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Abstract: With the advances in high-throughput sequencing technology, an increasing amount of
research in revealing heterogeneity among cells has been widely performed. Differences between
individual cells’ functionality are determined based on the differences in the gene expression profiles.
Although the observations indicate a great performance of clustering methods, manual annotation of
the clusters of cells is a challenge yet to be addressed more scalable and faster. On the other hand,
due to the lack of enough labelled datasets, just a few supervised techniques have been used in cell
type identification, and they obtained more robust results compared to clustering methods. A recent
study showed that a complementary step of feature selection helped support vector machine (SVM)
to outperform other classifiers in different scenarios. In this article, we compare and evaluate the
performance of two state-of-the-art supervised methods, XGBoost and SVM, with information gain
as a feature selection method. The results of the experiments on three standard scRNA-seq datasets
indicate that XGBoost automatically annotates cell types in a simpler and more scalable framework.
Additionally, it sheds light on the potential use of boosting tree approaches combined with deep
neural networks to capture underlying information of single-cell RNA-Seq data more effectively. It
can be used to identify marker genes and other applications in biological studies.

Keywords: cell type annotation; scRNA-seq data; gradient boosting; domain-specific features;
feature selection

1. Introduction

In living organisms, there are a great variety of cells that can be distinguished with
the help of single-cell RNA sequencing (sc-RNA sequencing) technology. Single-cell RNA
sequencing (scRNA-seq) is a novel sequencing technology that involves individual cell
information and can be used in cell heterogeneity studies. Studying different types of
cancer, detecting unknown tumours and tumour heterogeneity, drug discovery, diagnosis,
and prognosis are a few numbers of the new opportunities for research in this scope.

Identifying cell type heterogeneity is one of the first fundamental steps in an in-depth
analysis of single-cell RNA sequencing data. Hidden diversity and characteristics of
a particular cell type can be found via deferentially expressed genes (DEGs). Machine
learning approaches can be effectively used to identify hidden differentiation in the ex-
pression profiles of the genes with high probability. scRNA-seq data comes with a variety
of limitations. The highlighted one is the lack of annotation for most of the data which
are publicly available. In a general single-cell RNA-seq downstream analysis, clustering
techniques are widely used to reveal groups of cells and cell types. However, setting up
the parameters, including the number of clusters, is a challenging point [1]. For instance,
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several methods are compared in [2]. Among them, SC3 [3], CIDR [4], Ascend [5], SAFE-
clustering [6], TSCAN [7], and [8] all possess built-in methods for estimating the optimal
number of clusters. Although Ascend and CIDR underestimated the number of clusters,
SC3 and TSCAN tend to overestimate. In addition, the group of cells identified by the
clustering methods requires an additional annotation step with the corresponding cell
types using canonical marker genes and reference databases. Hence, the conventional
workflow based on clustering and marker genes is not scalable due to manual annotation.
The lack of ground-truth information and tool benchmarking makes it more complex to
evaluate the model. Therefore, manually annotating the output is a time-consuming and
non-reproducible procedure in clustering methods. The other limitation of scRNA-seq
data is caused by biological effects during sequencing. This leads to a zero-inflated read
counts matrix with thousands of zeros in expression values, which may mislead down-
stream analyses. Cell types are often distinguished by calculating the differentiation of
expression levels of only the most informative genes. Hence, finding known marker genes
among thousands of genes with almost zero information is essential in scRNA-seq data
analyses. This is either called dimensionality reduction or feature selection and affects
the final result directly. Although the current unsupervised methods show superiority in
the performance when combined with feature selection methods, the biological signifi-
cance of the results is still important for the understanding of the underlying biological
information and requires further manual gene set enrichment analysis [1,9]. Since feature
selection plays a significant role in domain-dependent problems, a wide range of super-
vised techniques shows superiority in the performance utilizing feature selection methods.
Supervised techniques have increasingly developed for the automatic identification and
annotation of cell types. Moreover, using annotated data, we can evaluate and compare
the model by systematically estimating the performance metrics. A comparative study
in [10] reviewed 22 supervised techniques, including random forest (RF), which is based
on decision tree rules. To assess the probability of a correct label, decision trees inherently
select informative features and estimate the minimum number of features needed to create
a model. Among the other choices in decision tree categories, XGBoost shows its capability
in all scenarios [11]. According to this, CaSTLe [12] was proposed based on an XGBoost
model under transfer learning workflow and showed satisfactory classification accuracy
compared to two linear models. The idea behind CaSTLE is to use a robust univariate
feature engineering workflow followed by the application of a pre-tunedXGBoost model.
In the feature selection workflow first, genes with the top mean level of expressions and
mutual information were selected, and correlated genes were removed; then, considering
pre-defined ranges, genes were categorized. Transfer learning uses information from one
scRNA-seq dataset to annotate another one.

Additionally, the ensemble learning schema combines weak learners’ voting for an ac-
curate final vote on similarity search space. For instance, EDGE [13] has utilized this
approach on simulated data and learned an ensemble version of similarity matrices into
a single embedding space of data, as well as optimizing through stochastic gradient descent.
In EDGE, dimensionality reduction and feature gene extraction were used in an ensemble
approach in such a way that the problem of finding similarity among features, was broken
down into small weak learners. The final similarity matrix achieved shows a common simi-
larity space among all learners. SMaSH [14], on the other hand, is designed explicitly for
gene ranking and calculating the significance score of marker genes from scRNA-seq data.
Focuses on marker genes ranking, SMaSH compares tree-based and neural network-based
approaches. It uses predefined cell types (labels) to categorize cell-specific genes before
feeding them into several weak classifiers. In a benchmarking experiment, SMaSH com-
pared the ensemble mode with the network mode. Its performance was evaluated using
tree-based models, including XGBoost. Compared to the other two ensemble models and
deep neural networks, XGBoost shows excellent performance in most scenarios. Although
according to the observations in [15], XGboost failed to detect small changes in expression
levels and consequently distinguish cell sub-types. It is a much faster and simpler approach
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compared to the neural network model. XGBoost is well-suited to large datasets by per-
forming in parallel. Moreover, in our recent comparative study, it has been shown that the
support vector machine (SVM), with the help of information gain (IG), as a feature selection
method, outperformed the other approaches [16]. The study was performed on nine differ-
ent experiments composed of three different state-of-the-art popular classifiers combined
with three general-purpose feature selection methods. Classifiers, including random forest,
K-NN, and SVM and feature selection methods, including Analysis of Variance (ANOVA)
F-value, Information Gain, and Chi-squared considered complementary of the classifiers.
One of the challenges covered in this study was selecting cell-specific genes in the feature
selection step. A benchmark study was performed based on the number of selected features.
However, it remains for a exploration of general-purpose feature engineering techniques
against domain-specific ones, and in particular pattern-aware techniques to be done. When
reviewing different approaches, including supervised and unsupervised, for cell type
annotation based on scRNA-seq data, there is no comparison with the XGBoost method.
Precisely, the power of XGBoost and SVM was proven in the previous studies and XGBoost
performs in a faster and simpler way. Moreover, SVM together with a general-purpose
feature selection had been shown as a high-performance method in the supervised cell-type
annotation. In this study, inspired by the recent works completed in cell-type classification,
we compared two forefront approaches; the general-purpose model, a SVM classifier with
information gain feature selection method and XGBoost tree with its inherent feature selec-
tion strategy. This paper guides users and practitioners to select the most proper model
based on the inherent features of their datasets.

2. Materials and Methods
2.1. Framework

The schematic view of Figure 1 depicts the pipeline in a cell-type annotation process.
First, the raw read count matrix is generated using high-throughput sequencing technolo-
gies (Figure 1, step 1). These raw data includes expression profiles of thousands of cells
separately (Figure 1, step 2). Performing pre-processing, including filtering, normalization,
and scaling, gives us ready-to-use data for the computational step (Figure 1, step 3). Then,
the most informative features are extracted in the feature selection (Figure 1, step 4) to be
used by classification models. Finally, cell types are predicted and annotated by the method
with higher accuracy (Figure 1, step 5). As a demonstration of the high performance, a gene
set enrichment analysis on the selected features was performed, and the results highlight
the power of the model in annotating cell types (Figure 1, step 6). The last step is not
necessary for supervised approaches. However, it could play a verification phase in the
biological context.

Figure 1. Pipeline overview of the experiments.
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To validate our models, we considered the most commonly used evaluation metrics,
namely accuracy, precision, and recall, to systematically estimate and compare the per-
formance of our models. To this end, we used 10-fold cross-validation to test and train
the model. Additionally, we tuned XGBoost parameters as follows: (1) the regularization
parameter value to create a new split in trees, gamma is set to 0.2, 0.1, and 0 for Data1 to
Data3, respectively. (2) (Maxdepth and minchildweight) of the tree, which typically control
overfitting, were fine-tuned to (10, 3), (5, 3), and (10, 1) for Data1 to Data3, respectively.
(3) colsamplebytree, which determines what portion of features will be used, was set to 0.5,
0.4, and 0.3 for Data1 to Data3, respectively.

We used Scikit-learn [17] in Python version 3.7 to perform computational algorithms,
and GSEA [18] for biological validation.

2.2. Dataset

To evaluate the performance of the model, we used public, annotated scRNA-seq
datasets with accession numbers GSM2230757, GSM2230758, and GSM2230762 under
series GSE84133 [19] extracted from NCBI’s Gene Expression Omnibus [20]. These datasets
include transcripts of pancreatic from human and mouse donors. Pancreatic cells are
divided into 14 groups of previously characterized cell types, mainly including alpha, beta,
acinar, delta, quiescent, activated pancreatic stellate, endothelial, and ductal cells. The
existence of these cell types is validated with immuno-histochemistry stains [19] so that
it can be a good resource for discovering cell types. The details of the datasets used in
this study are listed in Table 1.

Table 1. Details of the datasets analyzed in this study.

Dataset Accession # Cell Types # Cells # Genes #

Human Pancreatic Islets, Sample 1 (Data1) GSM2230757 8 1937 20,125
Human Pancreatic Islets, Sample 2 (Data2) GSM2230758 8 1724 20,125
Mouse Pancreatic Islets, Sample 2 (Data3) GSM2230762 8 1064 14,878

2.3. Data Pre-Processing

Raw read count matrices contain low-quality RNA sequencing information based
on differential expression levels. Data pre-processing is performed to ensure removing
any weakly expressed genes or low-quality cells, including damaged, dead, or degraded
during sequencing, and are represented by a low number of expressed genes in the read
count matrices. We followed the standard pre-processing pipeline in scRNA-seq data
analysis [21]. Based on this pipeline, cells with less than 200 expressed genes and genes
expressed in less than three cells are filtered out. In Data1, for example, we first filtered out
5387 low-expression genes that were detected in less than three cells and kept 14,739 genes.
Further analysis of the data distribution showed low-quality cells and led to removing
seven cells. After per-gene quantification, we selected a subset of highly variable genes to
use in downstream analyses. To this end, we defined the set of highly variable genes given
a normalized dispersion higher than 0.5 after normalization and obtained 2546 genes at
the end. We used Scanpy [22], a specifically designed package to work with scRNA-seq
datasets, for pre-processing steps.

2.4. Hyperparameter Tuning

Hyperparameter tuning, also known as hyperparameter optimization or model selec-
tion, is the process of systematically searching for the best combination of hyperparameters
to optimize the performance of a machine learning model. Hyperparameters are parame-
ters that are not learned from data but are set before training. Examples of hyperparameters
for XGBoost include the learning rate, max depth, gamma, minimum child weight, and
column sample by the tree. In this research, the process of tuning these parameters has been
completed automatically using Bayesian optimization. Bayesian optimization is a method
for efficiently searching for the best set of hyperparameters of a model. The basic idea is
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to use a probabilistic model, such as a Gaussian process, to model the function that maps
from hyperparameters to the performance of the model on a given task. Mathematically,
Bayesian optimization can be formulated as an optimization problem in which we want
to find a set of hyperparameters that maximize the expected performance of the model,
given the current state of the probabilistic model. The expected performance is given by the
mean of the model, and the uncertainty in the model is represented by the variance. The
acquisition function, such as the expected improvement, is used to balance the exploration
and exploitation of the search space. To optimize the acquisition function, we optimize
the hyperparameters of the probabilistic model to maximize the expected improvement.
This is done by using gradient-based optimization algorithms, such as L-BFGS, or using
more sophisticated methods, such as Hamiltonian Monte Carlo. In summary, Bayesian
Optimization is a powerful method for tuning a machine learning model’s hyperparameters
by using a probabilistic model to guide the search for the best set of hyperparameters and
balancing exploration and exploitation using an acquisition function.

2.5. Feature Selection

Feature selection is a non-separable part of any algorithms that work with large-
scale data due to the curse of dimensionality. The existing thousand genes expressed in
each individual cell in the scRNA-seq dataset make it high-dimensional, which required
a reduction in the number of genes. The idea behind gene selection in cell type identification
is motivated by the fact that cell types are often distinguished by only a few essential genes
known as biomarkers. The effectiveness of three general-purpose feature selection methods
was explored in cell-type classification problems in [16], including Analysis of Variance
(ANOVA) F-value, Chi-squared, and information gain. The findings show that information
gain yields the best biomarkers among all other models. Information gain is defined based
on impurity and entropy. The group with the higher information gain possesses less
uncertainty. The importance of a feature is estimated by considering the information gained
from each feature. It is defined as the difference between before and after considering
feature X in the classification process, as shown in Equation (1) [23].

IG(X) = ∑iU(P(Ci))− E
[
∑iU(P(Ci|X))

]
(1)

where IG(X) represents the information gain from feature X. U represents uncertainty
function, P(Ci) represents the probability of class Ci before considering feature X, and
P(Ci|X) represents the posterior probability of class Ci after considering feature X.

On the other hand, the feature selection algorithm in the XGBoost considers sparsity
in the data and defines a default direction for missing values. Hence, it simplifies the
classification process by utilizing inherent sparsity patterns in the data. Therefore, it
divides data into two supergroup samples with missing and present values. XGBoost
exploits the sparsity to make the computational complexity linear proportional to the
number of existing values in the input matrix [11].

2.6. XGBoost

Extreme Gradient Boosting, XGBoost, is a scalable and widely-used decision tree
gradient-boosted algorithm that offers state-of-the-art results on many machine learning
problems. It provides a statistical model that captures the dependency of large datasets
considering the sparsity of the data and has been shown in a wide range of standard
classification applications [24]. XGBoost is reported as the top first-ranked method among
the most popular ones outperforming the other popular solutions. The second-ranked
method, deep neural nets, also obtains better results when combined with XGBoost [11].
Similar to the random forest, a Gradient boosting decision tree follows an ensemble learning
algorithm and is under a gradient tree-boosting framework. Ensemble learning algorithms
combine multiple models to obtain an average of all models.



Genes 2023, 14, 596 6 of 11

The idea follows from the existing Gradient boosting algorithms with minor im-
provements in the regularized objective. Unlike decision trees, regression trees include
a continuous weight on each leaf. For a given data, the regression tree uses the decision
rules to classify it into different groups in the leaves. It calculates the overall prediction
score by summing up the score weights in the leaves. The regularization objective function
has to be minimized as follows:

ι(φ) = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk) (2)

where Ω( f ) = γT +
1
2

λω2

Here, ι is the loss function to calculate the difference between the predicted and actual
class, ŷi and yi, respectively. The term Ω controls the complexity of the model, i.e., the
regression tree functions. The term γ helps avoid over-fitting utilizing the final weights.
The regularized greedy forest (RGF) model [25] uses a similar regularization method, but it
is more complex. Parallelization is another positive point of XGBoost.

3. Results and Discussion

The first objective of this work was to evaluate the accuracy of the main classifiers
(i.e., SVM, kNN, and RF) with a group of genes extracted from a pioneer general-purpose
feature selection method, information gain. The second scenario was defined with genes
obtained using the inherent approach in the XGBoost tree, which uses the latent pattern
in scRNA-seq data. We calculated the average of all measurements when comparing the
results. The number of features is determined based on the one with the highest final
predictive accuracy. Results are presented in Tables 2, A1 and A2. Overall, our findings
indicate that XGboost obtained the first rank among other methods in terms of accuracy
and recall. On the other hand, when looking at precision, SVM with information gain
feature selection is a top-ranked method. These results highlight three facts: (1) XGboost is
the best model when it comes to finding cell types in general (higher average accuracy).
Since accuracy represents the overall correctness of the model and precision shows how
good a model is at predicting a specific cell type, it is more probable to fail in finding
specific cell types (less precision). More precisely, finding rare cell types with a few number
of cell-specific genes is more effective in exploiting SVM and information gain. (2) Our
observations confirm that XGBoost is faster and more scalable in the case of large-scale
datasets, mainly because it uses its inherent feature selection simultaneously with the
classification and optimization phase. (3) Compared to a tree-based model without an
ensemble approach, i.e. random forest, XGBoost highlights the power of boosting strategy,
either in the classification phase or feature selection phase of cell-type annotation.

In addition, an extra validation step was performed to confirm the achievements in
the training phase in a more biologically meaningful scheme. The following subsections
describe more details of our findings.

3.1. Classification Results

To explore the effect of the selected feature genes as a form of prior knowledge, we
evaluated the classifiers’ performance based on the different numbers of selected features.
The optimal value of features, k, where k = 100, 200, 300, and 400 was determined by
exploiting a greedy approach. Observing the results of the classification methods for Data1
shown in Table 2, all models reveal less misclassification rate with 400 features. In particular,
SVM combined with IG gives an accuracy of 98.08%, and Precision and Recall of 87.98%
and 96.76%, respectively. Additionally, k-NN presents a high accuracy of 96.11% when
using the IG feature selection method. Moreover, random forest combined with IG delivers
a high accuracy of 97.05%. XGBoost with and without IG obtains an average accuracy of
99.51% and 99.63%, respectively, which outperformed other methods. However, regarding
precision, XGBoost, with only its inherent feature splitting algorithm, is the best one in the
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list and shows lower precision compared to the SVM with its external general-purpose
feature selection method. These two methods achieved recall values with a low difference
of close to zero. Additionally, the results of Data2 show almost an equivalent accuracy for
SVM and XGboost methods (Table A1). k-NN classification method achieves high accuracy
(94.66%) with 200 features selected from IG, RF, and IG combined, achieving high accuracy
(96.06%) with 400 features. Lastly, SVM achieves high accuracy with 400 features (98.09%)
selected from the IG feature selection method. XGBoost coupled with IG provides the best
performance, with 99.67% accuracy.

For Data3, SVM outperformed the other two classification methods and achieved the
highest precision of 84.91% with 300 features selected from the IG feature selection method.
Regarding misclassification rate and recall, the results are very close to XGBoost. In general,
Data3 has fewer features, comparatively speaking. Hence, as mentioned earlier, XGBoost is
less effective when it comes to small-scale datasets.

Table 2. Comparison of classification results for Data1.

Method No of Features Accuracy % Precision % Recall %

SVM + IG 400 98.08 87.98 96.76
RF + IG 400 97.05 77.48 96.52

kNN + IG 400 96.11 77.53 96.51
XGBoost + IG 400 99.51 80.45 91.68

XGBoost 400 99.63 88.41 96.38

3.2. Biological Validation

We performed an extra step of biological evaluation for detecting cell types using
highly-ranked features identified in the feature selection phase. Among a wide range of
gene set enrichment analysis (GSEA) databases, we chose the C8 collection of MSigDB,
which includes cell type signature’s gene sets [18]. We separated each class’s top 20 differ-
entially expressed genes for enrichment analysis. Table 3 shows the list of six pancreatic
cell type-specific gene sets identified by the list of marker genes extracted from the fea-
ture selection phase on Data1. Additionally, as shown in Table 4, a maximum of 9 out
of 20 overlapped genes between our top 20 ranked genes and pancreas gene sets were
highlighted in the list. The enrichment analysis results of two other datasets are shown in
Tables A3 and A4.

Table 3. List of eight gene sets correlated to the Pancreatic cell types of Data1 resulting from the
GSEA analysis.

Pancreas Gene Set Name Dataset

Muraro pancreas endothelial cell [362] Data1, Data2, Data3
Muraro pancreas mesenchymal stromal ce cell [681] Data1, Data2, Data3

Muraro pancreas acinar cell [732] Data1, Data2, Data3
Muraro pancreas ductal cell [1276] Data1, Data2, Data3
Muraro pancreas alpha cell [568] Data1, Data2

Descartes fetal pancreas islet endocricrine cells [170] Data1, Data2
Muraro Pancreas Epsilon Cell [44] Data2
Muraro Pancreas Delta Cell [250] Data2

Table 4. List of 9 out of 20 overlapped genes between our top 20 ranked genes and pancreas gene
sets (Data1).

Gene Symbol Description of Functionality

IFITM3 interferon induced transmembrane protein 3 [Source:HGNC Symbol;Acc:HGNC:5414]
IGFBP4 insulin like growth factor binding protein 4 [Source:HGNC Symbol;Acc:HGNC:5473]
IFITM2 interferon induced transmembrane protein 2 [Source:HGNC Symbol;Acc:HGNC:5413]

COL4A1 collagen type IV alpha 1 chain [Source:HGNC Symbol;Acc:HGNC:2202]
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Table 4. Cont.

Gene Symbol Description of Functionality

SPARC secreted protein acidic and cysteine rich [Source:HGNC Symbol;Acc:HGNC:11219]
IGFBP7 insulin like growth factor binding protein 7 [Source:HGNC Symbol;Acc:HGNC:5476]

VIM vimentin [Source:HGNC Symbol;Acc:HGNC:12692]
TM4SF1 transmembrane 4 L six family member 1 [Source:HGNC Symbol;Acc:HGNC:11853]
HLA-B “major histocompatibility complex, class I, B [Source:HGNC Symbol;Acc:HGNC:4932]”

4. Conclusions

This study compares two recently reported pioneer classification models, XGBoost
and SVM, for discovering cell types using a list of marker genes. One with a blind fea-
ture selection method, pure information gain, and the other one with data sparsity-aware
inherent feature selection, GXBoost feature splitting algorithm. It is shown that consid-
ering the data with its latent sparsity pattern significantly enhances the overall accuracy
of the predictive models. Since the high degree of sparsity in scRNA-seq data arises
from false technical zeros and true biological zeros, exploiting the patterns of existing
and non-existing values for selecting biomarkers makes it more precise, faster, and more
meaningful. Our study particularly demonstrates the effectiveness of ensemble tree models
with an inherent sparsity-awareness feature selection approach in the cell-type automatic
annotation problem. Biological validation of the results confirmed the overall accuracy of
the prediction.

Moreover, the lack of canonical biomarkers for certain cell types makes it more com-
plicated to find rare cell types using the existing genes in the list of top-ranked ones. In
this case, following a manual lookup in the gene set repositories of related genes in gene
sets could support the study and the results. Biologically speaking, the relation among
genes is defined by structural, functional or evolutionary information. This work provides
a guideline for researchers to select and apply the well-suited tool in annotating cell types
using associated genes or uncovering homogeneous markers.
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Appendix A

Table A1. Comparison of classification results for Data2.

Method No of Features Accuracy % Precision % Recall %

SVM + IG 400 98.09 79.04 98.08
RF + IG 400 96.06 65.86 94.76

kNN + IG 200 94.66 65.68 96.63
XGBoost + IG 400 99.67 75.63 96.62

XGBoost 400 99.78 76.83 99.22

Table A2. Comparison of classification results for Data3.

Method No of Features Accuracy % Precision % Recall %

SVM + IG 300 99.23 91.95 93.29
RF + IG 400 99.03 67.26 88.68

kNN + IG 400 98.60 73.63 88.01
XGBoost + IG 400 99.42 80.72 90.58

XGBoost 400 99.18 78.91 93.17

Table A3. List of 17 out of 20 overlapped genes between our top 20 ranked genes and pancreas gene
sets (Data2).

Gene Symbol Description of Functionality

PMEPA1 prostate transmembrane protein, androgen induced 1 [Source:HGNC Symbol;Acc:HGNC:14107]
TACSTD2 tumor associated calcium signal transducer 2 [Source:HGNC Symbol;Acc:HGNC:11530]

KRT7 keratin 7 [Source:HGNC Symbol;Acc:HGNC:6445]
SDC4 syndecan 4 [Source:HGNC Symbol;Acc:HGNC:10661]
SOX4 SRY-box transcription factor 4 [Source:HGNC Symbol;Acc:HGNC:11200]
KRT19 keratin 19 [Source:HGNC Symbol;Acc:HGNC:6436]
FLNA filamin A [Source:HGNC Symbol;Acc:HGNC:3754]
FXYD3 FXYD domain containing ion transport regulator 3 [Source:HGNC Symbol;Acc:HGNC:4027]
IFITM3 interferon induced transmembrane protein 3 [Source:HGNC Symbol;Acc:HGNC:5414]

SERPING1 serpin family G member 1 [Source:HGNC Symbol;Acc:HGNC:1228]
COL18A1 collagen type XVIII alpha 1 chain [Source:HGNC Symbol;Acc:HGNC:2195]

PCSK1 proprotein convertase subtilisin/kexin type 1 [Source:HGNC Symbol;Acc:HGNC:8743]
HADH hydroxyacyl-CoA dehydrogenase [Source:HGNC Symbol;Acc:HGNC:4799]
MAFA MAF bZIP transcription factor A [Source:HGNC Symbol;Acc:HGNC:23145]
ARX aristaless related homeobox [Source:HGNC Symbol;Acc:HGNC:18060]
IRX2 iroquois homeobox 2 [Source:HGNC Symbol;Acc:HGNC:14359]
GC GC vitamin D binding protein [Source:HGNC Symbol;Acc:HGNC:4187]

Table A4. List of 15 out of 20 overlapped genes between our top 20 ranked genes and pancreas gene
sets (Data3).

Gene Symbol Description of Functionality

SPARC secreted protein acidic and cysteine rich [Source:HGNC Symbol;Acc:HGNC:11219]
COL4A1 collagen type IV alpha 1 chain [Source:HGNC Symbol;Acc:HGNC:2202]

FLT1 fms related receptor tyrosine kinase 1 [Source:HGNC Symbol;Acc:HGNC:3763]
PECAM1 platelet and endothelial cell adhesion molecule 1 [Source:HGNC Symbol;Acc:HGNC:8823]

SERPINH1 serpin family H member 1 [Source:HGNC Symbol;Acc:HGNC:1546]
COL4A2 collagen type IV alpha 2 chain [Source:HGNC Symbol;Acc:HGNC:2203]
IGFBP7 insulin like growth factor binding protein 7 [Source:HGNC Symbol;Acc:HGNC:5476]
CDH5 cadherin 5 [Source:HGNC Symbol;Acc:HGNC:1764]
VIM vimentin [Source:HGNC Symbol;Acc:HGNC:12692]

PMEPA1 prostate transmembrane protein, androgen induced 1 [Source:HGNC Symbol;Acc:HGNC:14107]
MSN moesin [Source:HGNC Symbol;Acc:HGNC:7373]
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Table A4. Cont.

Gene Symbol Description of Functionality

S100A16 S100 calcium binding protein A16 [Source:HGNC Symbol;Acc:HGNC:20441]
ANXA2 annexin A2 [Source:HGNC Symbol;Acc:HGNC:537]

CD24 CD24 molecule [Source:HGNC Symbol;Acc:HGNC:1645]
NFIB nuclear factor I B [Source:HGNC Symbol;Acc:HGNC:7785]
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