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Abstract: Fungal species identification from metagenomic data is a highly challenging task. Internal
Transcribed Spacer (ITS) region is a potential DNA marker for fungi taxonomy prediction. Com-
putational approaches, especially deep learning algorithms, are highly efficient for better pattern
recognition and classification of large datasets compared to in silico techniques such as BLAST and
machine learning methods. Here in this study, we present CNN_FunBar, a convolutional neural
network-based approach for the classification of fungi ITS sequences from UNITE+INSDC refer-
ence datasets. Effects of convolution kernel size, filter numbers, k-mer size, degree of diversity and
category-wise frequency of ITS sequences on classification performances of CNN models have been
assessed at all taxonomic levels (species, genus, family, order, class and phylum). It is observed
that CNN models can produce >93% average accuracy for classifying ITS sequences from balanced
datasets with 500 sequences per category and 6-mer frequency features at all levels. The comparative
study has revealed that CNN_FunBar can outperform machine learning-based algorithms (SVM,
KNN, Naïve-Bayes and Random Forest) as well as existing fungal taxonomy prediction software (fun-
barRF, Mothur, RDP Classifier and SINTAX). The present study will be helpful for fungal taxonomy
classification using large metagenomic datasets.

Keywords: CNN; fungi ITS; k-mer; KNN; Naïve-Bayes; random forest; SVM; taxonomy; topsis; UNITE

1. Introduction

Microorganisms are an inevitable part of the ecosystem. They play significant roles in
organic matter decomposition [1,2], nutrient mineralization [3,4], atmospheric nitrogen fix-
ation [5,6], bioremediation [7–10], etc. However, various harmful microbes are also present,
which cause diseases in plants, animals as well as human beings. Although millions of
diverse microbes exist in the environment as a highly interconnected network [11,12], only
1% of them can be isolated, cultured and studied through traditional wet lab experiments.
Due to rapid advancement in sequencing methods, “Metagenomics” has emerged as a
highly beneficial tool for researchers to characterize microbial community composition
based on sequence data obtained directly from any environmental sample such as the hu-
man gut, infected tissue, crop rhizosphere, soil, ocean, etc. [13–16]. Taxonomy identification
is the most crucial step of the metagenomic analysis pipeline [17–19]. Amplicon sequencing,
i.e., DNA metabarcoding, has been found to be a highly successful approach [20–23]. In
this method, a particular genomic region called marker gene is amplified using suitable
primer pairs and sequenced, which can identify distinct species depending on the bar-
code gap. These marker genes vary according to the type of organisms. The 16S rRNA
gene is the widely accepted marker gene for profiling prokaryotic (e.g., bacteria, archaea)
microbes [24,25]. For eukaryotic species identification, several rRNA genes like large ribo-
somal subunit (LSU), small ribosomal subunit (SSU), the largest subunit of DNA-directed
RNA polymerase II (RPB1), internal transcribed spacer (ITS region), etc. have been found
as effective molecular markers [26].
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Fungi are the second most abundant eukaryotic microbial domain consisting of around
3.8 million species and playing diverse roles as symbionts [27,28], mutualists [29,30], de-
composers [31,32], antibiotic producers [33,34] as well as pathogens [35,36]. This domain
consists of nine major phyla, viz., Ascomycota, Basidiomycota, Opisthosporidia, Chytridiomy-
cota, Neocallimastigomycota, Blastocladiomycota, Zoopagomycota, Mucoromycota and Glomeromy-
cota [37] among which Ascomycota and Basidiomycota are the largest (~70 to 90% of total
fungal species) [38] and second largest (~35,000 species) [39] phyla, respectively.

Various DNA markers such as mitochondrial cytochrome c oxidase subunit 1 (CO1),
protein-coding genes, viz., the largest subunit of RNA polymerase II (RPB1), the second
largest subunit of RNA polymerase II (RPB II), minichromosome maintenance protein
(MCM7), 18S rRNA, internal transcribed spacer (ITS) region, D1/D2 region of large riboso-
mal subunit (LSU), etc. have been used for fungal species identification [40]. Among these,
the ITS region consisting of ITS1 and ITS2 hypervariable regions separated by compara-
tively conserved 5.8S segment (Figure 1) is the universally accepted DNA marker due to
high variability in sequence composition and length among species [40]. Protein-coding
DNA markers are highly efficient for phylogenetic analysis and fungal species identifica-
tion. However, these genes have lower PCR (Polymerase Chain Reaction) amplification
success rates compared to the ITS region. Apart from some early diverging fungal lineages,
viz., Pezizomycotina, Rozella, Neocallimasgomycota, etc. and cryptic fungi species, ITS region
is capable of discriminating a broad range of closely related fungal species with a high PCR
amplification success rate [40].
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Figure 1. Schematic diagram of fungi ITS region consisting of ITS1 and ITS2 regions separated by
5.8S segment. ITS1-F and ITS4-B are widely used forward and reverse primers [41] to amplify the
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Various ITS reference databases have been developed like UNITE (https://unite.ut.ee/;
accessed on 20 October 2022) [42], Warcup training dataset (accessed on 20 October 2022) [43],
BOLD database (https://boldsystems.org/; accessed on 21 October 2022) [44] and ITS1
database of NCBI GenBank (https://www.ncbi.nlm.nih.gov/; accessed on 21 October
2022) [45]. UNITE is a web-based database of nuclear ribosomal ITS sequences of vari-
ous eukaryotic microorganisms. It collects all eukaryotic ITS sequences from the INSDC
database and clusters them based on various similarity thresholds into species-level Op-
erational Taxonomic Units (OTUs). These OTUs are called Species Hypothesis (SH), and
they are assigned distinct Digital Object Identifiers (DOIs) for facilitating precise identi-
fication and assembly [42]. If two or more ITS sequences are available for a particular
SH, one of them is randomly chosen to represent that SH. Currently, the UNITE database
contains >6.4 million ITS sequences belonging to >0.2 million fungal species. However,
more than 90% of a wide range of fungal species are still unknown [40]. The lack of
reference sequences poses a significant challenge in fungal species delineation. Fungal
taxonomy assignment can be done by aligning the query sequence against reference se-
quences through BLAST [46]. However, it is time-consuming and inefficient to identify

https://unite.ut.ee/
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novel species as compared to alignment-free machine learning-based algorithms. In recent
years, a few machine learning-based fungal ITS classifiers have been developed, such as
the RDP classifier [43,47], Mycofier [45], Mothur [48], SINTAX [49] and funbarRF [50]. The
RDP classifier’s taxonomy assignment is based on 8-mer frequency features using the
Naïve-Bayes algorithm [47]. Another Naïve-Bayes classifier, Mycofier, can classify fungal
ITS1 sequences using 5-mer features up to the genus level [45]. Both Mothur [48] and SIN-
TAX [49] use 8-mer features for fungi classification by the k-nearest neighbor (KNN) and
non-Bayesian approaches, respectively. Random forest algorithm has been implemented
in funbarRF for fungal species classification based on g-spaced di-nucleotide frequency
feature representation [50].

Although various machine-learning approaches have been developed, there is enough
scope for further research. Performances of the RDP classifier and SINTAX were evaluated
using the Warcup training dataset (8551 species from 1461 genera) [43,49]. Mycofier was
developed using ITS1 datasets (1794 species from 510 genera) of NCBI GenBank [45].
funbarRF was trained using the BOLD database (3674 species from 777 genera), and its
performance was evaluated using various simulated and real metagenome datasets [50].
However, UNITE dataset covering a broad range of fungal species has not been extensively
explored to develop machine learning-based classification approaches. The recent version
of UNITE database (Version 9.0; Dated: 16 October 2022) comprises around 6,441,764 fungal
ITS reference sequences belonging to 290,922 UNITE fungal SH with DOIs at 1.5% threshold
(https://unite.ut.ee/#main; accessed on 21 October 2022). Recently, deep learning has
become an effective paradigm for the classification and clustering of big data [51,52].
Deep learning algorithms like CNN and DBN have been found to be highly efficient for
bacterial taxonomic classification based on whole shotgun metagenome as well as 16S
rRNA amplicon sequencing datasets as compared to machine learning methods [53].

In this present work, we have evaluated the effects of convolution kernel size, number
of filters, different k-mer sizes, degree of diversities and varying category-wise data frequen-
cies in each taxonomic level on the performance of the convolutional neural network-based
algorithm, CNN_FunBar, for classifying fungi ITS sequences using UNITE+INSDC dataset.
We have compared the classification performance of CNN with four machine learning-based
classification algorithms, i.e., SVM, KNN, Naïve Bayes and Random Forest. A comparative
analysis between CNN and four existing ITS classification software, i.e., funbarRF [50],
Mothur [48], RDP Classifier [43] and SINTAX [49], has also been carried out.

2. Materials and Methods
2.1. Fungal Barcode Datasets

The recent release of the UNITE+INSDC dataset (Version: 9.0, Release Date: 16 October 2022)
comprising 6,441,764 fungi ITS sequences belonging to 20 fungal phyla has been down-
loaded from https://unite.ut.ee/repository.php; accessed on 21 October 2022. From this
dataset, 5,530,925 sequences (85.86%) belonging to the 2 most abundant phyla, viz., Ascomy-
cota (41.95%) and Basidiomycota (43.91%), are considered for this study. In this dataset, class
Agaricomycetes (44.98%), order Agaricales (18.19%), family Russulaceae (7.22%), genus Russula
(5.90%) and species Russula_sp. (5.82%) are found to be the most abundant class, order,
family, genus and species, respectively. Redundant sequences, as well as those containing
ambiguous characters other than A, T, G and C, have been removed from this dataset. After
these filtering steps, the remaining dataset consists of 4,504,529 sequences (Table 1).

Table 1. Taxonomic level-wise distribution of ITS sequences in the dataset after filtering for duplicates
and ambiguous nucleotides.

Phylum Class Order Family Genus Species Total ITS Sequences

2 49 274 1049 6367 44,167 4,504,529

https://unite.ut.ee/#main
https://unite.ut.ee/repository.php
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Among these, several ITS sequences that do not have clearly defined identifiers for
one or more taxonomic levels have been found. In the FASTA header of such sequences,
those identifiers are suffixed with “Incertae_sedis” for that particular category. For example,
the ITS sequence with GenBank ID UDB01488607 does not have a clearly defined class
identity. So, in the dataset, its FASTA header is represented as:
>UDB01488607|k__Fungi;p__Basidiomycota;c__Basidiomycota_cls_In-
certae_sedis;o__Basidiomycota_ord_Incertae_sedis;f__Basidiomy-
cota_fam_Incertae_sedis;g__ Basidiomycota_gen_Incer-
tae_sedis;s__Basidiomycota_sp|SH1250579.09FU

Likewise, sequences corresponding to undefined order, family and genus are anno-
tated as “_ord_Incertae_sedis”, “_fam_Incertae_sedis” and “_gen_Incertae_sedis”, respectively.
ITS sequences for which genus names are known but distinct species names are not as-
signed, species identifiers of such sequences are represented as [genus_name]_sp. If the
higher taxonomic level of a sequence is undefined, then all lower taxonomic levels are
also found to be unknown. In this study, the performances of all classifiers have been
evaluated in 6 taxonomic levels, and separate training datasets have been prepared for
each level. To avoid ambiguity due to uncertainly defined identifiers at any taxonomic
level, we have filtered those sequences from our dataset for that level. For example, to
prepare the class-level training dataset, ITS sequences having class identifiers ending
with “_cls_Incertae_sedis” are removed. Similarly, for order, family, genus, and species
level training datasets preparation, sequence identifiers suffixed with “_ord_Incertae_sedis”,
“_fam_Incertae_sedis”, “_gen_Incertae_sedis” and “_sp” for order, family, genus and species
levels, respectively are removed (Figure 2).

For each of these six taxonomic-level datasets, the corresponding taxon is considered
as the “category”. We have observed that the category-wise frequencies of ITS sequences
are not uniform in these datasets. For example, in the family-level dataset, some families
have >1000 ITS sequences, whereas some have even <50 ITS sequences. Similar scenarios
have been observed for class, order, genus and species-level datasets. For example, in the
species-level dataset, 35,613 out of 38,365 species have <20 ITS sequences. Balanced datasets
with higher class frequencies are preferable for training the deep learning classifiers for
better pattern recognition and higher model accuracies. Therefore, separate balanced
datasets have been prepared for each taxonomic level using the stratified sampling method.
For instance, to prepare family level-balanced dataset with 100 ITS sequences per category,
100 ITS sequences are randomly sampled from the family-level filtered ITS sequence dataset
where 453 families have been found as strata with the minimum number of ITS sequences
>100. So, the final dataset contains 45,300 sequences. In the same way, balanced datasets
have been prepared for other taxonomic levels (Figure 2). The effects of diversity degrees,
as well as category-wise data frequencies, on the performance of the CNN model, have
been explored in this study. Hence, separate collections of balanced datasets with varying
(Figure 2) and invariant unique categories have been prepared for each taxonomic level.
Detailed information about these datasets is summarized in Tables 2 and 3.

As only two phyla (i.e., Ascomycota and Basidiomycota) are considered in the present
work, datasets having variation in the unique category numbers cannot be prepared for the
phylum level (Table 2). Therefore, in-house python scripts have been used for data filtering
as well as sampling to create these datasets.
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Table 2. Balanced datasets of ITS sequences with varying numbers of categories for all taxonomic levels.

Taxonomic Level Datasets No. of Unique Categories No. of Sequence per Category Total No. of ITS Sequences

Species

S1 2752 20 55,040
S2 939 50 46,950
S3 429 100 42,900
S4 148 250 37,000
S5 117 300 35,100
S6 64 500 32,000

Genus

G1 1682 50 84,100
G2 1293 100 129,300
G3 841 250 210,250
G4 580 500 290,000

Family

F1 520 50 26,000
F2 453 100 45,300
F3 369 250 92,250
F4 301 500 150,500

Order
O1 149 100 14,900
O2 106 500 53,000

Class
C1 31 100 3100
C2 25 500 12,500

Phylum P1 2 500 1000

Table 3. Balanced datasets of ITS sequences with invariant category numbers for different taxonomic
levels (from Species to Class levels).

Taxonomic Level No. of Unique Categories No. of Sequence per Category Total No. of ITS Sequences

Species 64
100 6400
250 16,000
500 32,000

Genus 580
100 58,000
250 145,000
500 290,000

Family 301
100 30,100
250 75,250
500 150,500

Order 106
100 10,600
250 26,500
500 53,000

Class 25
100 2500
250 6250
500 12,500

2.2. Feature Vector Generation

ITS sequences are strings of A, T, G and C letters. Machine learning and deep learning
models cannot process these data as such. In previous studies, k-mer composition features
have been considered for classifier development [45,47–50]. Here, we have considered
k-mer frequencies for training and evaluation of all the classifiers. For a DNA sequence of
length L, the total number of distinct feature descriptors for a particular value of k will be
4k and the total number of extracted k-mers will be (L− k + 1). In this present work, three
different values for k, i.e., k = 4, 5 and 6, have been considered to evaluate the classification
performances of the CNN model as well as other machine learning algorithms. The total
numbers of distinct feature descriptors are 256, 1024 and 4096 in our training datasets
corresponding to 4-mers, 5-mers and 6-mers, respectively. Each ITS sequence is represented
as frequencies of each feature descriptor for a particular k value. Normalization of k-mer
frequencies has been performed so that features in the dataset can be assumed to follow
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the normal distribution with zero mean and unit variance. Normalized features can be
calculated as follows:

zij =
xij − µi

σi
(1)

Here, zij = normalized value for j’th instance of i’th feature, xij = actual value for j’th
instance of i’th feature, µi = mean of i’th feature and σi = standard deviation of i’th feature
for all i ∈ 4k and j = total number of ITS sequences in the dataset.

The functions oligonucleotideFrequency from R-package Biostrings [54] and Standard-
Scaler from Python library Scikit-Learn [55] have been used to compute k-mer frequencies
followed by the data normalization.

2.3. Supervised Classifiers

We have considered one deep learning model, CNN and four machine learning algo-
rithms, i.e., SVM, KNN, Naïve-Bayes and Random Forest, in this study. Brief descriptions
of each classifier are presented in this section. Finally, RDP Classifier [47] is demonstrated
in short.

2.3.1. Convolutional Neural Network (CNN)

It is a deep learning algorithm that can efficiently classify image data. CNN model is
also found to be effective for text and DNA sequence classification problems. It consists
of an input layer, an output layer and four types of hidden layers: convolution layer,
activation layer, pooling layer and fully connected layer. Features are given as inputs to
the model through the input layer, and these are sequentially passed through four hidden
layers before the final classification or prediction results are obtained from the output
layer. Convolution kernels transform the input features and extract useful information
from them [56]. In the activation layer, non-linear activation functions, i.e., ReLU, Sigmoid,
tanh, etc., are applied to convolved features to handle the non-linearity present in the
data. ReLU [57] is the most useful activation function, and its value ranges between 0 and
1. It converts any negative input from the previous layer to 0 so that the corresponding
neuron is not activated. The pooling layer reduces the dimension of the input feature
space. Finally, the input features are flattened to be represented in the fully connected layer
for classification. The number of nodes in the output layer is the same as the number of
classes in the input dataset. In this study, a 1D-CNN architecture derived from the original
LeNet-5 [58] having two convolution layers of varying kernel sizes and filter numbers,
followed by a ReLU activation layer and max pooling layer of size 2× 1 with valid padding
have been used (Figure 3).

In the hidden layer of the fully connected layer, 500 nodes have been considered with
the Softmax activation function [59]. For hyperparameter tuning, the Adam optimizer [60]
and Categorical crossentropy [61] loss function has been used. For the training of CNN,
100 epochs and 20 batch sizes have been found to be optimum.

2.3.2. Support Vector Machine (SVM)

SVM [62] is highly efficient in classifying the input dataset into two distinct classes
using two parallel hyperplanes. If the distance between these two parallel hyperplanes
increases, the classifier becomes more accurate. Multiclass problems are considered a set of
several binary classification cases, and classification is done iteratively. Kernel functions
like gaussian, radial basis function, tanh, etc., are used for the non-linear transformation
of input features. In this study, SVM with RBF kernel function having two parameters as
C = 1000 and gamma = 0.0001 has been used.



Genes 2023, 14, 634 8 of 23

Genes 2023, 14, x FOR PEER REVIEW 8 of 24 
 

 

and 1. It converts any negative input from the previous layer to 0 so that the correspond-

ing neuron is not activated. The pooling layer reduces the dimension of the input feature 

space. Finally, the input features are flattened to be represented in the fully connected 

layer for classification. The number of nodes in the output layer is the same as the number 

of classes in the input dataset. In this study, a 1D-CNN architecture derived from the orig-

inal LeNet-5 [58] having two convolution layers of varying kernel sizes and filter numbers, 

followed by a ReLU activation layer and max pooling layer of size 2 × 1 with valid pad-

ding have been used (Figure 3). 

 

Figure 3. Architecture of the proposed CNN model. Here, m = size of convolution kernel, n1 = num-

ber of kernels in the first convolution layer and n2 = number of kernels in the second convolution 

layer. 

In the hidden layer of the fully connected layer, 500 nodes have been considered with 

the Softmax activation function [59]. For hyperparameter tuning, the Adam optimizer [60] 

and Categorical crossentropy [61] loss function has been used. For the training of CNN, 

100 epochs and 20 batch sizes have been found to be optimum. 

2.3.2. Support Vector Machine (SVM) 

SVM [62] is highly efficient in classifying the input dataset into two distinct classes 

using two parallel hyperplanes. If the distance between these two parallel hyperplanes 

increases, the classifier becomes more accurate. Multiclass problems are considered a set 

of several binary classification cases, and classification is done iteratively. Kernel func-

tions like gaussian, radial basis function, tanh, etc., are used for the non-linear transfor-

mation of input features. In this study, SVM with RBF kernel function having two param-

eters as C = 1000 and gamma = 0.0001 has been used. 

2.3.3. K-Nearest Neighbor (KNN) 

KNN [63,64] is a simple and non-parametric supervised machine learning classifier 

for multi-class data. It checks for the similarity between the input feature instance and 

available data points and classifies the new data into the suitable class. Although KNN is 

effective and robust for large and noisy training datasets, it is prone to overfitting due to 

the inability to determine the optimum number of neighbors (K). In this study, GridSearch 

method has been applied to identify the optimum value of K for different datasets at var-

ious taxonomic levels. 

  

Figure 3. Architecture of the proposed CNN model. Here, m = size of convolution kernel,
n1 = number of kernels in the first convolution layer and n2 = number of kernels in the second
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2.3.3. K-Nearest Neighbor (KNN)

KNN [63,64] is a simple and non-parametric supervised machine learning classifier
for multi-class data. It checks for the similarity between the input feature instance and
available data points and classifies the new data into the suitable class. Although KNN is
effective and robust for large and noisy training datasets, it is prone to overfitting due to
the inability to determine the optimum number of neighbors (K). In this study, GridSearch
method has been applied to identify the optimum value of K for different datasets at various
taxonomic levels.

2.3.4. Naïve-Bayes Method

It is a probabilistic supervised classifier suitable for text classification based on the
Bayes theorem [65]. The classification probability of a data point in a particular class is
defined as the posterior probability, which is calculated as:

P(ci|x) =
P(x|ci)× P(ci)

P(x)
(2)

For all i = 1, 2, . . . , C; C = Total number of classes. P(ci|x) is the posterior probability
of input data x to be classified as a member of i’th class. P(x|ci) = likelihood of x to be
classified in ci class. P(ci) and P(x) are prior probabilities for input data x and class ci
respectively. The assigned class for that particular data point is the one for which this
posterior probability is found to be the highest. In this study, Gaussian Naïve-Bayes
function has been used.

2.3.5. Random Forest (RF)

Random forest [66] is an ensemble machine-learning classifier. Initially, a large number
of candidate trees are generated from the bootstrap replicate sample of the input training
dataset, and final class is decided based on the majority voting method. In this study, we
have considered 500 initial candidate trees and gini entropy function.

2.3.6. RDP Classifier

RDP Classifier [47] uses the Naïve-Bayes algorithm for rapid taxonomy assignment to
microbial rRNA sequences based on 8-mer frequency features. It is a Java-based classifier,
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and source codes are available at https://github.com/rdpstaff/classifier (accessed on 20
October 2022). Before classifying new datasets, the classifier is needed to be retrained using
available reference datasets from https://sourceforge.net/projects/rdp-classifier/files/
RDP_Classifier_TrainingData/ (accessed on 20 October 2022) or using reference training
datasets as per the choice of the researcher.

2.4. Training and Evaluation

Each dataset described in Tables 2 and 3 is initially split into training and test dataset
using unique categories as strata in a 90:10 ratio. Models are trained with the training
dataset in a stratified 10-fold cross-validation procedure. In each fold, 90% of the training
dataset is used for training the model, and the remaining 10% is used for validation.
Values of evaluation metrics have been computed by taking averages of all 10 folds for the
validation dataset. Final model performances are evaluated using the test dataset (Figure 4).
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For the comparative study between CNN and other machine learning models, datasets
with 100 sequences per category for class, order, family, genus and species levels and 500 se-
quences per category for phylum level are taken under consideration (Table 2). Training of
machine learning models is done in a similar procedure mentioned before. Performances
of all supervised classifiers have been evaluated based on the following metrics [67,68]:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 Score =
2× (Precision× Recall)

Precision + Recall
(6)

MCC Score =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(7)

where TP, FP, TN and FN are the number of True Positive, False Positive, True Negative
and False Negative predictions, respectively. In this study, balanced datasets have been
used. Hence, all the above-mentioned performance matrices have been found to perform
equally well. Furthermore, the Multi-Criteria Decision-Making (MCDM) approach [69]
and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) [70] have been
applied to rank all the learning algorithms based on the aforementioned five evaluation
metrics. R package Topsis [71] has been used for this analysis.

2.5. Comparison of CNN with Existing Fungi ITS Classification Software

The classification performance of CNN has been compared with RDP Classifier based
on datasets having 100 sequences per category at each taxonomic level (Table 2). For CNN,

https://github.com/rdpstaff/classifier
https://sourceforge.net/projects/rdp-classifier/files/RDP_Classifier_TrainingData/
https://sourceforge.net/projects/rdp-classifier/files/RDP_Classifier_TrainingData/
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6-mer features have been considered. RDP Classifier has been retrained with the training
dataset (90%) and evaluated using the testing dataset (10%). 10-fold cross-validation has
been carried out.

Comparison of CNN model with existing four fungal barcode classification software,
namely, funbarRF, RDP Classifier, Mothur and SINTAX, have also been conducted. ITS
dataset of 13,630 sequences corresponding to 1363 fungal species (10 sequences per class)
from funbarRF paper [50] has been used here. Evaluation has been done based on accuracy
as well as the species identification success rate (SISR) [50]. SISR is calculated as follows:

SISR =
∑H

h=1 nh

∑H
h=1 Nh

(8)

Here, h = total number of distinct species/classes in the dataset = 1, 2, . . . , H. Nh
is the total number of sequences belonging to hth class, and nh the number of sequences
correctly classified into hth class.

2.6. Implementation Details

Training and validation of all classifiers have been performed in Python 3.8.7 using
Keras [72] library with Tensorflow backend [73]. RDP Classifier is downloaded from
https://github.com/rdpstaff/classifier (accessed on 21 October 2022) [47]. The dataset
used for comparing CNN with existing software is available at http://cabgrid.res.in:
8080/funbarrf/dataset/ (accessed on 17 November 2022) [50]. All computational analyses
have been carried out in a high-performance computing cluster of ASHOKA bio-computing
resources at ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India, with
the following configuration:

• CPU: 64-bit Intel(R)-Xeon(R), 2.9 GHz, 1 TB;
• RAM: 128 GB;
• OS: Linux RedHat.

3. Results and Discussion
3.1. Effect of Convolution Kernel Size and Filter Numbers on CNN Model Performance

Species-level balanced dataset with 4-mer frequency features having category-wise
frequency 100 (Table 2) has been used to compare the performance of various CNN model
architectures for varying convolution kernel sizes and filter numbers. The dataset contains
42,900 ITS sequences belonging to 429 unique fungal species. Initially, the CNN architecture
(i.e., CNN-1 in Table 4), as described in previous studies [53,74], is applied to the dataset.
Afterward, the kernel size has reduced in each of these two convolution layers from five to
three, and the number of filters in each layer has increased. In the second convolution layer,
the number of filters is kept as double of the first convolution layer. It is observed that the
improvements in all the evaluation metrics scores (i.e., accuracy, precision, recall, F1 score
and MCC score) for three CNN architectures (i.e., CNN-2, CNN-3 and CNN-4 in Table 4)
are very less, i.e., only ~1–2% increase in performance metrics scores as compared to the
CNN-1 model architecture (Table 4) proposed earlier [53,74]. It is possibly due to very high
sequence similarity (~99%) among 429 species and a lesser amount of data per category.
Another possible reason may be the consideration of a lower k value. For larger k values,
such differences will be more prominent due to the availability of more training data per
category with the increased number of feature descriptors.

However, the CNN-3 model with two convolution layers of kernel size = 3 and
numbers of filters = 32 and 64 in the first and second convolution layers, respectively,
have been observed to generate the best classification performances in terms of accuracy,
precision, recall, F1 score and MCC score on the test dataset (Table 4). Further increase in
filter numbers has resulted in reduced model performance. Hence, the result indicates that
the CNN-3 model is the optimum architecture for fungi ITS classification. This architecture
has been used for other comparative analyses.

https://github.com/rdpstaff/classifier
http://cabgrid.res.in:8080/funbarrf/dataset/
http://cabgrid.res.in:8080/funbarrf/dataset/
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Table 4. Effect of kernel size and filter numbers on CNN model performance for classifying 100 se-
quences per species dataset with 4-mer features. Highest values are highlighted in bold.

CNN Model

Accuracy (%) Precision (%) Recall (%) F1 Score (%) MCC Score (%)
Name Kernel Size

(m)

No. of Filters in 1st and
2nd Convolution Layers

(n1, n2)

CNN-1 5 5, 10 87.88 87.74 87.86 87.84 87.85
CNN-2 3 16, 32 88.39 89.10 88.37 88.23 88.37
CNN-3 3 32, 64 89.14 89.78 89.13 89.01 89.11
CNN-4 3 64, 128 88.16 88.69 88.15 87.98 88.13

3.2. Impact of Diversity and k-mer Sizes on CNN Model Performance

Table 2 shows that when the category-wise data frequency is the lowest, the number of
unique categories is the highest in our balanced datasets for all taxonomic levels. However,
an increase in the unique category numbers leads to an increase in diversity levels for all
taxonomic levels. Therefore, these datasets have been used to train and evaluate the CNN
model with 4-mer, 5-mer and 6-mer frequency features to study the impact of diversity
degrees as well as k-mer sizes. Results are presented in Table 5.

Table 5. Average classification accuracy (%) of CNN model with varying k-mer sizes for balanced
datasets at all taxonomic levels. Accuracy values obtained from the test dataset are presented in the
table, and highest accuracies at each level are highlighted in bold.

Taxonomic Level Datasets Total No. of Levels
Accuracy (%) for Different k-mer Sizes

k = 4 k = 5 k = 6

Species

S1 2752 84.70 85.34 86.12
S2 939 86.69 88.31 89.18
S3 429 89.14 89.67 90.00
S4 148 89.65 89.81 89.46
S5 117 88.60 89.14 89.94
S6 64 93.03 93.03 93.28

Genus

G1 1682 92.98 94.23 94.33
G2 1293 94.78 95.37 95.39
G3 841 96.74 97.00 97.10
G4 580 97.59 97.54 97.83

Family

F1 520 92.35 93.73 95.23
F2 453 95.32 96.11 96.64
F3 369 96.89 97.25 97.49
F4 301 97.37 97.82 98.21

Order
O1 149 94.43 95.64 96.17
O2 106 98.00 98.33 98.19

Class
C1 31 95.48 97.42 97.09
C2 25 98.32 98.88 98.80

Phylum P1 2 99.00 100.00 100.00

The result has suggested that the highest model accuracy has been obtained at the
phylum (100%) level, followed by class (98.88%), order (98.33%), family (98.21%), genus
(97.83%) and species (93.28%) levels, respectively (Table 5; Figure 5). It is due to lesser
inter-class sequence similarities in higher taxonomic levels (e.g., phylum, class) compared
to lower taxonomic levels (e.g., genus, species). The highest average accuracies (Table 5)
have been obtained for training datasets containing 500 data per category (i.e., S6, G4, F4,
O2, C2 and P1) in each taxonomic level (Table 2), but diversities due to unique categories
in these datasets are found to be the lowest among others. The result also indicates that
CNN can efficiently classify fungi ITS sequences with >94% accuracy up to the genus level
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and >89% accuracy at the species level using 6-mer feature vectors even when the diversity
level is very high. Still, the category-wise data frequency is very low (e.g., 50 sequences per
category). A previous study [74] revealed that the CNN model (CNN-1 model architecture
in Table 4) could classify 1035 yeast species based on 6-mer frequency features belonging to
Ascomycota and Basidiomycota phyla with an average accuracy of 82.84%. This model was
found to be the most efficient classifier as compared to the other three classifiers, i.e., Deep
Belief Network (DBN) (avg. accuracy = 80.40%), RDP Classifier (avg. accuracy = 71.45%)
and BLAST Classifier (avg. accuracy = 81.12%). However, it is observed in the present
study that CNN (CNN-3 model architecture in Table 4) has produced >86% accuracy
for classifying 2752 different fungal species (i.e., more than twice the number of species
classified earlier) with only 20 ITS sequences per class (Table 5; Figure 5).

In four out of six taxonomic levels (species, genus, family and phylum), the highest
classification accuracies have been obtained with 6-mer features. It is due to the fact that
with higher values of k, the number of distinct feature descriptors is also increasing, result-
ing in better training of the model. In order and class level, 5-mer features have generated
better results than 6-mers, but differences in accuracies are not significant. We have also
found similar results for other evaluation metrics in order and class levels (Table S1). The
possible reason may be the sampling fluctuation that occurred during the dataset prepara-
tion step. Hence, it can be inferred that CNN performs best with hexanucleotide frequency
features. However, it has the potential to produce high classification accuracy (e.g., 93.03%)
with lower values of k, i.e., k = 4, if class numbers are less (e.g., 64) or category-wise data
frequencies (e.g., 500 sequences per class) are high even at the species level (Table 5).

3.3. Classification Performance Analysis Based on Varying Class Frequencies

In the previous analysis, it has been found that CNN performs better for datasets with
category-wise higher frequencies. But in those datasets, unique category numbers were not
constant. Hence, a separate set of datasets (Table 3) with invariant category numbers has
been used for each taxonomic level. In addition, the performances of CNN models have
been evaluated based on 6-mer frequency features in all taxonomic levels (Table 6).

It is found from the above results that at higher taxonomic levels (i.e., genus, family,
order, class and phylum), an increase in all the performance metrics scores has been
observed with the increase in category-wise data frequencies from 100 to 500. At the
species level, average scores of all the performance metrics initially decreased when the
category-wise data frequency was increased from 100 to 250. The species level is the lowest
among all the taxonomic levels, and inter-species sequence similarity is very high (~99%),
which indicates that the degree of heterogeneity is much less in species-level datasets.
This is probably because the CNN model could not correctly recognize true patterns from
the input features when the category-wise data frequency is increased from 100 to 250.
Hence the increase in performance metrics scores may not have been observed with the
increase in the category-wise data frequencies at the species level compared to other higher
taxonomic levels. However, an increase in all the performance scores was observed when
the category-wise data frequency was increased from 250 to 500 in the case of species-level
datasets (Table 6; Figure 6). Overall, it can be seen that the average values of performance
metrics scores are the highest for the largest value of category-wise data frequencies at all
levels (Table 6; Figure 6). Due to the presence of more data points per class, better training
of model parameters has been possible while capturing the maximum variability present in
training datasets. In addition, larger data points are also available in respective validation
and test datasets, leading to better model evaluation.
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Table 6. Performance evaluation of CNN classifiers for datasets with unchanged diversity levels and
hexanucleotide (k = 6) frequency features at various taxonomic levels. Highest values are highlighted
in bold.

Taxonomic Level
(N = No. of Unique Categories)

Sequence per
Category

Average Values of Performance Metrics (%)

Accuracy Precision Recall F1 MCC

Species
(N = 64)

100 91.87 92.25 91.86 91.67 91.76
250 91.31 91.37 91.31 91.23 91.18
500 93.28 93.36 93.28 93.22 93.18

Genus
(N = 580)

100 96.48 96.76 96.48 96.44 96.48
250 97.18 97.32 97.18 97.17 97.17
500 97.83 97.88 97.83 97.83 97.83

Family
(N = 301)

100 96.44 96.69 96.44 96.43 96.43
250 97.42 97.55 97.42 97.42 97.41
500 98.21 98.24 98.20 98.20 98.20

Order
(N = 106)

100 96.70 97.10 96.69 96.66 96.67
250 97.32 97.48 97.32 97.32 97.30
500 98.19 98.25 98.19 98.19 98.17

Class
(N = 25)

100 97.60 97.84 97.60 97.63 97.51
250 98.40 98.52 98.41 98.42 98.34
500 98.80 98.86 98.80 98.80 98.75
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Figure 6. Average values (%) of evaluation metrics obtained from CNN models for balanced datasets
at all taxonomic levels with invariant diversity levels and hexamer nucleotide frequency features. In
each level, three datasets with 100, 250 and 500 data points per category are considered.

3.4. Comparison among Classification Performances of CNN and Other Machine Learning Algorithms

The classification performance of CNN is compared with SVM, KNN, Naïve-Bayes
and Random Forest models using datasets with 100 sequences per category for species to
class levels and 500 sequences per category at the phylum level (Table 2) while retaining a
large number of classes. Average accuracies produced by these five classifiers for varying
k values are presented in Table 7.

Table 7. Average accuracies (%) obtained by CNN, SVM, KNN, Naïve-Bayes and Random Forest
classifiers with different k-mer sizes. For each taxonomic level (from Class to Species), the training
dataset consists of 100 sequences per category. Phylum level dataset consists of 500 sequences per
category. Highest values are highlighted in bold.

Taxonomic Level
(N = No. of Unique Categories) Value of k

Average Accuracy (%)

CNN SVM KNN Naïve-Bayes Random Forest

Species
(N = 429)

4 89.14 85.8 86.71 74.68 89.12
5 89.67 87.35 88.57 75.17 89.34
6 90.00 88.02 88.58 76.01 89.68

Genus
(N = 1293)

4 94.78 92.65 93.1 83.33 94.57
5 95.37 92.98 93.52 84.00 95.01
6 95.39 93.07 93.64 84.12 95.17

Family
(N = 453)

4 95.32 94.13 93.07 85.29 94.56
5 96.11 95.22 94.15 85.79 95.58
6 96.64 95.31 93.71 85.91 96.64

Order
(N = 149)

4 94.43 92.69 91.54 85.40 94.16
5 95.64 94.02 93.69 87.00 95.63
6 96.17 95.27 93.73 88.54 96.04

Class
(N = 31)

4 95.48 93.62 92.52 88.38 95.45
5 97.42 95.19 93.44 89.16 97.06
6 97.09 95.84 92.11 89.29 97.38

Phylum
(N = 2)

4 99.00 98.88 99.00 95.00 99.00
5 100.00 99.55 99.01 96.00 99.00
6 100.00 99.55 100.00 96.52 100.00

Similar to the previous study [74], it is also found that CNN has outperformed all
machine learning classifiers at most taxonomic levels, especially at the species level (Table 7;
Figure 7). Performances of CNN and Random Forest are found to be at par for all k-mer



Genes 2023, 14, 634 16 of 23

sizes. It can be observed that all five classifiers have produced the best classification results
with hexanucleotide features in the majority of levels (Table 7; Figure 7). Some exceptions
have been found for KNN; it obtained ~1% more accuracy with 5-mer features at class
and family levels (Table 7). CNN also performed better with 5-mer frequencies at the
class level. The average accuracies of CNN models are >2% higher than SVM and KNN
classifiers up to the class level with hexanucleotide frequency features. However, it can
be noticed that at the species level, CNN has obtained 4% and 3% more accuracies than
SVM and KNN, respectively, with tetra-nucleotide frequencies (Table 7). The difference
between the accuracy values of CNN and the Naïve-Bayes algorithm is >10% at this level.
The Naïve-Bayes classifier developed the lowest accuracies among all classifiers at all
levels. However, at higher levels, these accuracy gaps are found to be narrowed down, and
the other three machine learning-based classifiers, as well as CNN, have obtained >93%
classification accuracies. So, the result suggests that the stability of accuracy is highest for
CNN and Random Forest and lowest for the Naïve-Bayes method. Similar results have
been observed for mean precision, recall, F1 scores and MCC scores (Table S2). Instead of the
Naïve-Bayes algorithm, CNN, SVM, KNN and Random Forest models are further ranked
based on the Topsis analysis. It can be observed from the results (Table 8) that apart from
the class level, CNN has been ranked first among all four classification algorithms, with
the highest score obtained at the other five taxonomic levels. At the phylum level, the same
ranks (rank = 1) have been obtained from CNN, KNN and Random Forest with the highest
scores of 1.0000.

Therefore, it can be inferred from the above results that CNN is the most efficient algo-
rithm for classifying fungi ITS sequences compared to machine learning-based supervised
classifiers.
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Table 8. Ranking of CNN, SVM, KNN and Random Forest classifiers based on Topsis analysis at
various taxonomic levels. Performances of all models have been evaluated based on five evaluation
metrics (accuracy, precision, recall, F1 score and MCC score) with equal weightage using 6-mer
frequency features. Highest ranks are highlighted in bold.

Taxonomic Level Model Score Rank

Species

CNN 1.0000 1
SVM 0.1701 4
KNN 0.2335 3

Random Forest 0.7877 2

Genus

CNN 0.9978 1
SVM 0.1201 4
KNN 0.2171 3

Random Forest 0.9043 2

Family

CNN 1.0000 1
SVM 0.6319 3
KNN 0.2310 4

Random Forest 0.9939 2

Order

CNN 1.0000 1
SVM 0.6253 3
KNN 0.2011 4

Random Forest 0.9204 2

Class

CNN 0.9418 2
SVM 0.6928 3
KNN 0.3414 4

Random Forest 1.0000 1

Phylum

CNN 1.0000 1
SVM 0.7824 2
KNN 1.0000 1

Random Forest 1.0000 1

3.5. Comparison of CNN with Existing ITS Classification Software

The classification performances of the RDP Classifier (k = 8 mer) [47] and CNN
(k = 6 mer) have been compared using datasets with 100 sequences per category (Table 2).
Table 9 and Figure 8a shows that the accuracy of the CNN model is ~10% more than RDP
Classifiers from species to class level. At the phylum level, CNN has obtained 4% more
accuracy than RDP Classifier.

Table 9. Average classification accuracy (%) of CNN and RDP Classifier.

Classifier
Taxonomic Levels

Species Genus Family Order Class Phylum

CNN
(k = 6) 90 95.39 96.64 96.17 97.09 100

RDP Classifier
(k = 8) 76.18 85.50 86.20 88.69 90.13 96.41

However, the training time of the CNN model was much higher than RDP Classifier.
Apart from this time complexity, it can be inferred that CNN is more efficient than RDP
classifier as it can produce higher accuracy scores with fewer features at all taxonomic levels.
Moreover, with the availability of advanced computational facilities such as powerful
processors and efficient memory allocation, the time complexity problem can be overcome.

Further, the test dataset of the funbarRF paper [50] has been used to evaluate and
compare the performance of the CNN model with funbarRF [50], Mothur [48], RDP Classi-
fier [43] and SINTAX [49] in terms of accuracy score and species identification success rates
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(SISR) (Table 10; Figure 8b). The scores of the performance matrices for the existing four
software are obtained from the above-mentioned paper.
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From the above result, it can be noticed that with 6-mer features, the CNN model
could correctly predict 148 more species than the funbarRF tool resulting in a high SISR of
89.89% (Table 10; Figure 8b). The average accuracy of CNN is also 2% higher than funbarRF
software for this dataset. The previous study [50] revealed that funbarRF is better software
for fungi species classification than Mothur, RDP Classifier and SINTAX in terms of both
accuracy scores and the number of correct predictions. Hence, the above comparative
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analysis suggests that the CNN model (i.e., CNN_FunBar) is the most efficient fungal
taxonomic classifier compared to all the existing software.

Table 10. Comparison among CNN model and other fungal ITS sequence classification software
based on average accuracy (%) and SISR (%) values at the species level. Highest values of average
accuracy (%), number of correct predictions and SISR (%) score are highlighted in bold.

Algorithm/
Software Feature Type Avg. Accuracy (%) Correct Predictions SISR (%)

k = 4 NF 89.21 12,063 88.50
CNN k = 5 NF 90.75 12,176 89.33

k = 6 NF 91.27 12,252 89.89

FunbarRF (Random Forest) g-spaced di-nucleotide features
(g = 1 + 2 + 3 + 4 + 5) ~89 12,104 88.80

Mothur
(KNN) k = 8 NF ~89 12,062 88.49

RDP Classifier
(Naïve-Bayes) k = 8 NF ~87 11,864 87.04

SINTAX
(Non-Bayesian) k = 8 NF ~87 11,887 87.21

4. Conclusions

In this study, impacts of category diversity, k-mer size, and category-wise frequencies
of ITS sequences on fungal ITS sequence classification by CNN have been assessed based
on various performance metrics. UNITE+INSDC dataset has been used to cover a broad
range of fungal taxa, and some important data filtering steps have been applied to avoid
ambiguities. It is found that CNN architecture with two convolution layers of kernel
size 3 and filter numbers 32 and 64 in the first and second layers, respectively, is the
optimum one. Our study revealed that CNN had produced the highest classification
accuracies for datasets with the highest number of sequences per category based on 6-mer
frequency features. However, high accuracies have been obtained even when the dataset
contains a large number of unique categories comprising a small number of sequences in
each of them. The proposed CNN model architecture has been found to classify more than
twice the number of fungal species with ~4% higher classification accuracy as compared to
the previously used CNN model, which was found to be the best classifier among CNN,
DBN, RDP Classifier and BLAST Classifier [74]. Our model has produced 86.12% average
accuracy in classifying 2752 species based on hexamer nucleotide frequency features. The
classification accuracy at the species level can further be improved by removing closely
related species, cryptic fungi species and species complexes, as ITS sequence is not the most
efficient DNA marker for their identification [40,74]. A comparative study has revealed
that CNN can outperform machine learning algorithms for classifying fungi ITS barcodes
even at the species level. CNN_FunBar is also found to be the most efficient taxonomy
classification method among all existing software. Currently, ITS sequences from <1% of
3.8 million fungal species are available in the public domain, and many of these sequences
are of poor quality [74]. This study highlights the necessity of retraining the developed
algorithm with the availability of authenticated reference barcode datasets having higher
category-wise data frequencies for developing better taxonomic classification algorithms.
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