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Abstract: With the increasing popularity of genomic sequencing, breeders pay more attention to
identifying the crucial molecular markers and quantitative trait loci for improving the body size and
reproduction traits that could affect the production efficiency of pig-breeding enterprises. Nevertheless,
for the Shaziling pig, a well-known indigenous breed in China, the relationship between phenotypes
and their corresponding genetic architecture remains largely unknown. Herein, in the Shaziling
population, a total of 190 samples were genotyped using the Geneseek Porcine 50K SNP Chip,
obtaining 41857 SNPs for further analysis. For phenotypes, two body measurement traits and four
reproduction traits in the first parity from the 190 Shaziling sows were measured and recorded,
respectively. Subsequently, a genome-wide association study (GWAS) between the SNPs and the six
phenotypes was performed. The correlation between body size and reproduction phenotypes was
not statistically significant. A total of 31 SNPs were found to be associated with body length (BL),
chest circumference (CC), number of healthy births (NHB), and number of stillborns (NSB). Gene
annotation for those candidate SNPs identified 18 functional genes, such as GLP1R, NFYA, NANOG,
COX7A2, BMPR1B, FOXP1, SLC29A1, CNTNAP4, and KIT, which exert important roles in skeletal
morphogenesis, chondrogenesis, obesity, and embryonic and fetal development. These findings are
helpful to better understand the genetic mechanism for body size and reproduction phenotypes, while
the phenotype-associated SNPs could be used as the molecular markers for the pig breeding programs.

Keywords: Shaziling pigs; SNP; body measurement trait; reproductive trait; GWAS

1. Introduction

Domesticated pigs account for a high proportion of meat production in the world [1].
In the pig industry, reproductive performance is directly correlated with production effi-
ciency and economic profits. The reproductive traits, especially litter traits, exhibited low
heritability (less than 0.1) and were regulated by many genes and their interactions [2].
Traditional breeding programs for genetic improvement with low heritability, complex
traits often progress slowly, which has undoubtedly elevated the need for molecular breed-
ing [3]. Genomic selection (GS) and Molecular marker-assisted selection (MAS) have been
demonstrated to have remarkable superiority in improving traits with low heritability [4].
Obtaining more accurate genetic information, such as quantitative trait loci (QTLs), single-
nucleotide polymorphisms (SNPs), and candidate genes, related to reproductive traits will
greatly increase the selection efficiency of GS and MAS.
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From the perspective of breeders, phenotypic records for body measurement traits
are vital for evaluating the production performance and making a future breeding sched-
ule. The body measurement traits present low-to-moderate heritability [5–8]. The study
revealed that several body measurement traits could be regarded as indicator traits for
improving production traits [9]. Importantly, some recent studies pointed out the vital
relationship between the body measurement traits and reproductive performance [10,11],
hinting that the body conformation traits of female animals might be important for improv-
ing reproduction performance.

The last decade has witnessed the application of genome-wide association studies
(GWAS) in identifying the genetic markers covering the whole genome for diverse body
measurement and reproduction phenotypes. According to the latest data from PigQTLdb
(https://www.animalgenome.org/cgi-bin/QTLdb/SS/index, accessed on 9 January 2023),
there are 35,846 QTLs related with 693 different traits in pigs that have been mapped by
773 publications. Among the 1281 QTLs associated with litter traits, there were only 466
QTLs related to total numbers born (TNB), 374 QTLs related to number of healthy births
(NHB), 138 QTLs related to numbers of stillborn (NSB), and 149 QTLs related to the number of
mummified pigs (MUMM). Regarding the body measurement traits, 188 QTLs related to chest
circumference (CC), and 219 QTLs related to body length (BL). The Shaziling pig is primarily
raised in the Hunan Province of China and is characterized by low growth rate, good meat
quality, and strong resistance to diseases [12]. Earlier genomics studies for Shaziling pigs were
primarily focused on the genetic diversity [13], skeletal muscle growth [14], and umbilical
hernia [15]. However, so far, identifying key molecular markers through the GWAS technique
for improving production performance is still progressing slowly.

In this study, we aim to uncover the relationship between body measurement traits
and reproduction phenotypes, and to clarify their associated genetic variations in Shaziling
pigs. To this end, the body measurement traits (BL and CC) and reproductive traits (TNB,
NHB, MUMM, and NSB) were measured and collected, respectively. Subsequently, based
on the Geneseek Porcine 50K SNP Chip data, the SNPs were detected in those Shaziling
pigs. The GWAS was conducted to identify potentially critical SNPs and QTL regions. This
work paves the way for the future genetic improvement of pigs with efficient growth and
reproduction performances.

2. Materials and Methods
2.1. Animals and Phenotypes

Our studied population (Shaziling pigs) were raised on the conservation farm (Xi-
angtan, Hunan, China). Animals were subjected to the same nutritional and management
conditions. Firstly, the BL and CC of 190 sows (from 240 to 265 days) were measured
according to the method applied in previous research [7]. Briefly, these two body size
traits were measured by a tape or a meter ruler. Then, the same batch of 190 sows in the
production stage was sampled and litter records were collected in the first parity. TNB,
NHB, MUMM, and NSB were recorded for each parity. Finally, these six traits were used for
the following analysis. The ethics committee of Hunan Agricultural University approved
all the experimental procedures in this study (Permit Number: 20210701).

2.2. Animals and Genotypes

The ear tissues of 190 Shaziling pigs were collected for genomic DNA extraction
according the protocol of Accurate SteadyPure Universal Genomic DNA Extraction Kit
(Accurate Biology, Changsha, China). The concentration and quality of genomic DNA
were testing by Nanodrop 2000 (Thermo Scientific, Waltham, MA, USA) and 1.5% agarose
gel electrophoresis, respectively. The final qualified DNA samples were genotyped using
Geneseek Porcine 50K SNP Chip (GeneSeek, Lincoln, NE, USA).

https://www.animalgenome.org/cgi-bin/QTLdb/SS/index
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2.3. Data Quality Control

For phenotypes, the R (version 4.2.1) was used to perform descriptive statistical analy-
ses to check the data quality including the mean, standard deviation, coefficient of variance,
minimum and maximum values for each trait. The plot of normal distribution and correla-
tion coefficients among phenotypic values were all visualized and calculated by the “GGally”
package in R. For the genotypes, PLINK software (version 1.90 beta) was used to conduct
quality control to achieve high-quality common SNPs [16]. Briefly, the filtered procedures
were performed as follow: (1) individual call rate >90%; (2) minor allele frequency (MAF)
>5%; and (3) p-value > 10−6 for the Hardy-Weinberg equilibrium (HWE) test. Furthermore,
we excluded the SNPs located on the sex chromosome and unmatched regions.

2.4. SNP-Based Heritability

The heritability estimates of phenotypes were calculated using a restricted genomic-
relatedness-based restricted maximum-likelihood (GREML) analysis, as implemented in
GCTA software (version 1.94) [17]. Briefly, based on the high-quality SNPs, the genetic
relationship matrix (GRM) was used to estimate the genetic relationships between pairwise
individuals from all of the autosomal SNPs, and then the GRM and phenotypes were
included in the restricted maximum likelihood (REML) analysis to estimate the variance
explained by the SNPs.

2.5. Population Structure and Kinship Analyses

Principal component analysis (PCA) was performed to identify the population struc-
ture of Shaziling pigs to determine whether principal components (PCs) should be included
in the GWAS model. Simply, the eigenvalues and eigenvectors were calculated by GCTA
software based on high quality filtered SNPs. The lollipop-plot of the top ten principal
components were visualized using the “ggplot2” package in R. A heat map was plotted
against the kinship matrix to exhibit the level of relatedness among all individuals within
the Shaziling population.

2.6. GWAS

The association analysis between each SNP marker and phenotypic data was per-
formed using the mixed linear model in the GEMMA software [18]. The model described
was as follows:

y = Wα + Xβ + µ+ e (1)

where y represents the vector of phenotypes (BL, CC, TNB, NHB, NSB, and MUMM) for
each individual; Wα included the population structure effect and fixed effects, briefly, age (in
days) was used as fixed effects for BL and CC, and the individual of boar used for mating was
used as fixed effects for TNB, NHB, NSB, and MUMM; Xβ is the marker effect to be tested;
µ~N (0, Kφ2) represents the polygenic effect; e~N (0, Iσ2) refers to the residual effect, and K is
the kinship matrix generated from the SNPs. Similar to previous GWAS research [19,20], the
Bonferroni-adjusted genome-wide significant threshold was set as 0.05/N, and the suggestive
threshold was set as 1/N, N being the total number of filtered SNPs.

2.7. Candidate Gene Search and Functional Annotation

To identify the candidate genes of each significant SNP, we searched for annotated
genes according to their physical positions (within 500 Kb upstream or downstream) on
the pig reference genome (Sscrofa 11.1) (http://asia.ensembl.org/biomart/martview/,
accessed on 18 October 2022). Gene Ontology (GO) functional annotation analysis and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed
in the enrichment module of KOBAS 3.0 [21], and then the significant threshold for the GO
terms (biological process) and KEGG pathways were set at Benjamini-Hochberg adjusted
p-value < 0.05.

http://asia.ensembl.org/biomart/martview/
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3. Results
3.1. Description of Phenotypes and Genotypes

As shown in Figure 1, phenotypes, including BL, CC, TNB, and NHB, of 190 Shaziling
pigs displayed approximately normal distributions in the current study. TNB and NHB
were strongly and positively correlated (r = 0.826, p < 0.001). BL and CC were weakly corre-
lated (r = 0.294, p < 0.001). However, there was no correlation between body measurement
traits (BL and CC) and reproduction traits (TNB and NHB). Descriptive statistics for the
traits of BL, CC, TNB, NHB, MUMM, and NSB analyzed in the current study are shown in
Table 1. In the present study, the heritability of BL and CC was 0.15 and 0.14, respectively.
Except for MUMM, the other three reproduction traits were less than 0.01. The coefficient
of variation (CV) ranges from 7.96% (lowest one: BL) to 9.03% (highest one: CC).
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Figure 1. The normal distribution and correlation analysis between body size and reproduction traits.
“***” represents for p < 0.001. TNB: total number born. NHB: number of healthy births. CC: chest
circumstance. BL: body length.

Table 1. Summary statistics of body measurement and reproduction traits in the Shaziling population.

Population Trait a N Mean SD Minimum Maximum h2 CV (%)

Shaziling

BL (cm) 190 133.2 10.6 110 158 0.15 7.96%
CC (cm) 190 132.9 12.0 107 162 0.14 9.03%

TNB 190 9.88 2.90 2 20 <0.01 -
NHB 190 8.81 2.81 2 19 <0.01 -
NSB 190 0.14 0.48 0 2 <0.01 -

MUMM 190 0.93 1.60 0 8 0.02 -
a: BL = body length, CC = chest circumference, TNB = total number born, NHB = number of healthy births,
NSB = number of stillborn, MUMM: number of mummified pigs.

In the Shaziling population, a total of 190 samples were genotyped using the Geneseek
Porcine 50K SNP Chip. A total of 41,857 SNPs were obtained for further marker analysis
after a series of quality filter procedures. The distribution of the SNP information on eigh-
teen autosome chromosomes was presented in Figure 2A. According to the SNP numbers
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for GWAS analysis, the genome-wide significant and suggestive threshold of the Shaziling
population were 1.19 × 10−6 (0.05/41,857) and 2.38 × 10−5 (1/41,857), respectively.

Genes 2023, 14, x FOR PEER REVIEW 5 of 16 
 

 

NHB 190 8.81 2.81 2 19 <0.01 - 

NSB 190 0.14 0.48 0 2 <0.01 - 

MUMM 190 0.93 1.60 0 8 0.02 - 
a: BL = body length, CC = chest circumference, TNB = total number born, NHB = number of healthy 

births, NSB = number of stillborn, MUMM: number of mummified pigs. 

In the Shaziling population, a total of 190 samples were genotyped using the Gene-

seek Porcine 50K SNP Chip. A total of 41,857 SNPs were obtained for further marker anal-

ysis after a series of quality filter procedures. The distribution of the SNP information on 

eighteen autosome chromosomes was presented in Figure 2A. According to the SNP num-

bers for GWAS analysis, the genome-wide significant and suggestive threshold of the 

Shaziling population were 1.19 × 10-6 (0.05/41,857) and 2.38 × 10-5 (1/41,857), respectively. 

 

Figure 2. The distribution of SNPs on autosomal chromosomes and the principal component anal-

ysis. (A), The distribution of SNPs within a 1 Mb window size. (B), The lollipop-plot of top ten 

principal components. Index means top ten principal components and por represents proportion of 

explained variance. 

3.2. Results of Population Structure and Kinship Analyses 

The principal component analysis was performed for the tested Shaziling individuals 

to avoid the false-positive results caused by population stratification, which was consid-

ered as an important influencing factor to the reliability of the GWAS result. The results 

showed that the first four principal components could be included in the GWAS model as 

covariates (Figure 2B, Figure S1). Besides, a kinship matrix was also used as the covariate 

in the fixed effects model for GWAS analysis. The kinship heat map was shown in Sup-

plementary Figure S2. 

3.3. GWAS Results 

The GWAS results are displayed in Figure 3 and Table 2. In total, 8 SNPs surpassed 

the genome-wide significance level and 23 SNPs reached the suggestive threshold. In de-

tail, on chromosome 7, the GLP1R gene corresponding to the significant SNP 

(ALGA0040227) was significantly associated with BL. Moreover, at the suggestive level, 

another 4 SNPs located on chromosome 7 were also associated with BL, including 

ALGA0039856, ASGA0032589, ALGA0040238, and INRA0024788, which were respec-

tively mapped to genes SNRPC, NFYA, GLP1R, and GLP1R. Regarding the CC trait, 4 

SNPs reached the significant level. Among these 4 SNPs, H3GA0003059 and 

ALGA0004562 on chromosome 1 were mapped to genes NANOG and COX7A2, respec-

tively. ASGA0050356 and ALGA0065112 located on chromosomes 11 and 12 were respec-

tively mapped to genes FAM216B and CACNG1. Furthermore, 9 SNPs (ASGA0057447, 

ALGA0111294, MARC0074335, MARC0090402, ASGA0073620, ALGA0024545, 

Figure 2. The distribution of SNPs on autosomal chromosomes and the principal component analysis.
(A), The distribution of SNPs within a 1 Mb window size. (B), The lollipop-plot of top ten principal compo-
nents. Index means top ten principal components and por represents proportion of explained variance.

3.2. Results of Population Structure and Kinship Analyses

The principal component analysis was performed for the tested Shaziling individ-
uals to avoid the false-positive results caused by population stratification, which was
considered as an important influencing factor to the reliability of the GWAS result. The
results showed that the first four principal components could be included in the GWAS
model as covariates (Figures 2B and S1). Besides, a kinship matrix was also used as the
covariate in the fixed effects model for GWAS analysis. The kinship heat map was shown
in Supplementary Figure S2.

3.3. GWAS Results

The GWAS results are displayed in Figure 3 and Table 2. In total, 8 SNPs surpassed the
genome-wide significance level and 23 SNPs reached the suggestive threshold. In detail, on
chromosome 7, the GLP1R gene corresponding to the significant SNP (ALGA0040227) was
significantly associated with BL. Moreover, at the suggestive level, another 4 SNPs located
on chromosome 7 were also associated with BL, including ALGA0039856, ASGA0032589,
ALGA0040238, and INRA0024788, which were respectively mapped to genes SNRPC, NFYA,
GLP1R, and GLP1R. Regarding the CC trait, 4 SNPs reached the significant level. Among these
4 SNPs, H3GA0003059 and ALGA0004562 on chromosome 1 were mapped to genes NANOG
and COX7A2, respectively. ASGA0050356 and ALGA0065112 located on chromosomes 11
and 12 were respectively mapped to genes FAM216B and CACNG1. Furthermore, 9 SNPs
(ASGA0057447, ALGA0111294, MARC0074335, MARC0090402, ASGA0073620, ALGA0024545,
DRGA0000770, WU_10.2_12_884330, and WU_10.2_12_890035) at the suggestive-level located
on chromosome 13, 8, 12, 1, 16, 4, 1, 12, and 12, respectively, were also detected to be asso-
ciated with trait CC, and the genes closest to the 9 SNPs were FOXP1, BMPR1B, DNAH9,
ENSSSCG00000060802, CCNG1, COX6C, RIMS1, CCDC57, and CCDC57, respectively.
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Figure 3. Manhattan and quantile-quantile (QQ) plots of the observed −log10(p-values) for BL, CC,
TNB, and NSB in Shaziling pigs. The horizontal red and blue dashed lines in the Manhattan plots
indicate the suggestive level (2.38 × 10−5) and significant level (1.19 × 10−6), respectively. The QQ
plots show the observed −log10-transformed P-values (y-axis) and the expected −log10-transformed
p-values (x-axis).
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Table 2. Potential single-nucleotide polymorphisms (SNPs) and candidate genes identified by the
genome-wide association study for body size and reproduction traits.

Trait SSC 1 SNP Position p-Value MAF 2 β 3 Distance (bp) Candidate Genes

BL 7 ALGA0040227 34835986 9.01 × 10−8 0.41 (A/G) −6.49 301630 GLP1R
BL 7 ALGA0039856 30719424 2.36 × 10−6 0.15 (A/G) −7.27 within SNRPC
BL 7 ASGA0032589 36378825 2.76 × 10−6 0.22 (A/G) −6.24 7890 NFYA
BL 7 ALGA0040238 34856640 1.42 × 10−5 0.33 (G/A) −5.48 322284 GLP1R
BL 7 INRA0024788 34978383 2.38 × 10−5 0.35 (A/G) −5.31 444027 GLP1R
CC 1 H3GA0003059 168650104 2.56 × 10−9 0.02 (A/G) −4.69 414030 NANOG
CC 1 ALGA0004562 90654890 5.95 × 10−7 0.06 (G/A) −2.54 41856 COX7A2
CC 11 ASGA0050356 24088736 7.95 × 10−7 0.02 (A/G) −3.41 224869 FAM216B
CC 12 ALGA0065112 13563645 1.05 × 10−6 0.01 (A/C) −4.85 89321 CACNG1
CC 13 ASGA0057447 52893776 1.24 × 10−6 0.01 (T/A) −5.19 16884 FOXP1
CC 8 ALGA0111294 124178084 1.47 × 10−6 0.04 (G/A) −2.56 360686 BMPR1B
CC 12 MARC0074335 56183179 6.87 × 10−6 0.02 (A/G) −3.11 within DNAH9
CC 1 MARC0090402 48528854 8.86 × 10−6 0.05 (A/G) −2.66 175464 ENSSSCG00000060802
CC 16 ASGA0073620 60469163 1.08 × 10−5 0.01 (G/A) −3.85 112426 CCNG1
CC 4 ALGA0024545 37210968 1.78 × 10−5 0.05 (G/A) −2.58 121604 COX6C
CC 1 DRGA0000770 51978066 1.90 × 10−5 0.03 (G/A) −2.34 within RIMS1
CC 12 WU_10.2_12_884330 884330 1.91 × 10−5 0.04 (G/A) −2.22 within CCDC57
CC 12 WU_10.2_12_890035 890035 1.91 × 10−5 0.04 (A/G) −2.22 within CCDC57

TNB 3 CASI0010189 26899862 1.60 × 10−5 0.03 (A/C) 4.26 129540 SMG1
NSB 8 ASGA0038253 27689768 2.75 × 10−7 0.02 (G/A) 0.88 81655 ARAP2
NSB 1 ALGA0108557 8855372 5.59 × 10−7 0.02 (A/C) 1.08 61868 GTF2H5
NSB 7 ALGA0040524 39239703 5.87 × 10−7 0.01 (G/A) 1.25 5018 SLC29A1
NSB 4 WU_10.2_4_11278211 11278211 3.18 × 10−6 0.01 (A/G) 0.90 418666 FAM49B
NSB 6 CASI0009401 10987986 4.47 × 10−6 0.03 (A/G) 0.68 329863 CNTNAP4
NSB 8 H3GA0024817 41595542 1.01 × 10−5 0.07 (A/G) 0.45 103236 KIT
NSB 3 DIAS0000597 10273754 1.16 × 10−5 0.02 (G/A) 0.88 2896 POR
NSB 18 WU_10.2_18_23986398 23986398 1.46 × 10−5 0.08 (A/G) 0.39 396451 SPAM1
NSB 7 DBMA0000241 45173179 1.58 × 10−5 0.09 (G/A) 0.44 402885 TFAP2B
NSB 17 H3GA0048552 36746539 1.70 × 10−5 0.15 (A/G) 0.31 within BPIFA3
NSB 4 WU_10.2_4_11747027 11747027 1.81 × 10−5 0.01 (C/A) 0.96 45942 ENSSSCG00000060440
NSB 7 WU_10.2_7_7925995 7925995 2.07 × 10−5 0.12 (A/C) 0.34 11934 NEDD9

BL, body length; CC, chest circumference; TNB, total number born; NSB, number of stillborn. 1 Sus scrofa
chromosome. 2 allele frequency of first listed marker. 3 allele substitution effect.

For reproduction traits, the SMG1 gene on chromosome 3 was found to be nearest
to suggestive SNPs (CASI0010189) related to TNB. In addition, 3 SNPs (ASGA0038253,
ALGA0108557, and ALGA0040524) in significant-level located on chromosome 8, 1, and 7,
respectively, were detected to be related with trait NSB, and the genes nearest to the 3 SNPs
were ARAP2, GTF2H5, and SLC29A1, respectively. Moreover, 9 SNPs (WU_10.2_4_11278211,
CASI0009401, H3GA0024817, DIAS0000597, WU_10.2_18_23986398, DBMA0000241,
H3GA0048552, WU_10.2_4_11747027, and WU_10.2_7_7925995) in suggestive-level located
on chromosome 4, 6, 8, 3, 18, 7, 17, 4, and 7, respectively, were also detected to be related
with the NSB trait, and the genes nearest to the 8 SNPs were FAM49B, CNTNAP4, KIT, POR,
SPAM1, TFAP2B, BPIFA3, ENSSSCG00000060440, and NEDD9. However, no suggestive or
significant SNPs were found to relate to MUMM and NHB (Supplementary Figure S3).

3.4. Enrichment Analysis

In order to obtain more insights into the functions of the 18 and 13 SNPs respectively
related to the indicators of the body measurement traits (BL and CC) and reproductive
phenotypes (NHB and NSB) of the Shaziling population, the corresponding candidate gene
was used for enrichment analysis. The significant GO terms mainly included “GO:0008528:
G protein-coupled peptide receptor activity”, “GO:0002063: chondrocyte development”,
“GO:0006687: glycosphingolipid metabolic process”, “GO:0043588: skin development”,
and “GO:0005246: calcium channel regulator activity” (Figure 4A). On the other hand, the
KEGG pathways are mainly related to signaling pathways regulating the pluripotency of
stem cells, Glycosaminoglycan degradation, and MAPK signaling pathway (Figure 4B).
Other detailed annotated information can be found in Supplementary Table S1.
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4. Discussion

To our knowledge, this is the first study evaluating the relationship between body
measurement and reproductive phenotypes for female Shaziling pigs, and their associated
genetic architecture by GWAS analysis.

Previous studies have indicated that body measurement traits could be the indicator
of reproduction potential in sows [22–24] and cows [25]. However, in the current study, we
did not observe significant effects of BL and CC on reproduction traits. Similarly, previ-
ous studies in Danish crossbred sows (Yorkshire × Landrace) and the Duroc population
showed no statistically significant associations between BL and reproduction traits like
litter size [26,27]. These results implied that body measurement traits have little influence
on reproduction performance. However, it is necessary to enlarge the Shaziling population
and types of body measurement traits in future correlation analyses to validate our findings.
On the other hand, studies verified that the BL and CC exhibited low to moderate heri-
tability [28,29]. We have presented here the same tendency for heritability in the two traits,
suggesting that it is practicable to improve the body dimensions in Shaziling pigs through
genetic selection. In addition, the genomic heritability of reproduction traits (TNB, NHB,
NSB, and MUMM) were low. As a typical quantitative trait, litter traits are co-regulated
by the interactions of many genes [30]. The low heritability of reproduction traits implies
that accurately identifying more candidate genes related to reproduction traits would be
helpful for breeders to improve reproduction performance.

Body measurement traits such as BL and CC are usually associated with growth traits
and meat production. For example, it has been reported that BL and CC were positively
associated with body weight [31]. BL is a vital factor affecting livestock slaughter perfor-
mance, as a longer carcass signifies longer loins and more meat production [32]. In addition,
the swine carcass length was positively correlated with the total lean meat content [33]. In
the current work, a series of candidate genes corresponding to different SNPs for BL and
CC were identified. As for BL, one of the significant candidate genes was GLP1R, which
was the nearest gene for three different SNPs on chromosome 7. According to a previous
study, GLP1R was expressed in primary osteoclasts, bone marrow cells, and osteoblasts [34].
In addition, the study revealed that mice lacking GLP1R displayed negative effects on bone
strength and quality, the apparent symptoms including impaired mechanical properties,
a significant decrease in the bone’s outer diameter and cortical thickness [35]. Our GO
functional annotation analysis revealed that GLP1R is related to the G protein-coupled
peptide receptor activity. Interestingly, the G-protein coupled receptor family has been
reported to correspond with regulating limb patterning and skeletal morphogenesis, as
well as morphogenesis during embryonic development [36,37]. This indicated that GLP1R
might be the critical regulator of skeletal bone mass, so it was supposed to be a strong
candidate gene for BL. Except for GLP1R, we found that the candidate gene NFYA was also
associated with BL. It has been demonstrated that NFYA was an essential modulator in
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governing embryonic cartilage growth [38]. Moreover, the overexpression of two NFYA
isoforms exerts different functions on myoblasts, with NFYAs increasing cell proliferation
and NFYAl promoting differentiation [39]. We contend that NFYA might play impor-
tant roles in modulating the formation of myoblasts and cartilage that ultimately affect
the development of BL. Regarding the CC, the candidate genes were NANOG, COX7A2,
CACNG1, FOXP1, BMPR1B, DNAH9, CCNG1, COX6C, RIMS1, and CCDC57. Among
them, researchers found that NANOG-expressing human bone marrow mesenchymal stem
cells (MSCs) had much higher capabilities for expansion and osteogenesis [40]. A GWAS
analysis in humans has reported that COX7A2 and RIMS1 were identified as candidate
genes for osteoarthritis [41,42], and COX7A2 was highly expressed in cartilage [43]. In
another study, CACNG1 is thought to participate in modulating postmenopausal osteo-
porosis via Ca2+ regulation during muscle contraction [44]. Go analysis results showed
that CACNG1 is involved in the process of calcium channel regulator activity. In recent
years, the forkhead box protein (FOX) family has been reported to play important roles in
different kinds of physiological bone processes [45]. For example, during the process of
osteogenic differentiation, the expression of FOXP1 was enhanced under the regulation of
circFOXP1 [46]. Additionally, a study also indicated that a decrease in FOXP1 level was
accompanied by the augmented expression of PPARγ, which serves as a master regulator
in adipocyte differentiation [47]. Over-expression of the FOXP1 in adipose cells affects
adaptive thermogenesis and boosts diet-induced obesity [48]. GO results showed that
FOXP1 is involved in the process of osteoclast development. It has been established that
fat is the primary factor impairing body size. FOXP1 might play essential roles in lipid
metabolism and osteogenic differentiation, so the FOXP1 gene could be considered as a
strong candidate gene for the CC. In sheep, BMPR1B was detected as a candidate gene for
variation in mature size [49]. In addition, BMPR1B participates in skeletal patterning, and
is mainly found in differentiated chondrocytes and osteoblasts, and is also expressed in
mesenchymal pre-cartilage condensations [50,51]. COX6C was identified as a critical gene
involved in regulating osteoblast mineralization and mitochondrial bioenergetics [52].

TNB and NSB are key indicators for measuring sow reproduction performance. In
TNB, gene annotation results showed that SMG1 was the closest gene for SNPs CASI0010189
on chromosome 3. It has been reported that SMG1 is a necessary kinase for mouse embryo-
genesis. The absence of SMG1 would be fatal to embryonic development, mainly due to
the profound developmental defects (e.g., brain and heart) [53]. In daily production, high
proportions of NSB cause serious economic losses. We here found several candidate genes,
including ARAP2, GTF2H5, SLC29A1, FAM49B, CNTNAP4, KIT, POR, SPAM1, TFAP2B,
BPIFA3, and NEDD9, that were potentially associated with NSB. For ARAP2, a GWAS
analysis in Chinese Holstein cows found that it was associated with loin strength (LS), a
reproduction-associated body-shape trait [25]. Cows with a weak loin usually possess a
sinking uterus, which could easily lead to reproductive system diseases [54]. Whole exome
sequencing for a male neonate with premature rupture of membranes and intrauterine
growth restriction showed that GTF2H5 gene mutations induced severe clinical manifes-
tations including multiple-organ failure [55]. SLC29A1, also called ENT1, belongs to the
solute carrier (SLC) family. It was initially found from a human placental DNA library [56].
According to previous studies, the change in SLC drug transporter expression impacts the
drug’s disposition and pharmacokinetics in the placenta, and a variety of substrates includ-
ing toxins, nutrients, and signaling molecules are transported by SLC transporters during
pregnancy [57,58]. Although previous research has not provided evidence to support a
causal association between them, SLC29A1 might be a potential causal biomolecule for NSB.
CNTNAP4 is a member of the neurexin superfamily and is essential for synaptic function
and neural development [59]. In addition, a study showed that CNTNAP4 is necessary
for the proliferation of embryonic neural progenitor cells (NPCs) in mice [60]. Notably,
a GWAS study in beef cattle found that the CNTNAP4 gene was associated with fertility
traits [61]. In the KIT mutation murine model, a reduction in placental vascularization
was present, which finally resulted in the placenta developing irregularly and embryos
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presenting with severe growth retardation and dying in the uterus [62,63]. Moreover, GO
analysis found that the KIT gene participates in the glycosphingolipid metabolic process.
Intriguingly, an earlier study indicated that glycosphingolipid composition is important for
the growth and differentiation of trophoblast cells during pregnancy [64]. These results
suggested that KIT might be the important regulator for healthy embryonic development.
It should be regarded as a strong candidate gene for NSB.

Recently, a study of prenatal and postnatal deaths for three sibling fetuses revealed
that the combination of CNV and SNV in the mutated POR gene was responsible for their
death [65]. SPAM1, a hyaluronidase, played roles in binding to sperm during capacitation,
elevating cumulus dispersal efficiency and the capacity of sperm to across the cumulus
of oocytes [66,67]. KEGG results showed that SPAM1 is involved in glycosaminoglycan
degradation pathways. Of note, in the developmental process of embryos and fetuses,
glycosaminoglycans play essential roles in cell morphogenesis, growth, differentiation, and
cell migration [68,69]. SPAM1 may affect the expression pattern of the glycosaminoglycan
degradation pathway, which ultimately affects embryonic development. TFAP2B is a
member of the transcription factor TFAP2 family, also called AP-2. Earlier researchers found
that TFAP2A-deficient mice suffered from anomalies, such as anencephaly, congenital heart
disease, and body-wall defects [70–72]. According to earlier reports, TFAP2B-deletion
led to neonatal mice death due to the massively increased apoptotic cell death for renal
epithelial cells [73,74]. A subsequent study demonstrated that TFAP2B−/− mice exhibited
developmental defects in the ductus arteriosus and limbs [75]. Thus, TFAP2B could be
regarded as a strong candidate gene for NSB, because of its central role in teratogenicity.
NEDD9, a target gene of TGF-beta, was identified in Yorkshire sows as a candidate core
gene for litter size [76]. Besides, NEDD9 regulates the invasion and proliferation of ectopic
endometriotic stromal cells [77].

The duration of pigs’ farrowing and estrous cycles are considered as critical factors
of reproduction traits. A short duration of farrowing is vital for piglet survival as a delay
can elevate the number of stillborn [78]. Another research indicated that the estrous cycles
might affect litter size by influencing the ovulation rate [79]. Besides, the reproduction
records in multiparous sows are also important phenotypes for the GWAS study. However,
owing to the effects of the African Swine fever virus, during that period, many sows’ mating
was suspended in the Shaziling pig farm, so that limited information for reproduction traits
were obtained from that Shaziling pig farm, and only the first-parity records were included
in this GWAS study. In the future, these reproduction traits-related factors shall be included
in the model and the results shall be verified in a larger Shaziling population. In addition,
metabolism and metabolic biomarkers have been previously implicated in studies of sows’
fertility, and the metabolite biomarkers could be the important phenotype in terms of sows’
reproduction potential [80]. Moreover, a recent report in our group for comparisons of
carcass traits, meat quality, and serum metabolome between Shaziling and Yorkshire pigs
has suggested that a higher serum L-carnitine content is a promising indicator for better
meat quality of pigs [12]. Therefore, serum metabolite should also be regarded as a key
trait for GWAS research in future study.

Chip-based SNP markers have been widely used in genomic studies because of their
abundance in the genome and their low cost [81]. In this study, we applied the Porcine
SNP 50k Chip for genotyping samples. In the early phase of the project for Shaziling pigs,
the main object of genotyping samples was to identify the pureblood individuals and
pedigree relationships for the Shaziling population. Afterwards, based on the previous
results, we further measured the body size and reproduction traits for the pure Shaziling
pigs. Then, this first GWAS study for the Shaziling population was carried out. With the
development of sequencing technology and an analysis method, genotyping-by sequencing
(GBS) is also used for identifying variants nowadays because of its lower cost per data point
(especially for low-pass sequencing data) and the avoidance of ascertainment bias during
genotyping [81]. Recent studies have found that GWAS using low-pass sequencing data
showed similar results to those with SNP chip data, but may require much larger sample
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sizes to show measurable advantages [82]. Compared with other genotyping methods like
GBS, although the SNP chip data in this study may provide limited information throughout
the whole genome, it provided preliminary and useful information for the future selection
and breeding of Shaziling pigs. Meanwhile, we shall acknowledge that a platform such
as GBS should also be used for the detection of candidate functional SNP markers in
Shaziling pigs. In this study, we detected some genetic markers that may affect the body
measurement and reproduction traits of the Shaziling population. Information on the
genomic regions explored in this current work can accelerate the identification of candidate
genes for measurement and reproduction phenotypes. However, we did not identify any
significant SNPs for NHB and MUMM. This may be partly due to the inadequate sample
size used in the current study. Eventually, these outcomes provide meaningful information
for genomic selection in the Shaziling pigs for high-efficiency genetic improvement.

5. Conclusions

By the genome-wide association study in the Shaziling pig breed, we identified
31 SNPs in total that were potentially associated with body size and reproductive traits of
interest. Eighteen functional genes, including GLP1R, NFYA, NANOG, COX7A2, CACNG1,
FOXP1, BMPR1B, COX6C. SMG1, ARAP2, GTF2H5, SLC29A1, CNTNAP4, KIT, POR, SPAM1,
TFAP2B, and NEDD9, were identified as important candidate genes that may regulate the
underlying genetic architecture of porcine body size and reproductive traits. Although the
current study is limited by its small sample size, it helps us to understand the genetic basis
of porcine body measurement and reproduction traits and could be potentially applied in
pig breeding programs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14020522/s1, Figure S1: The PCA chart of Shaziling pigs;
Figure S2: The kinship relationships of Shaziling pigs; Figure S3: Manhattan and quantile-quantile
(QQ) plots of the observed −log10(p-values) for MUMM and NHB in Shaziling pigs. The horizontal
red and blue dashed lines in the Manhattan plots indicate the suggestive level (2.38 × 10−5) and
significant level (1.19 × 10−6), respectively. The QQ plots show the observed −log10-transformed
p-values (y-axis) and the expected −log10-transformed p-values (x-axis); Table S1: The detailed
information for GO terms and KEGG pathways.
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