK10, pentatricopeptide repeat, protein kinase-like domain
superfamily, cytochrome P450, and expansin. These candidate genes were found to have different
roles including regulation of stress tolerance, nutrient remobilization, protein accumulation, nitrogen
utilization, photosynthesis, grain filling, mitochondrial function, and kernel development. The effects
of newly identified MTAs will be validated in different genetic backgrounds for further utilization in
marker-aided breeding.

Keywords: wheat; GWAS; GPC; NDVI; candidate genes

1. Introduction

Wheat is one of the essential staple foods around the world. Wheat-based products
are gaining increased demand because of changing dietary habits driven by urbanization
along with industrialization. It is the main source of energy and starch and also provides
a considerable quantity of protein, vitamins, dietary fibers, and phytochemicals that are
beneficial or essential for health. Reduced secondary immunity due to protein energy
malnutrition (PEM) is considered to be the most frequent cause of various diseases in human
beings, and, in acute cases, clinically these are referred to as marasmus or kwashiorkor [1].
Further, severe PEM affects children’s cognitive development [2]. The protein concentration
and composition are the two important determinants of both nutritional and end-use
quality [3]. Gluten proteins (∼80%) are the major storage proteins that influence the baking
process through flour’s functional properties. Grain protein content and hardness are the
two key determinants of wheat grain quality to classify quality class in international trade
and also to decide the suitability of the quality class to different types of end products [4].

The protein concentration in wheat is the result of genetic makeup, environmental
effect, and genotype-environment interaction (GEI). GPC is a highly complex quantitative
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trait with substantial environmental (particularly nitrogen availability) and GEI effects.
Several studies suggested the substantial effect of environment and GEI on GPC, TKW,
and NDVI traits [5–8]. The process of protein enhancement is further complicated by
the existence of trade-off between grain protein and yield in wheat. Therefore, crop
improvement programs need to infuse more genetic diversity using wheat landraces and
crop wild relatives [9]. High-grain protein concentration has been effectively transferred to
modern cultivars through traditional plant breeding methods. High protein genes present
in genetic resources like Atlas 50 and Atlas 66 have widely been utilized in breeding
programs [10]. In addition, wild relatives have been utilized for a few high-protein genes
in different breeding programs. For instance, in Israel, wild emmer, particularly accession
FA15-3, is one of the most widely exploited germplasm for high grain protein, which
can accumulate about 40% protein under adequate nitrogen fertilization [11]. The region
controlling GPC is mapped on the 6BS chromosome and is designated as the Gpc-B1
gene [12]. The designated gene through a NAC transcription factor, i.e., NAM-B1, has a
pleiotropic effect, which enhances protein, iron, and zinc [13], due to faster senescence
leading to remobilization of nutrients from source to sink [14].

The NDVI estimation provides the overall quantification of ground coverage along
with the nitrogen status of the crop. It is an important physiological tool having high
correlations with yield, biomass, and nitrogen content in wheat [15]. The NDVI could be
used as a surrogate trait for the indirect assessment of leaf health for photosynthesis [16].
Therefore, both GPC and NDVI are related traits with much dependency on the genetic
potential for nitrogen use efficiency. Although TKW in wheat has no nutritional importance
by itself, but it has a concentration/dilution effect that influences the other nutrients
including protein and micronutrient concentration. The simultaneous increase in grain
yield coupled with reduced protein content was attributed to the dilution effect in wheat,
which is demonstrated in many studies [17,18]. Thus, TKW is a key economic trait in crop
improvement programs because of its role in the expression of grain yield and quality.
While breeding for higher grain protein content, TKW always needs to be considered, as
the shriveled grains always overestimate the protein content.

The quantitative traits like GPC, TKW, and NDVI need to be studied through genetic
and molecular approaches for harnessing them through marker-assisted breeding (MAB).
Further identifying linked molecular markers through QTL mapping would aid in the
improvement of these polygenic traits [19,20]. The GWAS and quantitative trait loci (QTL)
mapping are the two most commonly used approaches for understanding the genetics of
quantitative traits. The conventional approach of QTL mapping depends on the genetic
composition of bi-parental populations. A large number of QTLs have been identified in
the last decade in wheat for the expression of GPC [21–25], TKW [26–29], and NDVI [30–32]
through bi-parental-based conventional QTL mapping approach. However, the mapping
resolution is very low in bi-parental population-based QTLs due to limited crossovers.

Alternatively, the linkage disequilibrium-based (LD) association mapping (AM) ap-
proach can enhance the genetic map resolution to a greater extent due to the representation
of a wider gene pool and more recombination events in history [33]. The GWAS method
detects non-random associations of markers distributed across the genome with the phe-
notype [34] and has extensively been utilized to identify marker-trait associations in crop
plants [35]. The utilization of diverse lines that have accumulated more crossovers since
their most recent progenitors diverged has greatly improved the QTL resolution in the
GWAS mapping approach [36]. The GWAS approach overcomes the two general shortcom-
ings, i.e., low allelic diversity and mapping resolution of bi-parental studies [37].

However, the control of the false positive rate in GWAS due to population structure
and family association is one of the main limitations [38]. To reduce the false positives, a
statistical package of BLINK is highly useful, as it eliminates the basic assumption of equal
distribution of causal genes throughout the genome, and the statistical power is better
when compared with other available GWAS models such as SUPER and FarmCPU [39].
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Through the GWAS approach, many marker-trait linkages were found for GPC [40–42],
TKW [43–46], and NDVI [47–51] in wheat using a GWAS panel with a diverse set of geno-
types. Several MTAs/QTLs have been mapped on all three subgenomes of wheat; however,
more mapping studies are required as the saturation point may not be reached [52]. Further,
these traits are environmentally sensitive, hence, detection and validation of consistent
MTAs in multi-location or multi-year studies are important to use in marker-aided breeding.
Moreover, hexaploid wheat has three subgenomes with a size of ~17 Gb [53], with the
limited characterization of LD decay. Thus, further studies are required to understand the
genetic basis and devise marker-based breeding approach to further complement conven-
tional breeding efforts. The present investigation aims to identify MTAs related to GPC,
TKW, and NDVI in a diverse set of bread wheat genotypes in multi-environments following
the GWAS method and putative candidate genes associated with the SNPs.

2. Materials and Methods
2.1. Genotypes and Field Experiments

A set of 280 diverse bread wheat genotypes, including advanced elite genotypes
and commercial varieties, was used for the mapping study. The details of the genotypes
used in the study are given in Table S1. The set of genotypes was evaluated in three
different environments, i.e., E1-ICAR-Indian Agricultural Research Institute, New Delhi;
E2- ICAR-Indian Agricultural Research Institute, Jharkhand; and E3- ICAR-Indian Institute
of Wheat and Barley, Karnal. The weather parameters of the experimental sites during crop
season 2021–22 is illustrated in Figure 1. The experiment was conducted under irrigated
conditions, and planting was done from 1st to 15th November at all the locations during
the year 2021–2022 Rabi (winter) season. The recommended dose of NPK in the ratio of
150:60:40 kg/ha was applied as urea and diammonium phosphate (DAP) for nitrogen,
DAP for phosphorus, and muriate of potash for potassium. Biotic stresses were effectively
controlled by the fungicide (tebuconazole 25% EC), pesticide (imidacloprid 30.5 SC), and
pre-emergence herbicide (pendimethalin 30% EC). An augmented block design was used,
in which checks (DBW 187, MACS 6222, WH 1124, and WH 1142) were replicated in each
block of two rows of two-meter length.
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2.2. Data Recording and Statistical Analysis

Phenotyping of 280 genotypes for GPC, TKW, and NDVI was done at three locations.
The GPC was recorded with the infra-red transmittance-based instrument Infratech 1125,
and the estimated readings were expressed at a 12.0% moisture level. A random sample
of 1000 grains was counted, and the weight has been measured in an electric weighing
machine. NDVI was recorded at the maximum vegetative stage (Zadok’s scale 41) using a
handheld crop sensor, i.e., GreenSeeker (Trimble industries, Inc., Westminster, CO, USA),
which was held 50 cm above the canopy facing the center of the plot to record the NDVI.
Approximately, 3–4 NDVI readings/plot were recorded, and the mean represents the NDVI
reading for that particular plot. The data for various genetic parameters were analyzed
using the R package “augmented RCBD” [54].

2.3. Genotyping and Quality Control (QC)

The genomic DNA was extracted using the cetyltrimethylammonium bromide (CTAB)
method [55]. The pure seeds of each genotype were sown in a plastic tray with separate
chambers, and the leaf samples were collected from 21-day-old seedlings from each geno-
type. The collected leaf samples were thoroughly washed with distilled water and dried
on blotting paper. The dried leaf samples were cut into 1.5–2.5 cm length and kept in
a mortar and pestle. The leaf sample was finely ground and transferred into a 2.0 mL
Eppendorf tube, added with 700 µL pre-warmed 2% CTAB extraction buffer along with
0.2 vol% β-mercaptoethanol, and incubated in a water bath at 65 ◦C for 45 min. A total
of 750 µL of chloroform/iso-amayl alcohol in the ratio of 24:1 was put into the tube and
shaken thoroughly. The mixture in a tube was centrifuged at 12,000 rpm for 12 min, and
the resulting supernatant was collected in a 1.5 mL tube. Later on, 700 µL cold iso-propanol
was added and shaken slowly by inverting the Eppendorf tube. The tubes were kept under
freezing conditions for 2 h at −20 ◦C and subsequently centrifuged at 12,000 rpm for 10 min,
which results in DNA pellet. The DNA was treated with RNaseA, and the concentration
was determined in a NanoDrop spectrophotometer. The genotyping of 280 genotypes was
done using Axiom Wheat Breeder’s genotyping array (Affymetrix, Santa Clara, CA, USA)
consisting of 35,143 genome-wide SNPs. Stringent quality control was applied through the
removal of monomorphic markers, markers with minor allele frequency (MAF) of 20%, and
heterozygote frequency of >25.0%. A total of 14,790 curated markers were further utilized
for the GWAS study.

2.4. Population Statistics and GWAS

Pairwise LD values (r2) were calculated using Analysis by aSSociation Evolution and
Linkage (TASSEL) version 5.0 [56]. The LD block size of the whole genome, as well as
individual subgenomes was calculated by fixing the r2 threshold at half LD decay. The
PCA and kinship association were estimated using GAPIT [57]. Phenotypic data of GPC,
TKW, and NDVI of the GWAS panel and corresponding genotypic data were used in
GWAS analysis. Significant MTAs were detected through BLINK (Bayesian-information
and linkage disequilibrium iteratively nested keyway) model [39] implemented in Genome
Association and Prediction Integrated Tool (GAPIT) version 3.0 [58] in the R software
package. The SNPs with p ≤ 0.0001 were considered significantly associated, and R2

reflects the percent phenotypic variation (PVE).

2.5. In Silico Analysis

The sequence information of the significant SNPs was used to search for putative
candidate genes with BLAST using default parameters in the Ensemble Plants database
(http://plants.ensembl.org/index.html (accessed on 23 December 2022)) of the bread wheat
genome (IWGSC (RefSeq v1.0)). The genes located in the overlapping and within the region
of 0.1 Mb intervals flanking either side of the linked marker were recorded as putative
candidate genes. The role of the detected genes in the regulation of GPC, TKW, and NDVI

http://plants.ensembl.org/index.html
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was also determined by comparing with the earlier reports in both wheat and other crop
plants.

3. Results
3.1. Variability, Heritability, and Correlation

The genetic parameters of 280 genotypes given in Table 1, which exhibited a large
range of variability across the environments for GPC, TKW, and NDVI, ranging from
09.59–16.71%, 28.38–55.98 gm, and 0.32–0.71, respectively. The percent CV was less than
8.0% in all the environments for all three traits, which ranged from 3.42–5.47% (GPC),
2.37–3.85% (TKW), and 6.58–7.65% (NDVI). Out of all the studied environments, E3 was
found to be a relatively higher CV for all the traits. The trend of broad sense heritability of
both GPC and NDVI are similar and lower than TKW, which recorded more than 80.0%
in all the environments. The trait’s mean values are presented in Figure 2 as boxplots.
All three traits recorded comparatively higher trait mean values in the E3 environment
compared to other environments. The lowest trait mean values for GPC were recorded at
E3, whereas, the lowest mean values for TKW and NDV were recorded at E2.

Table 1. Genetic parameters of GPC, TKW, and NDVI.

Trait Env. Mean ± SD Range CV (%) LSD h2BS GCV ECV

GPC
(%)

E1 13.5 ± 1.18 10.81–16.71 4.77 1.94 70.28 7.32 4.76
E2 13.9 ± 0.84 11.88–16.62 5.47 2.29 68.53 6.61 5.47
E3 11.8 ± 0.91 09.59–14.81 3.42 1.23 72.80 6.96 3.46

TKW (gm)
E1 40.55 ± 0.21 31.01–50.41 3.14 3.83 86.56 7.95 3.13
E2 43.36 ± 0.26 29.48–55.98 3.85 5.02 84.15 8.85 3.84
E3 42.81 ± 0.26 28.38–52.98 2.37 3.05 94.64 9.95 2.37

NDVI
E1 0.49 ± 0.06 0.32–0.69 6.58 0.10 72.69 9.75 6.59
E2 0.60 ± 0.05 0.44–0.71 7.65 0.14 68.18 7.28 7.64
E3 0.57 ± 0.04 0.46–0.68 7.20 0.12 70.95 6.53 7.21

E1: IARI Delhi; E2: IARI Jharkhand; E3: Karnal; SD: standard deviation; CV: coefficient of variation; h2BS: broad
sense heritability; GCV: genotypic coefficient of variability; ECV: environmental coefficient of variability.
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Figure 2. Boxplots of GPC, TKW, and NDVI in a set of 280 genotypes.

The frequency distribution of GPC, TKW, and NDVI in a set of 280 genotypes tested at
E1–E3 during 2021–2022 is illustrated in Figure 3. The continuous frequency distribution
was observed for GPC, TKW, and NDVI. Pearson’s correlation coefficient (r2) was estimated
and illustrated in Figure 4. The direction of the correlation between GPC and TKW was
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similar in all three environments, and it was negatively associated. Further, a significant
and strong negative correlation between GPC and TKW was observed in E2. None of
the environments recorded a significant correlation between GPC and NDVI; however,
the direction of the correlation was positive in E2 and E3, whereas, it was negative in E1.
Similarly, the association between TKW and NDVI was negative and significant at E1,
and also the direction of the association was similar in E3. However, the direction of the
association was positive in E2.

3.2. Marker Statistics

The genome-wide distribution of SNPs is illustrated in Figure 5. After a thorough
quality check on the 35K SNP array, 14,790 high-quality markers were chosen. These
markers that qualify for quality control are further utilized to identify MTAs through
GWAS analysis. The subgenome-wise distribution of SNPs was highest with 5649 on
subgenome B, whereas, the other two subgenomes were represented similarly with 4590
(subgenome D) and 4551 (subgenome A). Similarly, chromosome-wise maximum SNPs of
1077 were identified on 1B chromosome, whereas, the lowest number of 264 SNPs were
identified on the 4D chromosome.

3.3. Population Structure and LD

The PCA and kinship relationship of the GWAS panel is illustrated in Figure 6, which
reveals the absence of clear-cut sub-groups. The LD was calculated by using the squared
correlation co-efficient (r2) of all the SNPs. The LD decay was rapid with 3.6 cM in A
subgenome, followed by 5.2 cM in D subgenome and 5.7 cm in B subgenome, whereas, the
whole genome LD decay was 4.9 cM.
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3.4. Genome-Wide Association Studies

A set of 26 significant MTAs was detected including 16 for GPC, 4 for TKW, and 6 for
NDVI (Table 2). The details of the detected MTAs are presented in Table 2 and illustrated
as Manhattan plots in Figure 7a,b. The Q–Q plots depicting the observed associations of
SNPs of GPC, TKW, and NDVI compared to the expected associations after accounting for
population structure are presented in Figure 7a,b.
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Table 2. MTAs for grain protein, 1000 kernel weight, and normalized difference vegetation index.

Trait Environment SNPs Chr. Position p Value PVE (%)

Grain protein
content (%)

E1 AX-94714023 2B 536316470 8.12 × 10−5 10.2

E2

AX-95107750 1A 112941690 2.09 × 10−7 6.6
AX-94825050 1A 53188500 1.35 × 10−6 7.7
AX-95082115 1B 144122241 1.00 × 10−5 7.7
AX-94749397 1B 16478742 3.53 × 10−5 6.2
AX-94675928 1D 112354107 4.71 × 10−8 7.2
AX-94770504 4B 667680308 9.97 × 10−6 7.0
AX-94384140 5A 659165855 5.65 × 10−5 6.9
AX-94617912 5D 450634975 6.54 × 10−5 6.3
AX-94520919 5D 550185848 9.88 × 10−6 10.1
AX-94537786 6A 501176793 5.53 × 10−6 7.7
AX-95186193 6A 3311006 2.59 × 10−5 7.0
AX-94412218 6B 100291191 1.14 × 10−6 7.9
AX-95199688 7A 171387994 3.47 × 10−5 6.9

E3
AX-94746929 3B 800933346 2.88 × 10−6 10.9
AX-95248629 5B 580431598 5.61 × 10−9 11.4

Thousand kernel
weight

E2 AX-94651901 3D 4012915 7.79 × 10−5 13.8

Pooled
AX-95194336 2B 9620943 3.54 × 10−6 8.7
AX-94454052 2D 617073435 1.41 × 10−11 13.4
AX-94861851 3A 544385295 2.31 × 10−7 10.7

Normalized
difference

vegetation index

E1
AX-95111632 4B 667859119 1.06 × 10−4 10.6
AX-94826552 7B 717202719 4.46 × 10−5 12.1

E3

AX-95006755 1A 485355517 9.70 × 10−5 6.2
AX-94978133 4D 465771817 7.36 × 10−6 10.1
AX-94736370 4D 359118968 7.80 × 10−5 11.7
AX-94493107 7D 306757146 1.28 × 10−5 11.5

E1: IARI Delhi; E2: IARI Jharkhand; E3: Karnal; PVE%: percent phenotypic variation explained.

A set of 16 significant MTAs was detected for GPC in E1, E2, and E3 on 1A, 1B, 1D,
2B, 3B, 4B, 5A, 5B, 5D, 6A, 6B, and 7A and PVE ranged from 6.2% (AX-94749397) to 11.4%
(AX-95248629). Out of 16 MTAs, AX-95248629 (5B), AX-94746929(3B), AX-94714023 (2B),
and AX-94520919 (5D) explained more than 10.0% PVE, which were located at 580.4 Mb,
800.9 Mb, 536.3 Mb, and 550.1 Mb, respectively. The highest number of MTAs (13 nos.)
were identified in E2 for GPC. The highest number of seven MTAs, i.e., AX-94714023 (2B),
AX-94412218 (6B), AX-94770504 (4B), AX-95082115 (1B), AX-94749397 (1B), AX-95248629
(5B), and AX-94746929 (3B) were identified on B subgenome and located at 536.3 Mb,
100.2 Mb, 667.6 Mb, 144.1 Mb, 16.4 Mb, 58.4 Mb, and 800.9 Mb, respectively. PVE ranged
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from 6.2% (AX-94749397) to 11.4% (AX-95248629). Similarly, six MTAs, i.e., AX-94825050
(1A), AX-95107750 (1A), AX-94384140 (5A), AX-94537786 (6A), AX-95186193 (6A), and AX-
95199688 (7A) were identified on A subgenome and located at 531.8 Mb, 112.9 Mb, 659.1 Mb,
501.1 Mb, 33.1 Mb, and 171.3 Mb, respectively. The PVE ranged from 6.6% (AX-95107750) to
7.7% (AX-94825050). However, only three MTAs, i.e., AX-94675928 (1D), AX-94520919 (5D),
and AX-94617912 (5D), were mapped and located at 112.3 Mb, 550.1 Mb, and 450.6 Mb,
respectively. The PVE ranged from 6.3% (AX-94617912) to 10.1% (AX-94520919).

1 

 

 

 

 
(a) 

 
(b) 

 Figure 7. (a) Manhattan and respective Q–Q plots for grain protein content in GWAS panel; (b) Man-
hattan and respective Q–Q plots for thousand kernel weight, and normalized difference vegetative
index in GWAS panel.
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For TKW, one major MTA (AX-94651901) on 3D was detected in E2 at 40.1 Mb and
explained 13.8% PVE. The remaining three MTAs, i.e., AX-94454052 (2D), AX-94861851
(3A), and AX-95194336 (2B), were detected for pooled mean, located at 617.0 Mb, 544.3 Mb,
and 96.2 Mb, respectively with PVE ranging from 8.7% (AX-95194336) to 13.4% (AX-
94454052). For NDVI, six MTAs, viz., AX-94826552 (7B), AX-95111632 (4B), AX-94978133
(4D), AX-94493107(7D), AX-94736370 (4D), AX-95006755 (1A), were identified and located
at 717.2 Mb, 667.8 Mb, 465.7 Mb, 306.7 Mb, 359.1 Mb, and 485.3 Mb, respectively with the
explained PVE ranging from 6.2% (AX-95006755) to 12.1% (AX-94826552).

3.5. Putative Candidate Genes Associated with MTAs

The SNPs linked to GPC, TKW, and NDVI were further utilized to detect the putative
genes using the annotated wheat reference sequence (Wheat Chinese Spring IWGSC Ref
Seq v2.1 genome assembly (2021)) and are given in Table 3. SNPs, i.e., AX-94537786, AX-
94520919, AX-94770504, AX-95199688, and AX-95107750, associated with GPC were found
to encode lateral organ boundaries, LOB (TraesCS1A02G111700), Zinc finger, RING-H2-type
(TraesCS6A02G274400), Zinc finger, RING-H2-type (TraesCS6A02G274400),NAC domain
(TraesCS5D02G537600), Folylpolyglutamate synthase (TraesCS4B02G392600), and Aspar-
tic peptidase domain (TraesCS7A02G208600), respectively. One SNP, i.e., AX-94651901
associated with TKW was found to encode serine/threonine-protein kinase LRK10-like
(TraesCS3D02G011300) and Pentatricopeptide repeat (TraesCS3D02G011200). Similarly, AX-
94454052 associated with TKW encodes protein kinase-like domain superfamily (TraesC-
S2D02G530900). In addition, two SNPs, i.e., AX-95111632 and AX-94978133 associated
with NDVI, were found to encode Cytochrome P450 (TraesCS4B02G393700) and Expansin
(TraesCS4D02G296100).

Table 3. Putative candidate genes for GPC, TKW, and NDVI.

Trait SNP ID Position Chr Trace ID Putative Candidate Genes Function

GPC

AX-95107750 112941690 1A TraesCS1A02G111700 Lateral organ boundaries,
LOB Stress tolerance in wheat [59]

AX-94537786 501176793 6A TraesCS6A02G274300 P-loop containing nucleoside
triphosphate hydrolase –

TraesCS6A02G274400 Zinc finger, RING-H2-type

Regulates glutelin protein
accumulation in Rice via

controlling of Glu B-1
promoter [60]. Regulation of

grain-related traits in maize [61]

AX-94520919 550185848 5D TraesCS5D02G537600 NAC domain superfamily

Protein, iron, and zinc
remobilization in wheat [14].

Regulation of seed-storage protein
content in rice [62]. Controls

percent grain protein in barley [63].
Remobilization of iron, zinc, and

nitrogen from vegetative tissues to
developing grains in wheat [64].
Iron and zinc remobilization to

seeds in Rice [65]

AX-94770504 667680308 4B TraesCS4B02G392600 Folylpolyglutamate synthase Nitrogen utilization in
Arabidopsis [66]

AX-95199688 171387994 7A TraesCS7A02G208600 Aspartic peptidase domain
Gluten aspartic proteinase (GlAP

2) is associated with gluten
breakdown in wheat [67]

TraesCS7A02G208700 Aluminum-activated malate
transporter –
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Table 3. Cont.

Trait SNP ID Position Chr Trace ID Putative Candidate Genes Function

TKW

AX-94651901 4012915 3D TraesCS3D02G011300 Serine/threonine-protein
kinase LRK10-like

Regulates kernel number and ear
length in Maize [68]

TraesCS3D02G011200 Pentatricopeptide repeat

Controls photosynthesis and grain
filling in maize [69]. Endosperm
development in Rice [70]. Maize

kernel-related traits including
thousand kernel weight [71].

Pentatricopeptide repeat protein
DEK45 [72], PPR18 [73] and

ZmSMK9 [74] are required for
mitochondrial function and kernel

development in maize

AX-94454052 617073435 2D TraesCS2D02G530900 Protein kinase-like domain
superfamily

OstMAPKKK5 controls plant
height and yield in rice [75].

TaSnRK2.9-5A has a role in high
TKW and grains per spike [76]

NDVI

AX-95111632 667859119 4B TraesCS4B02G393700 Cytochrome P450 Regulates grain size in wheat [77]

AX-94978133 465771817 4D TraesCS4D02G296100 Expansin
TaEXPA2 regulates drought
responsiveness in transgenic

tobacco [78]

4. Discussion

Although yield enhancement has been the main focus of crop improvement programs
across the globe for a long time, wheat quality enhancement is gaining importance only in
the recent past. Wheat improvement for quality is a tedious, expensive, and time-taking
process, which makes quality improvement programs slow and protracted. Further, yield
and quality enhancement in wheat was mostly phenotype-based selection through conven-
tional breeding for many years. However, genotype-based approaches can complement
conventional methods in cultivar development programs. Moreover, recent efforts that
led to the sequencing of the wheat genome could further enhance the potential of marker-
based breeding in wheat. Several MTAs/QTLs were detected for various economic traits
in wheat. However, further genetic studies are suggested using different germplasm or
populations as mapping has not reached a saturation level [52]. Further, hexaploid wheat
has three subgenomes with a large genome size of ~17 Gb, and there is always a possibility
to map new QTLs/MTAs for quality traits. In addition, ample genetic diversity is present
in the unexplored gene bank accessions and elite breeding materials, which make suitable
candidates to dissect the genetic basis and to identify novel MTAs through GWAS analysis.

4.1. Variability, Correlation, and GEI

The expression of GPC, TKW, and NDVI has been greatly influenced by the effects of
the environment and GEI. GPC was relatively more environment-sensitive, whereas, TKW
was a largely stable trait. Significant effects of environment and GEI have been described
in earlier reports [5–8,79]. The GWAS panel has been evaluated in multi-environments, as
GEI is an important factor to identify environment-specific and consistent QTLs. The trait’s
environmental sensitivity was also reflected in the trend of broad sense heritability, as TKW
recorded high heritability as compared to TKW and NDVI. Similarly, TKW has recorded
the lowest percent CV and highest GCV compared to the other two traits.

The negative association between TKW and GPC observed in the current study was
also reported previously in several reports [42,80]. This well-established negative corre-
lation between GPC and TKW was partly explained by the dilution effect [17,18]. This
negative association may also be attributed to nutrition (particularly nitrogen) competition
between TKW and GPC. Although the correlation between GPC and TKW was not sig-
nificant, the direction of association was positive. The positive and significant association
between GPC and NDVI was also observed in the previous studies [81]. However, the
correlation between TKW and NDVI was significant and negative. Previously a significant
and negative correlation between TKW and NDVI was also reported [49].
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4.2. Linkage Disequilibrium

The PCA analysis of the high-quality SNPs that exhibited allelic frequency was evenly
distributed without any separate sub-populations. Allelic frequency of equal distribu-
tion was obtained through the careful selection of elite breeding lines for different agro-
ecological zones. Wheat being a self-pollinated crop generally has a larger LD block size
and, hence, slowly decays [82], compared to cross-pollinated crop plants like maize, where
the LD decay is rapid [83]. QTL mapping resolution may be reduced due to presence of
large LD blocks and vice versa [84]. The LD decay distance of ~3 cM of A subgenome is
shorter than the B and D subgenomes, which have a decay distance of ~5 cM. A similar
LD decay pattern was also recorded previously in wheat GWAS studies [44,84,85]. The
LD among the populations may vary due to various factors including population size,
non-random mating, random genetic drift, selection, admixtures, mutation, pollination
pattern, and recombination frequency [86,87].

4.3. MTAs

A set of 26 MTAs was identified for GPC (16), TKW (4), and NDVI (6). A maximum
of 10 MTAs were mapped on the B subgenome, whereas, 8 MTAs each were mapped on
the A and D subgenomes. The pattern of subgenome-wise marker distribution is also
similar, as maximum markers were located on subgenome B, and an approximately similar
number of markers were mapped on A and D subgenomes. In earlier studies also, a similar
pattern of QTL and marker distribution among the subgenomes for grain-quality traits was
reported [21,26]. Krishnappa et al. [22] studied a RIL population wherein none of the QTL
was identified on the D subgenome due to a very less distribution of markers; however, the
enrichment of the D genome with additional SNP markers in the same mapping population
has significantly increased the power of QTL identification. Therefore, marker frequency
and distribution along with the type and size of the mapping population are important
determinants of QTL mapping.

The total of 16 MTAs detected for GPC on different chromosomes in the present
study is new, as the previously reported MTAs/QTLs were identified at different lo-
cations of the same chromosomes. In previous studies, MTAs for GPC were also re-
ported in different mapping populations on 1A [25,27,46,88], 1B [24,25,27,80,87,88], 1D [46],
2B [24,25,27,41,49], 3B [24,41,80], 3D [25,27,41,46,88,89], 5A [24,88], 5B [41], 5D [46,80,90],
6A [27,88–90], 7A [22,41], and 7B [41]. Similarly, four MTAs were identified on 3D, 2D,
3A, and 2B for TKW. MTAs for TKW on the same chromosomes in different mapping
populations were also identified in earlier reports on 1B [27], 2B [28,91], 2D [25,80,91–93],
3A [88,93–95] at different chromosomal locations. Cabral et al. [27] identified a QTL, i.e.,
QGwt.crc-2B-2, on the 2B chromosome, located at a confidence interval of 92.9–96.0 cM,
which was similar to the MTA (AX-95194336) detected in the current study on the same
chromosome at 96.2 Mb. For NDVI, six MTAs were mapped on 1A, 4B, 4D, 7B, and 7D.
Earlier studies also reported the MTAs for NDVI on the same chromosomes like 1A and
4B [31] and 4B and 4D [32].

4.4. Putative Candidate Genes

Through BLAST search, several putative candidate genes underlying MTAs for GPC,
TKW, and NDVI were identified (Table 3). The MTAs identified on different chromosomes
of wheat are present in the gene coding regions associated with different transcription
factors, transmembrane proteins, zinc finger superfamilies, etc. For instance, AX-94520919
linked to GPC encodes NAC domain (TraesCS5D02G537600) genes, which regulate pro-
tein accumulation in wheat grains. A NAC transcription factor (NAM-B1) that enhances
nutrient redistribution from source to sink and accelerates senescence is encoded by the
ancestral wild wheat allele [14]. Another transcription factor, i.e., the OsNAC-like tran-
scription factor, is reported to regulate seed-storage protein concentration in rice [62]. An
NAC transcription factor (HvNAM1) controls anthesis time, senescence, and grain protein
content in barley [63]. NAM proteins control the movement of nitrogen, zinc, and iron
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from vegetative tissues to developing grains in wheat [64]. NAC transcription factors
enhance the acceleration of leaf senescence, and thereby remobilize iron and zinc to seeds
in rice [65]. An SNP, i.e., AX-94770504 linked to GPC, encodes folylpolyglutamate synthase
(TraesCS4B02G392600) found to have a role in nitrogen utilization. In the early seedling
development stage, the gene for mitochondrial folylpolyglutamate synthetase regulates
nitrogen utilization in Arabidopsis [66]. Similarly, another SNP, i.e., AX-94537786 associ-
ated with GPC, encodes zinc finger, RING-H2-type (TraesCS6A02G274400), that controls
the protein accumulation in wheat. In rice, the CCCH-type zinc finger protein (OsGZF1)
regulates the GluB-1 promoter, a seed storage protein, and controls the accumulation of
glutelin protein during grain development [60]. The C2H2 zinc finger family transcription
factor regulated grain-related traits in maize [61]. Further, AX-95199688 associated with
GPC encodes the aspartic peptidase domain (TraesCS7A02G208600) and was found to have
a role in gluten breakdown. Gluten aspartic proteinase (GlAP 2) is associated with gluten
breakdown in wheat [67].

Few putative candidate genes were also identified for TKW; for example, one SNP, i.e.,
AX-94651901, encodes serine/threonine-protein kinase LRK10-like (TraesCS3D02G011300),
which has a role in grain weight regulation. A pentatricopeptide repeat protein that
influences photosynthesis and grain filling is encoded by the kernel size-related QTL
(qKW9I) [69]. The mitochondrion targeted pentatricopeptide repeat 5 regulates endosperm
development in rice [70]. Two important pentatricopeptide repeat genes (GRMZM2G353195
and GRMZM2G141202) are regarded as key candidate genes associated with maize kernel-
related traits, including thousand kernel weight [71]. Pentatricopeptide repeat protein
DEK45 [72], PPR18 [73], and ZmSMK9 [74] are required for mitochondrial function and
kernel development in maize. The same SNP also encodes serine/threonine-protein kinase
LRK10-like (TraesCS3D02G011300). The serine/threonine protein kinase encoding gene
KERNEL NUMBER PER ROW6 (KNR6) regulates kernel number and ear length [68].
Another SNP, i.e., AX-94454052, encodes the protein kinase-like domain superfamily
(TraesCS2D02G530900). OstMAPKKK5 controls plant height and yield in rice [75]. The
wheat protein kinase gene TaSnRK2.95A has a role in the regulation of high thousand kernel
weight and grains per spike [76]. For NDVI, two putative candidate genes, i.e., cytochrome
P450 (TraesCS4B02G393700) and expansin (TraesCS4D02G296100) were identified. The ex-
pansin regulates grain size in wheat [77]. In transgenic tobacco plants, the wheat expansin
gene (TaEXPA2) increased drought tolerance [78].

5. Conclusions

The study with a set of 280 diverse bread-wheat genotypes revealed that GPC, TKW,
and NDVI are quantitative traits. The negative association of GPC and TKW suggests
that there is a trade-off between grain protein content and grain weight. However, GPC
and NDVI are positively correlated, as both these traits are much influenced by the soil
nitrogen status. A total of 26 MTAs, including 16 for GPC, six for NDVI, and four for
TKW, were identified. Several putative candidate genes encoding main functions such as
zinc, iron, and protein remobilization, increased nitrogen use efficiency, photosynthesis
regulation, endosperm development, mitochondrial function, and stress tolerance are
reported. Further, functional characterization of these putative genes to understand their
role in wheat growth and development is envisaged.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14030637/s1, Table S1: List of genotypes.
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