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Abstract: Primordial germ cells (PGCs) are precursor cells of sperm and eggs. The fate decisions of
chicken PGCs in terms of their development, integrity, and sex determination have unique features,
thereby providing insights into evolutionary developmental biology. Additionally, fate decisions in
the context of a self-renewal mechanism have been applied to establish culture protocols for chicken
PGCs, enabling the production of genome-edited chickens and the conservation of genetic resources.
Thus, studies on the fate decisions of chicken PGCs have significantly contributed to both academic
and industrial development. Furthermore, studies on fate decisions have rapidly advanced owing
to the recent development of essential research technologies, such as genome editing and RNA
sequencing. Here, we reviewed the status of fate decisions of chicken PGCs and provided insight
into other important research issues that require attention.

Keywords: avian species; chicken; primordial germ cells; fate decision; development; integrity;
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1. Introduction

The chicken (Gallus gallus) is a valuable species in terms of protein resources. Addi-
tionally, chickens have been used as a model organism for amniotes to elucidate embryonic
developmental mechanisms [1]. Furthermore, chickens have been used as avian models
in various areas of biology, thereby contributing to the understanding of vertebrate evo-
lution. Thus, research using chickens greatly enhances both industrial development and
developmental and evolutionary biology.

Primordial germ cells (PGCs) are the precursor cells of sperm and eggs. PGCs are
the only cell lineage that can transmit genetic information to the next generation. Thus,
elucidating the fate decision of PGCs, namely the mechanisms by which they develop,
maintain integrity, differentiate into gametes of optimal sexes, and control their self-renewal,
is a valuable research subject. Avian PGCs have characteristic developmental features,
such as migration into the gonads using the vascular system [2]. Chicken PGCs have also
shown a unique sex determination mechanism in which PGC-intrinsic factors may occur in
a cell-autonomous manner [3–5]. In addition, several studies have revealed the self-renewal
mechanism of chicken PGCs, resulting in the establishment of stable culture protocols for
chicken PGCs [6,7]. Currently, culturing PGCs is a fundamental technique to establish
genome-edited chickens and conserve avian genetic resources so that objective offspring
can be produced via germline chimeras transplanted from cultured PGCs and directly
incubated [8,9] or incubated with an ex ovo culture system [10]. Therefore, studies on the
fate decisions of avian PGCs have demonstrated their unique features and have aided the
development of avian biotechnologies.
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With the development of essential technologies such as genome editing and RNA
sequencing (RNA-seq) analysis, studies on chicken PGCs have shown rapid advancement
over the last ten years. For example, the clustered regularly interspaced short palindromic
repeats/CRISPR-associated protein (CRISPR/Cas) system [11] has been used not only
to produce genome-edited chickens [12], but also to conduct functional analysis of PGC-
intrinsic factors via application of this system to cultured PGCs [13]. Alternatively, RNA-seq
technology enables us to predict the fate decision of chicken PGCs even at a single-cell
resolution level [14,15]. Here, we review the fate decisions of avian PGCs, mainly focusing
on chicken PGCs, with cutting-edge knowledge. Furthermore, we discuss the remaining
issues that need to be addressed in future studies.

2. Early Development of Chicken PGCs
2.1. Origin and Identification of Chicken PGCs

In vertebrates, PGC formation is generally classified into two models: preformation
and epigenesis [16]. The preformation model has been observed in zebrafish (Danio re-
rio) [17] and anuran amphibians (Xenopus laevis) [18]. In this model, germplasm, a maternal
factor, acts as a determinant of germ cell formation. The germplasm is composed of ma-
ternally inherited RNAs and proteins and is partially asymmetrically partitioned to cells
during cleavage divisions and development. As a result, PGCs arise from the partitioned
cells. This mechanism is conserved in several non-vertebrate species, including Drosophila
melanogaster [19] and Caenorhabditis elegans [20]. In contrast, the epigenesis model has been
shown in urodele amphibians (Ambystoma mexicanum) [21] and mammals (Mus muscu-
lus) [22]. In these species, PGCs are induced in somatic cells via “epigenetic” regulation
during embryonic development; thus, the germplasm is absent.

Several studies have been conducted to determine the origins of avian PGCs. In
particular, studies focusing on the vasa gene have strongly supported the preformation
model for avian PGC formation. VASA is a germ-cell-specific RNA helicase that is localized
in germ cells as a germplasm component across various species, such as X. laevis and
D. melanogaster. Tsunekawa et al. demonstrated the expression patterns of the chicken
vasa homolog (CVH) [23]. The CVH is localized in cleavage furrows and asymmetrically
distributed to limited cells. Additionally, the CVH is colocalized with the mitochondrial
cloud, corresponding to the germplasm feature in D. melanogaster. Recent functional
analyses have shown that the CVH significantly contributes to germ cell development in
both males and females [24,25]. These studies suggest that chickens possess germplasm-like
features and follow the preformation model for PGC formation.

Previous studies targeting deletion in the azoospermia-like (DAZL) protein also sup-
port the preformation model in chickens. DAZL is a germ-cell-specific RNA-binding
protein localized in the germplasm in some vertebrates [26,27]. In chickens, DAZL is
also localized in cleavage furrows as well as the CVH and is specifically expressed in
germ cells [28]. Additionally, knockdown of DAZL in chicken PGCs causes apoptosis
and aberrant expression patterns of germ-cell-characteristic genes, albeit under culture
conditions [28]. Recently, whole transcriptome analysis predicted that chicken DAZL was
co-expressed with its potential interacting genes according to zygotic genome activation,
suggesting its central role in germ-cell specification [29].

Therefore, nowadays, avian germ cells are thought to be specified by the preformation
model; however, the possibility that avian PGCs are formed via epigenetic regulation
cannot be excluded [30]. Thus, while several studies have supported the preformation
model in avian PGC formation, the origin of PGCs remains unknown.

2.2. Migration of Chicken PGCs into Embryonic Gonads

A chick embryo in an egg incubates for 0 h, corresponding to Eyal-Giladi and Kochav
(EG & K) stage X, and consists of approximately 60,000 cells [31]. At this embryonic
stage, approximately 30 CVH-positive cells, namely the origin of PGCs, are scattered at
the center of the area pellucida in the blastoderm (Figure 1) [23]. The CVH-positive cells
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then start to migrate into the germinal crescent, an anterior extraembryonic region. At
Hamburger–Hamilton (HH) stage 4 (chick embryos in eggs after 18–19 h of incubation),
PGCs accumulated at a high density in the germinal crescent (Figure 1) [32]. Previously,
it was thought that PGCs passively translocate into the germinal crescent via the mor-
phogenetic movement of hypoblasts [33]. However, Kang et al. demonstrated that chick
fibroblasts exogenously transplanted into the subgerminal cavity of the recipient could
not settle in the germinal crescent, whereas transplanted PGCs could [34]. This indicates
that PGC-intrinsic factors are also related to this migration. Recently, Huss et al. revealed
that quail (Coturnix japonica) PGCs contribute to the extracellular matrix in the germinal
crescent [35]. Although the molecular mechanism of PGC migration remains unclear, these
previous studies showed their “active” role.
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After the settlement of PGCs into the germinal crescent, PGCs begin to migrate to
the gonads. In many vertebrates, such as mice and zebrafish, PGCs migrate into gonads
via “amoeboid migration” [36]. However, in birds (and reptiles), PGCs use the vascular
system to migrate into the gonads. Several studies have attempted to elucidate this unique
migration system in avian PGCs.

Around HH stage 6 (chick embryos in eggs incubated for 23–25 h), aggregations of
endothelial cell progenitors and blood cell progenitors, called blood islands, appear in the
extraembryonic mesoderm [37]. Murai et al. demonstrated that more than 60% of quail
PGCs in an embryo were enveloped by differentiating endothelial cells forming blood
islands in the germinal crescent [38]. Then, the PGCs flowed along with the heartbeat
at HH stage 12 (after 48–49 h of incubation). This indicates that most avian PGCs were
passively translocated into the vascular system.

Once avian PGCs are translocated into the blood vessels, they start circulating. The
concentration of chicken PGCs in the bloodstream reaches a peak at HH stage 14 (after 50–53 h
of incubation), and these settle in gonads from HH stage 15 (after 50–55 h of incubation) to
HH stage 17 (after 52–64 h of incubation) (Figure 1) [39,40]. Recent studies have demonstrated
the molecular mechanisms involved in gonadal migration of avian PGCs. The role of the
interaction between chemotactic molecular stromal cell-derived factor 1 (SDF1) and its receptor
C-X-C chemokine receptor type 4 (CXCR4) is a well-known system that directs PGCs to
the gonads in vertebrates, whose PGCs utilize amoeboid migration [41–45]. In chickens,
the expression of CXCR4 has also been observed in PGCs [46], and PGCs are attracted to
ectopically expressed SDF1s [47]. Furthermore, the transplantation of CXCR4 knockout
(KO) PGCs into recipient embryos resulted in a reduction in their capacity to migrate into
gonads, suggesting a critical role of the CXCR4–SDF1 interaction in this migration [13]. In
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contrast, recent studies have proposed other factors for gonadal migration of avian PGCs.
Saito et al. showed that circulating avian PGCs were stiffer than blood cells; thus, PGCs
were efficiently occluded at the vascular plexus near presumptive gonads, resulting in their
homing to developing gonads [48]. Huang et al. proposed that platelet-derived growth factor
signaling could be involved in the migration of avian PGCs into gonads using RNA-seq
analysis [49]. These molecular studies have advanced our understanding of how avian PGCs
migrate to gonads. Notably, previous research focusing on the migration of avian PGCs has
been conducted mainly using chickens and quails. Thus, whether the molecular mechanism
of this migration is conserved across avian species remains unknown.

3. Integrity of Chicken PGCs
3.1. Epigenetic Regulation

Epigenetic regulation is essential for PGCs to maintain their properties for germinal
transmission, namely, establishing their integrity. In mice, PGCs undergo genome-wide
epigenetic reprogramming between embryonic day (E) 8.5 and E13.5, and these embryonic
stages correspond to the migration and colonization of PGCs to the gonads [50]. Epigenetic
reprogramming is required to establish germ cell specification and erase somatic epigenetic
memory [51]. The importance of epigenetic modifications in the establishment of PGC
integrity has also been observed across species [52].

Several studies have been conducted to reveal epigenetic modifications of chicken
PGCs. Yu et al. demonstrated that chicken PGCs undergo global DNA demethylation
via ten-eleven translocation 1 during HH stage 21 (after 3.5 d of incubation) to HH stage
28 (after 5.5 d of incubation) [53]. These embryonic stages correspond to states in which
chicken PGCs migrate to the gonads and form colonies within the gonads. Rengaraj et al.
investigated the expression patterns of the DNA methyltransferase (DNMT) families DNMT1,
DNMT 3 α (DNMT3A), and DNMT 3 β (DNMT3B) in chicken PGCs during embryogenesis
and suggested that DNMT3B-dependent de novo DNA methylation occurred after PGCs
settled into the gonads [54]. Jang et al. showed the characteristic DNA methylation patterns
of gonadal PGCs by comparing them with those of chicken embryonic fibroblasts [55].
Although the understanding of DNA methylation in PGCs is not yet complete, these
analyses are beginning to elucidate the underlying mechanism.

Furthermore, several studies have been reported concerning the elucidation of histone
modification in avian PGCs. In mice, after the transient loss of histone modifications during
epigenetic reprogramming, PGCs regain both histone H3 lysine 9 (H3K9) and H3K27
trimethylation (me3) around E12.5 [56]. However, histone modification of chicken PGCs
was based on H3K9me3 rather than H3K27me3, suggesting the existence of avian-specific
epigenetic regulation in PGCs [57]. For other modifications, H3K4me2 activates signaling
pathways essential for avian PGC formation, such as bone morphogenetic protein 4 (BMP4)
signaling [58]. Additionally, H3K9 acetylation (H3K9ac) contributes to maintaining the
integrity of avian PGCs via the regulation of NANOG, a key transcription factor for germ cell
development [59] (described below). These analyses have revealed histone modifications
in avian PGCs, including avian-specific H3K9me3-dominant gene expression regulation.

3.2. Key Molecules for the Integrity of Avian PGC

Key molecules for the integrity of PGCs, including transcription factors, are well-
conserved in vertebrates. Recently, several researchers conducted functional analyses
of these molecules in avian PGCs. Interestingly, these key molecules exhibited bird-like
features. In this section, we describe the functions and characteristics of the molecules
involved in the integrity of chicken PGCs, along with their differences from those in other
model organisms.

3.2.1. PRDM14 and BLIMP1

PR-domain-containing protein 14 (Prdm14) and B lymphocyte-induced maturation protein 1
(Blimp1) are transcription factors essential for the specification of PGCs in mammals. In
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mice, PRDM14 contributes to epigenetic reprogramming, the reacquisition of potential
pluripotency, and PGC-specific gene expression [60,61]. In contrast, BLIMP1 represses
somatic gene expression in PGCs [62]. In chickens, both PRDM14 and BLIMP1 facilitate
PGC development. Okuzaki et al. demonstrated that PRDM14 and BLIMP1 were expressed
in blastodermal cells and PGCs, and the knockdown of each gene in chicken embryos
decreased the number of PGCs [63]. Interestingly, the lack of PRDM14 causes embryonic
lethality in chickens, even though Prdm14 KO mice are viable [64]. This implies avian-
specific functions of PRDM14 during early embryogenesis.

3.2.2. BMP4

Bone morphogenetic protein 4 (BMP4) directly induces the formation of mouse PGCs
in an epigenetic model. In mice, BMP4 is emitted into the extra-embryonic ectoderm
and induces Prdm14 and Blimp1 expression, resulting in the PGC fate [65,66]. In this fate
decision, Wnt signaling is also involved in terms of inducing the Blimp1 expression [66,67].
In chickens, BMP4 is also essential for the integrity of PGCs. While the nucleotide sequence
in the promoter region of chicken BMP4 is poorly conserved with mammalian Bmp4,
the protein sequences in the coding region of BMP4 are highly conserved in birds and
mammals [30]. Using chicken embryonic stem cells (ESCs) [68,69], Zuo et al. demonstrated
that BMP4 contributes to the induction of PGC formation from the ESCs [70–72]. However,
the molecular mechanisms underlying this induction may differ between chickens and
mammals. In chickens, Wnt signaling activated by BMP4 directly regulates lin-28 homolog
A (LIN28A), a significant factor for PGC formation [73]; this direct interaction between
Wnt signaling and LIN28A has not yet been observed in the fate decisions of mammalian
PGCs [72]. Additionally, a recent study showed that a long non-coding RNA, LncBMP4,
has similar functions to chicken BMP4 and contributes to the fate decisions of PGCs [74].
Overall, studies on chicken BMP4 have contributed to both the elucidation of the fate
decisions of chicken PGCs and the improvement in methods to induce PGCs from avian
pluripotent stem cells.

3.2.3. NANOG

NANOG is a transcription factor involved in maintaining pluripotency in ESCs [75,76].
Additionally, NANOG plays a crucial role in the specification of mammalian PGCs via their
epigenetic modification [77,78]. In chicken ESCs, NANOG also regulates pluripotency [79].
Because chicken NANOG can function as an alternative factor to mouse NANOG and con-
tribute to the pluripotency of mouse cells [80], its function is conserved between mammals
and birds, at least in terms of stem cell pluripotency. Interestingly, the oligomerization
mechanism of NANOG proteins differs between mammals and chickens [81]. In addi-
tion, NANOG is essential for the somatic reprogramming of chicken and duck (Anas
platyrhynchos) fibroblasts [82]. In chicken PGCs, NANOG expression has been observed,
and its function in the self-renewal of PGCs has been suggested [63,83]. However, its
expression level is downregulated during the migration of PGCs to the gonads, differing
from the expression patterns observed in mouse PGCs [84]. Recent studies have revealed
the expression regulation mechanisms of NANOG in chicken PGCs. Deacetylation of
H3K9ac and several transcription factors, such as tumor protein p53 (TP53), POU domain
class 5 transcription factor 3 (POU5F3), and SRY-box 2 (SOX2), control the expression of
NANOG [59,85]. Nevertheless, alterations in the expression patterns of NANOG in chicken
PGCs during embryogenesis remain unclear. Overall, although the function of chicken
NANOG is similar to that of mammals, its expression pattern, regulatory mechanism, and
oligomerization mechanism are different from those of mouse NANOG.

3.2.4. POU5F3

POU5F1 (also called octamer-binding transcription factor 4 (OCT4)) is an essential
transcription factor for maintaining the pluripotency of ESCs and specification of the
inner cell mass in mice [86–88]. Additionally, POU5F1 plays a critical role in establishing
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mammalian-induced pluripotent stem cells (iPSCs) [89]. Furthermore, POU5F1 is required
for maintaining germ cell lineage in mice [90]. However, a previous study demonstrated
that POU5F1 is evolutionarily lacking in chickens [91], which remained the prevailing
theory until Lavial et al. successfully cloned the POU V gene as a homologous gene
of Pou5f1 and identified its function in maintaining chicken ESCs [79]. Further studies
have proposed that chicken POU V establishes synteny with the POU5F3 gene, which is
conserved in several vertebrates, such as marsupials, monotremes, and teleost fishes [92–94].
Additionally, Nakanoh et al. recharacterized the nucleotide sequence of chicken POU V and
showed its similarity with those from POU5F3 in other species [95]. In terms of maintaining
the pluripotency of ESCs, the degree of functional conservation between POU5F1 and
POU5F3 is species-dependent [94]. Therefore, it is thought that the relationship between
chicken POU V (POU5F3) and mammalian Pou5f1 is a paralog rather than an ortholog.

In chicken PGCs, POU5F3 is expressed along with NANOG and SOX2 and may form
a transcriptional network [84,96]. A recent study demonstrated that POU5F3 regulates
globally active chromatin modification [97]. In addition, the knockdown of POU5F3 in
chicken PGCs resulted in the severe impairment of their gonadal colonization [97]. These
studies suggest an essential role of POU5F3 in chicken PGCs.

3.2.5. DND1

DND microRNA-mediated repression inhibitor 1 (DND1), an RNA-binding protein,
maintains the fate of PGCs in vertebrates. In mice, DND1 inhibits apoptosis of germ cells
by destabilizing target mRNAs [98,99]. In zebrafish, DND1 also regulates apoptosis [100].
Recently, Gross-Thebing et al. clarified that zebrafish DND1 mainly controls somatic
differentiation of PGCs, and the lack of DND1 causes apoptosis, depending on the case [101].
In chickens, the DND1 homolog was cloned, and its germ-cell-specific expression pattern
was characterized [102,103]. However, the function of the chicken DND1 homolog remains
unclear. To reveal the molecular mechanisms that suppress somatic differentiation in
chicken PGCs, functional analyses of the chicken DND1 homolog are needed to provide
new insights.

3.2.6. Non-Coding RNA

Non-coding RNAs (ncRNAs) play key roles in germ cell development. PIWI-interacting
RNAs (piRNAs) are a class of non-coding RNAs involved in germ cell development. piR-
NAs are non-coding RNAs of approximately 26–31 nucleotides in length strongly expressed
in the gonads and control germ cell development by repressing transposons to maintain
genomic integrity [104–107]. In chickens, piRNAs specifically expressed in germ cells have
been identified by RNA-seq analyses [108,109]. Repression of piRNA pathways in chicken
PGCs results in increased DNA double-strand breaks, indicating that piRNAs play a critical
role in the integrity of PGCs [108].

Critical roles of other classes of non-coding RNAs, such as microRNAs (miRNAs) and
lncRNAs, have also been reported with regard to the integrity of chicken PGCs. miRNAs
include 18–23 nucleotides related to the post-transcriptional regulation of target mRNAs.
Lee et al. identified miRNAs that are expressed explicitly in chicken PGCs [110]. They
demonstrated that miR-181a* downregulates the expression of nuclear receptor subfam-
ily 6 group A member 1 (NR6A1), and homeobox A1 (HOXA1), suggesting that miR-181a*
regulates inappropriate meiosis and somatic differentiation of chicken PGCs in different
pathways [110]. Other studies have also identified and characterized miRNAs involved in
maintaining the integrity of chicken PGCs, such as the regulation of DNA methylation [54],
glucose metabolism [111], and apoptosis [112]. In contrast, lncRNAs are non-coding
RNAs composed of over 200 nucleotides and possess various functions, such as epigenetic,
transcriptional, and translational regulation, via lncRNA–RNA or lncRNA–protein inter-
actions [113]. Zuo et al. identified lncRNAs specifically expressed in chicken PGCs and
demonstrated that lncRNA PGC transcript-1 (lncPGCAT-1) contributes to the formation of
chicken PGCs by regulating CVH expression [114]. Other studies have also characterized
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several lncRNAs related to the development of chicken PGCs [115–117]. Overall, previous
studies have demonstrated that non-coding RNAs possess various functions and contribute
to chicken PGC integrity.

4. Sex Determination in Birds
4.1. Bird-Characteristic Sex Determination Mechanisms

Birds exhibit unique features of sex determination. The development of the urogenital
system in birds resembles that in mammals. In contrast, birds naturally experience sex re-
versal, indicating the considerable role of sex hormones in avian sex determination, as well
as that in fish. Indeed, Elbrecht and Smith experimentally demonstrated that the inhibition
of aromatase, an enzyme that converts testosterone to estradiol, confers a male phenotype
on genetically female chickens [118]. Nevertheless, naturally occurring gynandromorphous
birds indicate that a cell-autonomous manner significantly determines the sexual identity
of avian somatic cells [119,120]. Given the above, birds show characteristic features in their
sex determination, but their comprehensive mechanisms remain unclear. Elucidating this
mechanism is essential to understand vertebrate evolution in terms of sex determination.

In several vertebrates, the master transcription factors for gonadal sex determination,
namely the fate decision of the testes or ovaries, have been determined. In mice, the sex-
determining region Y (Sry) [121], which is located on the Y chromosome, acts as the master
gene. In teleost fish medaka, a Y-chromosome-linked gene, the DM domain gene on the Y
chromosome (DMY), determines gonadal sex [122]. Furthermore, in X. laevis, which uses a
ZZ/ZW sex-determining system, the W-chromosome-linked DM domain gene (DM-W)
was identified as the master gene [123].

A schematic image of gonadal sex determination in chickens is shown in Figure 2a.
Birds also use the ZZ/ZW system; however, leading candidates for W-linked master
transcription factors have not yet been identified. In contrast, significant effects of a Z-
linked gene, doublesex and mab-3-related transcription factor 1 (DMRT1), for avian gonadal sex
determination have been reported. Birds at least partially lack a compensation system for
Z-chromosome-linked genes, which corresponds to mammalian X inactivation [124,125].
From HH stage 25 (after 4.5 d of incubation) onwards, higher DMRT1 expression in male
(ZZ) chickens than in female (ZW) chickens has been observed in undifferentiated chicken
gonads [126]. Subsequent functional analyses showed that DMRT1 significantly contributes
to gonadal masculinization [127,128]. Interestingly, recent studies demonstrated that hetero
KO of DMRT1 in ZZ chickens leads to incomplete female morphology, although ovarian
development is induced [129,130]. This suggests that cell-autonomous sex identity is
essential for sex determination in avian somatic cells.

Other sex-determination-related genes have also been identified in birds. hemogen
(HEMGN) is a chicken-specific gonadal-masculinization-related transcription factor. In
mice, Hemgn is specifically expressed in hematopoietic tissues and cells [131]. However, in
chickens, the upregulation of HEMGN is observed in undifferentiated male gonads from
HH stage 28 (after 5.5 d of incubation) onwards, and this expression timing suggests that
HEMGN operates downstream of DMRT1 [132]. Overexpression of HEMGN in ZW chicken
embryos induces the expression of SRY-box 9 (SOX9), a testicular marker [132]. The essential
role of the forkhead box L2 (FOXL2) gene in gonadal feminization in birds has also been
characterized. FOXL2 expression is increased in undifferentiated ZW gonads from HH stage
28 to 29 (after 5.7 d of incubation) [133]. FOXL2 suppresses the expression of male pathway
genes such as SOX9 and activates ovarian development [134]. Although the expression
pattern of cytochrome P450 family 19 subfamily A member 1 (CYP19A1), which encodes
for aromatase, resembles that of FOXL2, FOXL2 might not directly regulate CYP19A1
(Aromatase) expression [133,134]. Thereafter, the undifferentiated gonads of the ZZ and
ZW embryos develop symmetrically and asymmetrically, respectively, and both the right
and left undifferentiated gonads of the ZZ embryo develop functional testes, while only
the left gonad becomes a functional ovary in the ZW embryo.
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4.2. Sexual Identity of Avian PGCs

In several vertebrates, the sex of germ cells is affected by gonadal somatic cells follow-
ing the gonadal migration of PGCs. However, in birds, several researchers have observed
the cell-autonomous sexual identity of PGCs (Figure 2b). First, the number of chicken
PGCs migrating to undifferentiated gonads is greater in females than in males [40]. Second,
chicken PGCs cultured and harvested from female embryos showed a lower tendency
for self-renewal compared to those from male embryos [135]; therefore, the culturing of
female chicken PGCs was difficult compared to that of male chicken PGCs. Thus, the
culture protocol for chicken PGCs has been optimized for each sex [7]. Third, the capacity
for protein uptake differs between male and female PGCs [4]. These reports suggest that
the sexual identity of initial PGCs is constructed by PGC-intrinsic factors independent of
gonadal sex determination.

In vertebrates, medaka forkhead box L3 (FOXL3) was first identified as a germ-cell-
intrinsic sex determination factor. FOXL3 KO female medaka developed functional sperm
in the ovary, indicating that the sex determination mechanism differs between PGCs and
gonads [136,137]. Subsequently, in tilapia (Oreochromis niloticus), both FOXL3 and DMRT1
significantly contribute to the sex determination of PGCs [138]. Recently, the FOXL3-like
gene was cloned and characterized in chickens [3]. Although the chicken FOXL3-like
protein is specifically expressed in female embryonic germ cells, its expression timing is
considerably late compared to gonadal sex differentiation, suggesting that the chicken
FOXL3-like gene may not affect the sexual identity of PGCs [3]. In addition, chicken PGC-



Genes 2023, 14, 612 9 of 18

intrinsic DMRT1 may not affect the initial sexual identity of PGCs owing to its expression
pattern; sex-biased DMRT1 expression is temporally observed in female germ cells around
HH stage 42 (after 16 d of incubation), which corresponds to the meiotic stage [14]. Taken
together, although the chicken FOXL3-like gene and DMRT1 may be essential for germ
cell development, the molecular mechanism of initial sex determination in chicken PGCs
remains unclear.

Recent studies have shown characteristic avian features in the sex determination of
PGCs. Ichikawa et al. conducted RNA-seq analysis using male and female PGCs harvested
from embryonic chicken blood at HH stage 17 (after 2.5 d of incubation) and gonads at
HH stage 25–26 (after 4.5 d of incubation) and HH stage 30 (after 6.5 d of incubation) [5].
The gene expression profiles obtained in that study suggest that several W-chromosome-
linked genes are expressed in a cell-autonomous manner in female PGCs before they settle
into the gonads (Figure 2b) [5]. Furthermore, alterations in gene expression profiles were
observed during gonadal sex determination in female PGCs prior to that in male PGCs,
and female-biased genes were enriched in several metabolic processes (Figure 2b) [5]. In
contrast, Rengaraj et al. showed male-biased gene expression in chicken PGCs collected
from early embryos around HH stage 17–34 (after 2.5–8 d of incubation) (Figure 2b) [14].
These differences may be due to the methods used to collect the PGCs; while Ichikawa et al.
purified the PGCs using FACS targeting stage-specific embryonic antigen-1 (SSEA-1), Ren-
garaj et al. used DAZL as the marker of PGCs. Although SSEA-1 has been widely used as a
PGC marker [46,139–141], a recent study demonstrated the existence of SSEA-1-negative
PGCs [142]. Note that SSEA-1-positive PGCs, at least, possess germline transmission [141].
In summary, although the timing and molecular mechanisms of sex determination in avian
PGCs remain unknown, the gene expression profiles obtained from recent studies can
significantly contribute to solving these issues.

Importantly, the biological significance of the initial sexual identity of avian PGCs
remains unclear. Previously, it was thought that the sexual identity of PGCs is constructed
when the PGCs migrate into the undifferentiated gonads owing to the results of trans-
plantation experiments. While transplantation of the precursor cells of PGCs harvested
from the blastodermal stage into recipients of the opposite sex could differentiate into
functional gametes [143], the migrating PGCs could barely differentiate those [144,145].
However, a recent study demonstrated that transplanted chicken PGCs circulating through
blood vessels could differentiate into gametes of opposite sexes using genetically infertile
chickens as recipients [146]. These differences may reflect that initial sexual identity does
not completely determine the sexual fate of PGCs.

4.3. Sex Differentiation of Avian Germ Cells

Remarkable phenotypic differences between male and female chicken PGCs were
observed after gonadal sex determination (Figure 2b). The number of chicken female germ
cells is significantly increased from HH stage 35 (after 9 d of incubation) onwards, while
male PGCs undergo mitotic arrest until hatching [147,148]. At HH stage 38 (after 12.5 d
of incubation), stimulated by retinoic acid 8 (STRA8) is expressed in chicken female germ
cells and induced by retinoic acid (RA) [149,150]. Then, the female PGCs undergo meiosis
at HH stage 41 (after 15.5 d of incubation). In the early embryonic stages, both major
enzymes involved in RA synthesis and RA degradation, retinaldehyde dehydrogenase,
type 2 (RALDH2), and cytochrome P450 family 26 subfamily B member 1 (CYP26B1),
respectively, are expressed in the gonads of each sex. In females, the expression of CYB26B1
is downregulated after HH stage 36 (after 10.5 d of incubation), which may be related to
female-specific entry into meiosis [149]. Given the above, typical sexual differentiation
in chicken germ cells is characterized by differences in proliferation activity and female-
specific meiosis.
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5. Self-Renewal of Chicken PGCs

Among vertebrates, chicken is the only species in which PGCs can be cultured for a long
time (Figure 3). Owing to the fact that abundant egg yolk yields surround one-cell fertilized
chicken eggs, direct injection of genome editing reagents is difficult. Thus, genome-edited
chickens have been produced via gene modification and transplantation of cultured PGCs [151].
Currently, genome-edited chickens are widely used for the study of avian developmental biol-
ogy [24,64,129,130], production of hypoallergenic eggs [12,152,153], improvement in production
efficiency [154], and establishment of bioreactors [155,156]. Furthermore, culture technology can
contribute to the conservation of rare avian strains [157]. Therefore, culturing chicken PGCs is
an effective technique for fundamental research and industrial applications.

In 2006, van de Lavoir et al. reported a culture protocol for chicken PGCs using the
fibroblast growth factor (FGF), stem cell factor (SCF), and mammalian feeder cells, for the
first time [6]. Since this achievement, several researchers have attempted to improve their
culture efficiency and have revealed essential factors for the self-renewal of cultured PGCs.
Optimization of the culture protocol was conducted by Miyahara et al., who demonstrated that
the membrane-bound form of the chicken SCF (SCF2) could aid in the proliferation of cultured
PGCs [135,158]. Whyte et al. identified the minimal number of signaling pathways required
for the self-renewal of cultured PGCs and reconstructed the culture protocol. They showed
that FGF2, insulin, and activin significantly contribute to the culture of PGCs, which induce the
activation of ERK1/2, Akt, and SMAD3, respectively [7]. In this minimal condition, the SCF is
not required. Thus, Whyte et al. hypothesized that insulin might replace SCF function [7]. In
addition, several small molecules, such as blebbistatin and CHIR99021, induce the activation
of the self-renewal of cultured PGCs by reducing apoptosis [159,160]. Furthermore, Chen et al.
established a three-dimensional culture system for chicken PGCs, enabling the efficient culture
of chicken PGCs on a large scale [161].
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The studies described above played a significant part in the development of a method
for culturing chicken PGCs. However, current culture protocols cannot maintain PGCs
derived from avian species other than chicken. For example, although researchers have
attempted to culture PGCs derived from several avian species, such as quail, duck, and
zebra finch (Taeniopygia guttata), a stable culture of PGCs, as shown in chicken PGCs, could
not be achieved [162–164]. Furthermore, current culture protocols have been applied only to
certain chicken strains. Woodcock et al. showed that difficulties in culturing chicken PGCs
differ among strains [157]. Therefore, to promote avian biotechnology and biodiversity
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conservation, the current culture protocol for chicken PGCs should be further expanded to
include a generic protocol for all avian PGCs.

While recent studies have reported strategies to produce genome-edited birds without
cultured PGCs, the value in improving the current culture protocols remains undeniable.
For example, a method involving intracytoplasmic injection of sperm has been established
in quails, and Mizushima et al. successfully produced genome-edited quails via the direct
injection of CRISPR/Cas components into fertilized quail eggs [165,166]. However, this
strategy requires advanced technology, and the production of genome-edited birds using
this strategy has not yet been achieved in birds other than quail. In addition, methods
using adenoviral vectors [167] and sperm [168] as delivery systems to induce CRISPR/Cas
components have also been reported. Furthermore, a recent study produced chicken iPSC-
derived offspring [169], which could contribute to the production of genome-edited birds
without using cultured PGCs. Despite the potential for application in all avian species,
the efficiency of producing objective offspring remains low. Therefore, these methods are
not widely used. In summary, improvements in the culture protocols of PGCs are needed
to further develop avian molecular biology as well as to improve the advanced strategies
described above.

6. Conclusions

Elucidating the mechanisms of avian PGC fate decisions has long been an essential
research topic. Recently, this research subject has received further attention owing to
the application of genome editing technology and RNA-seq analysis. Further studies on
the early development, integrity, and sex determination of chicken PGCs will provide
significant insights into evolutionary developmental biology. Additionally, studies on sex
determination using avian PGCs will contribute to the control of the sex of offspring, an
essential technology for both efficient poultry production and animal welfare. Moreover,
further studies on the self-renewal of chicken PGCs may make it possible for all avian
species to be genetically conserved and modified by improving PGC culture protocols.
Nonetheless, as many challenges remain unaddressed, the investigation of fate decisions is
an essential research subject for future studies.
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