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Abstract: Physical inactivity and a poor diet increase systemic inflammation, while chronic inflam-
mation can be reduced through exercise and nutritional interventions. The mechanisms underlying
the impacts of lifestyle interventions on inflammation remain to be fully explained; however, epi-
genetic modifications may be critical. The purpose of our study was to investigate the impacts
of eccentric resistance exercise and fatty acid supplementation on DNA methylation and mRNA
expression of TNF and IL6 in skeletal muscle and leukocytes. Eight non-resistance exercise-trained
males completed three bouts of isokinetic eccentric contractions of the knee extensors. The first bout
occurred at baseline, the second occurred following a three-week supplementation of either omega-3
polyunsaturated fatty acid or extra virgin olive oil and the final bout occurred after eight-weeks of
eccentric resistance training and supplementation. Acute exercise decreased skeletal muscle TNF
DNA methylation by 5% (p = 0.031), whereas IL6 DNA methylation increased by 3% (p = 0.01).
Leukocyte DNA methylation was unchanged following exercise (p > 0.05); however, three hours
post-exercise the TNF DNA methylation decreased by 2% (p = 0.004). In skeletal muscle, increased
TNF and IL6 mRNA expression levels were identified immediately post-exercise (p < 0.027); however,
the leukocyte mRNA expression was unchanged. Associations between DNA methylation and
markers of exercise performance, inflammation and muscle damage were identified (p < 0.05). Acute
eccentric resistance exercise is sufficient to induce tissue-specific DNA methylation modifications
to TNF and IL6; however, neither eccentric training nor supplementation was sufficient to further
modify the DNA methylation.

Keywords: DNA methylation; epigenetics; resistance exercise; fatty acids; skeletal muscle; leukocytes;
inflammation; IL6; TNF

1. Introduction

An acute inflammatory response, characterised by elevated levels of pro-inflammatory
cytokines such as IL-6 and TNFα [1], is required to minimise the damage triggered by
pathogens, damaged tissues and toxic compounds to maintain tissue homeostasis [2]. When
the acute inflammatory response is uncontrolled it develops into chronic inflammation,
which is a risk factor for several diseases including cancer [3,4], type-2-diabetes [5], car-
diovascular disease [6] and myopathies [7–9]. Inflammation can also be influenced by
environmental factors; a lack of physical activity and a poor diet increase the expression
of pro-inflammatory cytokines [10], whereas exercise and nutritional interventions have
anti-inflammatory properties and can be used as effective treatments for inflammatory
disorders [1,11–13]. The molecular mechanisms responsible for the interactions between
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lifestyle factors and inflammation remain to be fully explained; however, the reversible
environmental impact of physical activity indicates that epigenetic modifications may be
critical in the regulation of inflammatory processes.

The DNA methylation status of pro-inflammatory cytokines is associated with var-
ious inflammatory diseases, including TNF with type 2 diabetes [14] and Alzheimer’s
disease [15] and IL6 with rheumatoid arthritis [16] and obesity [17]. Exercise training
is associated with various health outcomes, including a reduction in chronic systemic
inflammation [1,18,19]. Conversely, acute exercise, particularly in individuals who are
unaccustomed to the stimulus, causes local damage to the working muscles, with greater
damage occurring when eccentric contractions are performed [20–22]. The muscle dam-
age response increases the expression of pro-inflammatory cytokines, including IL-6 and
TNF-α [22,23], and stimulates leukocyte infiltration into the muscle, which further attracts
macrophages to remove the damaged muscle fibres and leads to the release of various
growth factors that regulate satellite cell proliferation differentiation [24]. Unlike chronic
inflammation, which is associated with skeletal muscle atrophy via the hypermethylation
of MyoD [25], the expression of cytokines following acute exercise is critical for the repair,
regeneration and hypertrophy of skeletal muscle [9,26,27]. Resistance exercise is sufficient
to modify the mRNA expression of IL6 and TNF in skeletal muscle, but not leukocytes [28].
The tissue-specific transcriptional changes following resistance exercise suggest that epi-
genetic mechanisms may control the exercise-induced production of cytokines; however,
there is a lack of studies investigating the DNA methylation of these critical cytokines in
response to muscle-damaging exercise.

The majority of the literature investigating the impacts of exercise on DNA methy-
lation has focused on the impacts of aerobic training [29–34] and acute bouts of aerobic
exercise [35–39], whereas limited studies exist regarding the epigenetic consequences of
acute [40,41] and chronic [40,42] resistance exercise. A study that compared the impacts of
both modes of exercise determined that the methylome response to aerobic and resistance
exercise stimuli is regulated by different molecular pathways [43]. Mode-specific regula-
tion of the methylome is expected considering aerobic and resistance exercise elicit vastly
different adaptations [44]; however, both aerobic and resistance exercise result in modifi-
cations in methylation for genes associated with inflammatory pathways, indicating that
DNA methylation responses are possible mechanisms controlling the impacts of exercise
on inflammation.

The supplementation of the diet with fatty acids (FAs), particularly n-3 PUFAs, has
been demonstrated to promote an anti-inflammatory phenotype and reduce the concentra-
tion of inflammatory cytokines [45–47]. While the mechanisms for FA-induced reductions
in inflammation remain to be fully elucidated, an epigenetic response following supple-
mentation has been reported [48,49], including for IL6 DNA methylation [49]. The impact
of n-3 PUFAs on exercise-induced inflammation is equivocal, with no consensus existing
within the literature. While some studies have identified reductions in exercise-induced
inflammation following FA supplementation [50,51], others have reported no change in
inflammation [52,53]. The lack of a previous association with exercise-induced inflamma-
tion could be a result of using placebos containing other FAs, such as extra virgin olive oil
(EVOO), as a comparison; however, these should be investigated independently because
of previous reports indicating EVOO supplementation to be sufficient to alter the DNA
methylation of genes associated with inflammation [54].

In the current study, we investigated the impacts of acute eccentric resistance exercise
on TNF and IL6 DNA methylation and mRNA expression in skeletal muscle and leukocytes
in disease-free individuals and examined whether the supplementation of FAs and eccentric
resistance training further modified the response. We also investigated the association
between skeletal muscle and leukocyte DNA methylation and physiological markers related
to exercise performance, inflammation and muscle damage.
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2. Materials and Methods
2.1. Study Participants

The participants (n = 8) were healthy, non-smoking males who reported no history
of resistance exercise training, metabolic or cardiovascular disease or medication use
during the pre-participation health screening. In the six months before the study, the
participants had no history of n-3 PUFA, antioxidant or anti-inflammatory supplementation
and habitually consumed less than two portions of oily fish per week. The study was
approved by the Loughborough University Ethics Human Participants sub-committee
(R15-P124).

2.2. Study Overview

A randomised, repeated-measures design with parallel pair-matched groups for iso-
metric and eccentric quadricep strength was used. The study consisted of a familiarisation
phase for the study protocols and three experimental trials. The participants self-recorded
their dietary intake and physical activity for the 24 h before the initial trial and replicated
before each subsequent trial. Between trials, the participants were asked to maintain
their habitual diet and report any new instances of medication use. Figure 1 provides a
schematic representation of the experimental trials. The first two trials (trial A and trial B)
were separated by a three-week double-blind supplementation phase of either n-3 PUFA or
EVOO. The participants then completed an eight-week eccentric training program of the
knee extensors using the Humac Norm isokinetic dynamometer (CSMI, Stoughton, MS,
USA). The participants completed two training sessions per week (minimum of three days
between training sessions). The first training session was completed three days following
trial B, and the last training session was performed three days before trial C.
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2.2.3. Supplementation 

Figure 1. Schematic representation of the (A) study and (B) trial day. The collection of blood
and skeletal muscle tissue is indicated by X. Following the completion of performance test 3, the
participants were free to leave the laboratory and returned 30 min before performance test 4 (48 h
post-MD). MD, muscle-damaging exercise; Perf., performance test.

On the morning of each trial, the participants reported to the laboratory at the same
time of the morning in a fasted and rested state. An intravenous catheter was inserted for
the collection of blood samples and the lateral portion of the vastus lateralis was prepared
under local anaesthesia (1% lidocaine) for the collection of skeletal muscle tissue using the
percutaneous needle biopsy technique with suction. Following the collection of baseline
samples, the participants completed a performance test followed by a muscle damage pro-
tocol. Further skeletal muscle and venous blood samples were collected before performance
tests immediately post-exercise (Post-ex) and 3 h post-exercise (Post-ex + 3 h; Figure 1B).
The intravenous cannula was removed after completion of the performance test Post-ex
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+ 3 h and the participants were free to leave the laboratory. The participants returned to
the laboratory 30 min before the performance test 48 h post-exercise (Post-ex + 48 h) for the
collection of venous blood via venepuncture (Figure 1B).

2.2.1. Performance Test

The participants completed a five-minute warm-up on a cycle ergometer (Lode B.V,
Groningen Netherlands) at 75 W. The participants then completed countermovement jumps
(CMJ) using a Quattro-Jump 9290AD force platform (Kistler, Winterthur, Switzerland).
Three CMJs were completed, with one min recovery between efforts; if the peak height
was achieved on the final jump, another jump was performed (maximum of five efforts).
The participants then performed bilateral maximal voluntary contractions (MVC) of the
knee extensors using a Humac Norm isokinetic dynamometer (CSMI, Stoughton, MA,
USA). Once positioned on the dynamometer, a warm-up of submaximal contractions
(2 × 50%, 1 × 75% and 1 × 90% of perceived MVC; 30 s between efforts) was performed
followed by isometric, concentric and eccentric isokinetic MVCs of the knee extensors. For
the evaluation of isometric torque, three 3 s isometric contractions of the knee extensors
were performed (75◦ of knee flexion) with a rest period of 30 s between contractions. The
maximal concentric and eccentric torque levels were assessed using an angular velocity of
60◦/s and a range of motion between 10◦ and 90◦ of knee flexion with 30 s rest between
contractions. Verbal encouragement and visual feedback were provided. The highest peak
torque obtained during the MVCs was used for the analysis.

2.2.2. Eccentric Muscle Damage Protocol

The eccentric muscle damage protocol was performed on the Humac Norm isokinetic
dynamometer. The protocol consisted of 20 sets of bilateral maximal voluntary isokinetic
eccentric contractions of the knee extensors at an angular velocity of 60◦/s using a range of
motion between 10 and 90◦. Each set consisted of 10 repetitions (reps) and was separated
by a one-minute rest period. The participants began with their leg at the start position
(10◦) and were asked to maximally contract the knee extensors against resistance while the
lever arm moved to the finish position (90◦ knee flexion). Once the lever arm reached 90◦,
the participants were asked to relax their leg and allow the lever arm to return to the start
position (avoiding concentric contraction of the knee extensors). Verbal encouragement
and visual feedback (torque output and work done) were provided throughout the muscle
damage protocol.

2.2.3. Supplementation

Using a double-blind design, the participants were assigned to either n-3 PUFA
(n = 4) or EVOO (n = 4) supplementation. The groups were counterbalanced for baseline
strength measurements. Both the n-3 PUFA (Norwegian Pure-3 AS, Oslo, Norway) and
EVOO (Norwegian Pure-3 AS, Oslo, Norway) supplements were provided in capsule
form following trial A. The participants were instructed to consume six capsules per day
providing 5.1 g of n-3 PUFA (3.0 g of EPA, 1.2 g of DHA and 0.9 g of DPA and other n-3
PUFAs) or 6 g of EVOO per day for the entirety of the study (11 weeks). The dose was
chosen based on previous findings showing a similar dose was sufficient to induce changes
to the FA profiles of both blood and skeletal muscle [55]. Returned capsules were counted
to determine the supplementation compliance.

2.3. Collection of Biological Samples

Venous blood samples were collected into K2EDTA-coated vacutainers (BD Biosciences,
Franklin Lakes, NJ, USA) for analyses of DNA methylation and mRNA expression. Serum
samples were isolated from venous blood samples collected in silica-coated vacutainers (BD
Biosciences, Franklin Lakes, NJ, USA) for the determination of protein markers of muscle
damage and inflammatory cytokines at the Pre-ex, Post-ex, Post-ex + 1 h, Post-ex + 3 h
and Post-ex + 48 h timepoints (Figure 1B). Blood cell counts were also performed at
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each time point using a Yumizen H500 system (Horiba Medical, Kyoto, Japan). Skeletal
muscle biopsies were obtained for the determination of DNA methylation and mRNA
expression from 6 of the 8 participants (2 participants opted out of biopsies but completed
the remaining parts of the study). Following collection, the skeletal muscle tissue was
blotted dry and any visible fat or connective tissue was removed, snap-frozen in liquid
nitrogen and stored at −80 ◦C prior to the analysis.

2.4. DNA Methylation

Genomic DNA was extracted and bisulfite-converted from both whole blood and
skeletal muscle using the EpiTect Fast LyseAll Bisulfite Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions. The TNF and IL6 DNA methylation levels
were determined using custom PyroMark assays as previously described [39]. Briefly,
the bisulfite-converted DNA was amplified using the PyroMark PCR kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions. The DNA methylation percentage
was then determined using a PyroMark Q48 Autoprep system (Qiagen, Hilden, Germany)
set in CpG mode using PyroMark Q48 Advanced CpG reagents (Qiagen, Hilden, Germany).
A non-CpG cytosine was included in the nucleotide dispensation order to detect incomplete
bisulfite conversion.

2.5. mRNA Expression

RNA was extracted from whole blood using TRIzol LS (Invitrogen, Waltham, MA,
USA) and skeletal muscle using TRI Reagent (Sigma-Aldrich, St. Louis, MO, USA) accord-
ing to the manufacturer’s instructions. The concentration of RNA isolated from whole
blood was 55.36 (±16.60) ng/µL with an A260/A280 ratio of 1.97 (±0.05), whereas the
concentration of RNA isolated from skeletal muscle was 403.34 (±151.99) ng/µL with an
A260/A280 ratio of 2.04 (±0.03). The mRNA expression was then determined as previously
described [39]. Briefly, a maximum of 2 µg of RNA was cDNA-converted and the relative
mRNA expression for TNF and IL6 was assessed using the 2−(∆∆Ct) method using GAPDH
as the reference gene [56]. The mean Ct values for GAPDH were consistent across all par-
ticipants and experimental conditions in whole blood (17.31 ± 0.725) and skeletal muscle
(12.89 ± 0.475), with low variation rates of 4.18% and 3.68%, respectively.

2.6. Protein Markers

The circulating levels of IL-6 and TNF-α were determined using BD™ Cytometric
Bead Array Enhanced Sensitivity Flex Sets (BD Bioscience, Franklin Lakes, NJ, USA) on a
BD AccuriTM C6 Flow Cytometer (BD Bioscience, Franklin Lakes, NJ, USA) according to the
manufacturer’s instructions. The creatine kinase (CK), lactate dehydrogenase (LDH) and
myoglobin (Mb) concentrations were determined using ABX Pentra assays (Horiba Medical,
Kyoto, Japan) on a Pentra C400 analyser (Horiba Medical, Kyoto, Japan) according to the
manufacturer’s instructions. All samples for a participant were performed within a single
run to minimise run-to-run variation. Haematocrit and haemoglobin values were used to
ascertain the plasma volume changes that were used to adjust the serum concentrations [57].

2.7. Statistical Analysis

All statistical analyses were performed using IBM SPSS Statistics software (version 25,
IBM, New York, NY, USA). The data were assessed for normality using the Shapiro–Wilk
test. All leukocyte DNA methylation analyses were conducted on cell-heterogeneity-
adjusted values [58]. DNA methylation differences between tissues at baseline (trial A;
Pre-ex) were investigated using t-tests. An analysis of mRNA expression was performed
on log fold change data. DNA methylation, mRNA expression and physiological mark-
ers related to inflammation and muscle damage were analysed using a 3-way between
(supplement) × within (trial) × within (time) repeated-measures ANOVA. Where signifi-
cant effects were observed, the Bonferroni correction was used to control the familywise
error rate. Spearman’s Rho correlation analysis was used to assess the relationship between
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DNA methylation and physiological markers related to exercise performance, inflammation
and muscle damage. Moderate (>0.5) correlation coefficients were of interest; however,
only large (>0.7) correlation coefficients were deemed statistically significant (p < 0.05). All
data are presented as means ± 95% CI unless otherwise stated.

3. Results
3.1. TNF DNA Methylation and mRNA Expression

In skeletal muscle, a reduction in the mean DNA methylation of the TNF CpG sites
and an increase in TNF mRNA expression were identified at the Post-ex timepoint (p < 0.05;
Figure 2). The investigation of individual CpG sites identified decreased methylation at
Post-ex for two CpG sites (CpG3 and CpG4; p < 0.05; Table 1) and non-significant trends for
the remaining CpG sites (CpG1: p = 0.084; CpG2: p = 0.055; Table 1).
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In leukocytes, a main time effect was also identified; however, the decrease in TNF
methylation was identified at Post-ex + 3 h (p < 0.05; Figure 2B). The analysis of individual
CpG sites identified the association for three CpG sites (CpG2-4: p < 0.05; non-significant
trend identified for CpG1: p = 0.057; Table 1). Despite the change in DNA methylation,
exercise was not sufficient to alter the leukocyte TNF mRNA expression (p > 0.05; Figure 2D).

The supplementation of FAs (trial B) and continued FA supplementation combined
with exercise training (trial C) did not alter DNA methylation of TNF in either skeletal
muscle or leukocytes (Figure 2).

3.2. IL6 DNA Methylation and mRNA Expression

In skeletal muscle, an increase in the mean IL6 DNA methylation was identified at
Post-ex (p < 0.05; Figure 3A). When individual CpG sites were analysed, the increased DNA
methylation at Post-ex was significant for each CpG site (p < 0.05; Table 2) and decreased
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to the Pre-ex levels for all CpG sites other than CpG2 and CpG5 (Table 2). Similarly, an
immediate increase in skeletal muscle IL6 mRNA expression at Post-ex was identified;
however, mRNA expression returned to Pre-ex expression levels by Post-ex + 3 h (p < 0.01;
Figure 3C).

Table 1. DNA methylation of TNF CpG sites. Data presented as the mean of all trials ± standard deviation.

CpG site Tissue Pre-Ex Post-ex Post-ex + 1 h Post-ex + 3 h Post-ex + 48 h p

TNF
CpG1: +197

Skeletal
muscle 29.63 ± 3.04 26.21 ± 3.98 N.D. 29.17 ± 3.32 N.D. 0.084

Leukocytes 13.77 ± 1.55 13.01 ± 2.05 12.06 ± 1.81 12.17 ± 2.03 13.45 ± 1.97 0.057

TNF
CpG2: +202

Skeletal
muscle 24.32 ± 2.70 20.82 ± 3.40 N.D. 23.35 ± 2.83 N.D. 0.055

Leukocytes 11.2 ± 1.61 a 10.86 ± 1.66 ab 10.04 ± 1.96 ab 10.01 ± 1.75 b 11.09 ± 1.57 ab 0.048

TNF
CpG3: +214

Skeletal
muscle 29.09 ± 2.59 a 25.37 ± 4.03 b N.D. 27.87 ± 3.09 ab N.D. 0.044

Leukocytes 12.97 ± 1.82 a 12.43 ± 2.00 ab 11.67 ± 2.23 ab 11.58 ± 1.93 b 12.7 ± 1.99 ab 0.020

TNF
CpG4: +222

Skeletal
muscle 50.53 ± 3.95 a 42.7 ± 6.51 b N.D. 48.37 ± 5.09 ab N.D. 0.012

Leukocytes 15.60 ± 1.76 a 13.97 ± 2.05 ab 12.6 ± 2.00ab 12.78 ± 1.66 b 15.41 ± 2.23 a 0.001

Values not sharing a letter (a,b) are significantly different for simple interactions of time (p < 0.05) after Bonferroni
correction for multiple tests. N.D., not determined.
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Table 2. DNA methylation of IL6. Data presented as the mean of all trials ± standard deviation.

CpG Site Tissue Pre-Ex Post-Ex Post-Ex + 1 h Post-Ex + 3 h Post-Ex + 48 h p

IL6
CpG1: -1099

Skeletal
muscle 73.06 ± 4.33 a 77.96 ± 5.68 b N.D. 76.06 ± 3.48 ab N.D. 0.009

Leukocytes 90.81 ± 1.57 90.53 ± 1.05 91.12 ± 1.35 91.6 ± 1.22 90.57 ± 1.54 0.308

IL6
CpG2: -1096

Skeletal
muscle 77.40 ± 3.14 a 81.01 ± 3.87 b N.D. 79.04 ± 3.08 c N.D. 0.001

Leukocytes 90.56 ± 1.21 a 91.14 ± 1.16 ab 91.25 ± 1.09 ab 91.76 ± 0.81 b 90.67 ± 0.76 a 0.029

IL6
CpG3: -1094

Skeletal
muscle 82.61 ± 3.28 a 84.87 ± 3.28 b N.D. 83.44 ± 2.86 a N.D. 0.025

Leukocytes 90.96 ± 2.17 91.1 ± 2.18 91.06 ± 2.54 91.79 ± 1.86 90.76 ± 1.99 0.098

IL6
CpG4: -1069

Skeletal
muscle 66.13 ± 3.74 a 70.78 ± 5.24 b N.D. 67.31 ± 3.84 a N.D. 0.002

Leukocytes 88.88 ± 1.66 a 87.52 ± 1.90 b 88.28 ± 1.47 ab 89.23 ± 1.23 ab 88.36 ± 1.34 ab 0.016

IL6
CpG5: -1061

Skeletal
muscle 72.41 ± 2.87 a 74.88 ± 3.38 b N.D. 73.83 ± 3.42 c N.D. 0.001

Leukocytes 81.52 ± 2.98 80.91 ± 2.51 81.54 ± 1.98 81.91 ± 2.27 81.27 ± 2.82 0.166

IL6
CpG6: -1057

Skeletal
muscle 74.46 ± 3.74 a 77.55 ± 4.23 b N.D. 75.93 ± 3.86 a N.D. 0.001

Leukocytes 87.94 ± 2.17 88.43 ± 1.59 87.64 ± 1.43 87.91 ± 1.36 87.71 ± 2.10 0.595

Values not sharing a letter (a,b,c) are significantly different for simple interactions of time (p < 0.05) after Bonferroni
correction for multiple tests. N.D., not determined.

There was no significant impact of exercise on the mean leukocyte IL6 DNA methy-
lation of any CpG sites analysed (p = 0.051; Figure 3B). When individual CpG sites were
analysed, a main effect of the time was detected for the methylation of two CpG sites
(CpG2 and CpG4; p < 0.05; Table 2). For CpG2, an increase in methylation was detected
at Post-ex + 3 h, which returned to baseline values by Post-ex+ 48 h (p < 0.05; Table 2);
for CpG4, an immediate decrease in methylation was identified at Post-ex, indicating
differential responses between CpG sites (p < 0.05; Table 2). The IL6 mRNA expression in
the leukocytes was unaltered by exercise (p > 0.05; Figure 3D).

The IL6 DNA methylation and mRNA expression were unaltered following FA sup-
plementation (trial B) and exercise training (trial C) in skeletal muscle and leukocytes
(Figure 3).

3.3. Physiological Markers of Inflammation and Muscle Damage

An effect of the time was identified for serum concentrations of IL-6 (p = 0.001), CK
(p = 0.026) and Mb (p = 0.002). Compared to Pre-ex, increases in the concentration of these
markers were identified at Post-ex and Post-ex + 3 h (p < 0.05; Table 3). The circulating
concentrations of TNF-α and LDH were unaffected by exercise (Table 3).

Table 3. Serum concentrations of protein markers associated with inflammation and muscle damage.

Marker Pre-Ex Post-Ex Post-Ex + 3 h Post-Ex + 48 h p

TNF-α (pg/mL) 0.21 ± 0.17 0.19 ± 0.09 0.27 ± 0.18 0.25 ± 0.15 0.478

IL-6 (pg/mL) 0.46 ± 0.17 a 3.77 ± 2.28 b 2.90 ± 1.35 b 1.17 ± 1.22 ab 0.001

LDH (U/L) 222.62 ± 70.60 240.62 ± 67.16 272.67 ± 68.37 264.78 ± 81.85 0.462

Mb (µg/L) 45.38 ± 24.62 a 284.55 ± 167.62 b 328.68 ± 199.12 b 143.47 ± 206.99 ab 0.002

CK (U/L) 149.58 ± 26.44 a 275.45 ± 78.98 b 479.73 ± 225.80 b 586.50 ± 332.94 ab 0.026

Data presented as the mean of all trials ± standard deviations. Values not sharing a letter (a,b) are significantly
different for simple interactions of time (p < 0.05) after Bonferroni correction for multiple testing. LDH, lactate
dehydrogenase; Mb, myoglobin; CK, creatine kinase.
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Neither FA supplementation or excise training altered the serum concentrations of
any of the inflammation or muscle damage markers (p > 0.05); however, non-significant
trends for the main effect of the trial were detected for CK (p = 0.052) and Mb (p = 0.087),
suggesting a potential reduction in protein concentrations with repeated bouts of exercise
(Supplementary Table S1).

3.4. Association between DNA Methylation and Physiological Markers

At baseline (trial A, Pre-ex) no significant correlations were identified between exercise
performance, circulating levels of inflammatory cytokines or muscle damage markers and
skeletal muscle DNA methylation of TNF or IL6 (p > 0.05; Figure 4); however, moderate neg-
ative correlations were identified between skeletal muscle TNF DNA methylation and leg
extensor strength. In contrast, positive correlations were identified between leukocyte TNF
DNA methylation and leg extensor strength, and between leukocyte IL6 DNA methylation
and circulating IL-6 concentrations (p < 0.01; Figure 4).
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Figure 4. Spearman’s Rho correlation coefficients between baseline (trial A; Pre-ex) DNA methylation
and physiological markers related to exercise performance, inflammation and muscle damage. The
mean of all CpG sites for each assay has been used to provide an overall view of the region of
interest. Blue indicates a negative correlation, red indicates a positive correlation and black indicates
correlation coefficients between −0.5 and 0.5. Note # p < 0.01. CMJ, countermovement jump; LDH,
lactate dehydrogenase; Mb, myoglobin; CK, creatine kinase.

As exercise was sufficient to alter the DNA methylation of TNF and IL6, the correlation
analysis was also performed using the difference between each time point and at Pre-ex for
methylation and physiological markers (Figure 5). Negative correlations were identified
between the change in skeletal muscle TNF DNA methylation and measures of strength
following muscle-damaging exercise, whereas positive correlations were identified be-
tween the change in IL6 DNA methylation and measures of exercise performance (p < 0.05;
Figure 5). No associations were identified between leukocyte TNF or IL6 DNA methylation
and exercise performance (p > 0.05; Figure 5).
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Figure 5. Spearman’s Rho correlation coefficients between changes in DNA methylation at time points
post-exercise (post-exercise–pre-exercise) and physiological markers related to exercise performance,
inflammation and muscle damage. The mean of all CpG sites assessed for each assay has been
used to provide an overall view of the region of interest. Blue indicates a negative correlation, red
indicates a positive correlation and black indicates correlation coefficients between −0.5 and 0.5. Note:
* p < 0.05, # p < 0.01. CMJ, countermovement jump; LDH, lactate dehydrogenase; Mb, myoglobin;
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While no association was identified between the changes in skeletal muscle TNF
DNA methylation and circulating concentrations cytokines or muscle damage markers,
strong negative correlations were identified between the changes in skeletal muscle IL6
and circulating concentrations of inflammatory cytokines and muscle damage markers
following exercise (p < 0.05; Figure 5). The changes in leukocyte TNF and IL6 DNA
methylation following exercise were negatively correlated with the expression of TNF
(p < 0.05; Figure 5); however, no correlations were identified with IL-6 concentrations
post-exercise. No associations were identified between exercise-induced changes in TNF
DNA methylation and markers of muscle damage; however, exercise-induced changes in
IL6 DNA methylation were associated with muscle damage markers (Figure 5).
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4. Discussion

An acute bout of eccentric resistance exercise is sufficient to modulate the DNA
methylation and mRNA expression of cytokines (TNF and IL6) in skeletal muscle and
leukocytes from non-resistance-trained males. A bout of eccentric resistance exercise in
unaccustomed individuals induced the hypomethylation of TNF and hypermethylation
of IL6. Changes in methylation were detected in both skeletal muscle and leukocytes;
however, alterations in mRNA expression were identified only in skeletal muscle. Neither
the supplementation of FAs or eight weeks of resistance training further altered the DNA
methylation or mRNA expression patterns. Despite similar changes in methylation in
skeletal muscle and leukocytes following resistance exercise, differences were identified
at baseline (Supplementary Table S2) and negative correlations were determined between
tissues. Similarly, contrasting associations were identified between DNA methylation and
physiological markers related to exercise performance, inflammation and muscle damage
within each tissue, indicating tissue specificity in the methylation response to resistance
exercise, which should be considered in future work.

The hypomethylation of the first exon of TNF and increased skeletal muscle mRNA
expression following acute resistance exercise is a novel finding. Changes in the methy-
lation status in exons are not as well characterised as the methylation of the promoter;
however, the methylation of the first exon has been strongly associated with translational
silencing [59]. Previous investigations have failed to identify any effect of acute exercise on
TNF DNA methylation [39,41]; however, the decrease in TNF methylation leading to an
increased mRNA expression is supported by a report of decreased TNF methylation and
increased mRNA expression in a patient population compared to healthy controls [60].

In this study, a tissue-specific response was identified for the time course of TNF
hypomethylation, occurring at Post-ex in skeletal muscle, whereas the hypomethylation
was delayed until Post-ex + 3 h in leukocytes. In a previous study, we did not observe any
change in TNF methylation in leukocytes following acute aerobic exercise [39]; however,
methylation was only investigated immediately post-exercise in leukocytes. Therefore,
in this study, we were unable to identify any changes in methylation at later time points.
The only other study to investigate the impact of acute resistance exercise on TNF methy-
lation did not document any changes in methylation in skeletal muscle in either trained
or untrained individuals [41]. The TNF CpG sites analysed in the current study were
associated with mRNA and serum levels [39,61,62], whereas the selection of CpG sites in
a different region of the TNF gene (gene body in the present study vs. promoter region),
which may not be functionally relevant for gene expression, may explain the lack of methy-
lation changes in the previous study [41]. Alternatively, the bout of resistance exercise
(3 sets of 10 reps at 70% of the 1 repetition maximum on a leg extension machine) used
by Bagley et al. [41] may have provided an insufficient stimulus to alter the TNF DNA
methylation, whereas in the present study, through the inclusion of TNF mRNA expression
and markers of inflammation and muscle damage, the exercise bout was indicated to be
sufficient to induce inflammatory processes.

While there is no previous evidence of altered TNF DNA methylation following acute
exercise, TNF has been reported to be hypermethylated in leukocytes from elderly indi-
viduals who maintained or increased their energy expenditure by 500 kcal/week over an
eight-year period [63]. These data are supported by evidence of increased TNF methylation
in the skeletal muscle of resistance-trained compared to sedentary individuals [41]. In the
present study, the 8-week resistance training period was insufficient to alter the methyla-
tion profile in either skeletal muscle or leukocytes; however, it should be noted that the
intervention period in the present study was considerably shorter than in the previous
studies (1 year and 8 years). The increased methylation with exercise training suggests the
differential regulation of TNF by acute resistance exercise and long-term physical activity.
The acute decrease in TNF methylation and concurrent increase in mRNA expression could
be involved in the adaptive response to muscle-damaging exercise via the activation of
satellite cells and increased expression of the myogenic differentiation factors MyoD and
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myogenin [26,27]. Although MyoD and myogenin expression was not determined in the
present study, associations between TNF methylation and knee extensor force production
were identified, suggesting a potential role in the hypertrophic response. However, the
increase in TNF methylation following long-term physical activity may function to reduce
the systemic levels of inflammation associated with disease states and skeletal muscle
atrophy [7]. These data suggest a potential epigenetic role for TNF in controlling skeletal
muscle mass, which is regulated by the stimulus provided by acute and chronic exercise.
For the first time, acute eccentric exercise has been demonstrated to be sufficient to alter
IL6 DNA methylation. Immediately following an acute bout of eccentric resistance exer-
cise, IL6 hypermethylation was identified in skeletal muscle (CpG1-6). Interestingly, the
hypermethylation of IL6 was detected alongside increased IL6 mRNA expression. The
hypermethylation of promoter regions usually results in decreased expression; however,
the results are in agreement with a previous report of a positive association between the
methylation of a single CpG site (−666) closer to the TSS of the IL6 promoter and IL6 mRNA
expression [49]. It has been suggested that the increased skeletal muscle production of
IL-6 may induce an anti-inflammatory response by increasing the expression of IL-1ra and
IL-10 [64] and inhibiting TNF-α production [1,65]. In support of the anti-inflammatory role
of muscle-produced IL-6, we identified a negative correlation between skeletal muscle IL6
methylation and circulating concentrations of TNF-α. The impact of resistance exercise
on leukocyte IL6 methylation is not as clear. In agreement with a previous report [39],
acute exercise did not alter the mean methylation of all CpG sites. In the present study,
contrasting deviations in methylation were identified at individual CpG sites with de-
creased methylation at Post-ex at CpG4 and increased methylation at Post-ex + 3 h at CpG2;
however, the changes in leukocyte methylation were insufficient to alter the IL6 mRNA
expression. The tissue-specific modulation of IL6 DNA methylation and mRNA expression
suggests that epigenetic mechanisms may be responsible for the increased production of
IL-6 in exercising skeletal muscle but not leukocytes [28,66].

The tissue-specific response for methylation following acute eccentric resistance exer-
cise highlights the importance of tissue selection for future studies. Skeletal muscle and
leukocytes are both frequently investigated for the impacts of exercise on DNA methylation;
however, the methylation responses to exercise have not previously been compared in
these tissues. While the DNA sequence is identical across all cells within an individual,
the same is not true regarding epigenetic signatures; each tissue and potentially each cell
contains a unique methylation profile [67]. The collection of skeletal muscle involves an
invasive procedure; therefore, leukocytes are commonly used as a surrogate tissue because
of the ease of collection, and as leukocytes circulate throughout the body they interact with
various organs and biological systems and are considered a systemic marker of methylation
profiles [68]. In the present study, the determination of methylation in both skeletal muscle
and leukocytes allows the direct comparison of tissues. For both TNF and IL6, we identified
negative correlations between methylation in skeletal muscle and leukocytes; differences in
methylation between skeletal muscle and leukocytes at baseline and in response to acute
resistance exercise; and contrasting associations with measures of exercise performance,
inflammation and muscle damage. These data suggest that for the CpG sites investigated
in the present study, leukocytes should not be used as a surrogate for skeletal muscle DNA
methylation investigations; however, these results cannot be generalised to all CpG sites
throughout the genome.

Considering the methylation differences between skeletal muscle and leukocytes, an
important factor for studies conducting research involving muscle-damaging exercise is the
infiltration of leukocytes into skeletal muscle following muscle damage and the potential
impact it may have on DNA methylation profiles. The infiltration of leukocytes into skeletal
muscle would result in genetic material of leukocytes in skeletal muscle samples, which
would impact the determination of DNA methylation. In this study, differences in the
methylation profiles of leukocytes and skeletal muscle for each gene were detected at
baseline; therefore, if leukocyte infiltration has occurred, it could be the causal factor for the
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change in DNA methylation following exercise. There is contrasting evidence of the time
course of leukocyte infiltration following muscle-damaging exercise; some studies report no
infiltration during the initial 3 h post-exercise (the time course of the present study) [69–71],
while others have reported leukocyte infiltration into skeletal muscle as soon as 30 min post-
exercise [72]. Future studies should consider the potential impact of leukocyte infiltration
and assess the expression of markers unique to leukocytes to confirm the absence of their
contribution to the genetic material used for the skeletal muscle analysis.

While acute resistance exercise was sufficient to alter the DNA methylation patterns
in the present study, we did not identify any further impact of exercise training or FA
supplementation on DNA methylation. Reductions in systemic levels of inflammation have
been reported following exercise training [1,18,19] and FA supplementation [45,46,73,74].
The methylation of a single CpG site—further downstream than the CpG sites in the
present study—of the IL6 gene associated with the n-3 PUFA content in blood [49] and
administration of EPA has been reported to dampen the impact of TNF-α on MyoD mRNA
expression [75]. These data suggest the CpG sites investigated in the present study may
regulate the acute local inflammatory response; however, they are not associated with the
chronic systemic inflammatory response. Alternatively, the inclusion of young and healthy
individuals may have prevented any association due to the lack of a baseline systemic
inflammatory response. The repetition of this study in a cohort of older adults with chronic
inflammation or within an inflammatory disease population would allow the determination
of whether the selected CpG sites are involved only in the acute response or whether the
lack of association is due to the selection of young and healthy participants.

The mechanisms responsible for exercise-induced changes to DNA methylation remain
to be elucidated. Alterations in the expression and activity of the key enzymes involved in
methylation, i.e., DNA methyltransferases (DNMT), are mechanisms that have been previ-
ously demonstrated [39,76,77]. In agreement with previous reports, we identified altered
DNMT3a and DNMT3b mRNA expression following exercise (Supplementary Figure S1);
however, the expression profile of these enzymes was not correlated with either TNF or IL6
methylation. As DNMT3a and 3b are responsible for de novo methylation, the gene-specific
approach adopted in the present study may explain the lack of association with TNF and
IL6 DNA methylation. While it is unknown how exercise influences DNMT expression, a
potential mechanism is via miRNA expression. Exercise alters the expression of various
miRNAs, including miR-29-130 and -148 [78], which are also associated with the expression
of DNMTs [79–82]. Future work should include measures of DNMT enzyme activity and
extend the analysis to also include an assessment of the TET enzymes responsible for DNA
demethylation to investigate potential mechanisms of exercise-induced DNA methylation.

5. Conclusions

Acute eccentric resistance exercise was sufficient to alter the DNA methylation of
IL6 and TNF in skeletal muscle and leukocytes; however, resistance training and FA sup-
plementation did not alter the methylation profiles further. Baseline differences and a
tissue-specific response following exercise were determined between skeletal muscle and
leukocytes. The tissue specificity was further demonstrated by contrasting associations
with markers of exercise performance, inflammation and muscle damage within skeletal
muscle tissue and leukocytes. The tissue-specific response between skeletal muscle and
leukocytes is an important finding because leukocyte methylation is commonly used as a
surrogate for other tissues. The lack of alteration of DNA methylation because of exercise
training suggests that these methylation changes occur independently of the training status;
however, this may be due to the selection of a young cohort of healthy males with a lack
of chronic inflammation. Future work should investigate the epigenetic impact of chronic
exercise and nutritional interventions in individuals suffering from inflammatory diseases.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14020478/s1. Figure S1: Effect of exercise on the mRNA
expression of (A,B) DNMT1, (C,D) DNMT3a and (E,F) DNMT3b in skeletal muscle (left-hand column)
and leukocytes (right-hand column). * Indicates significantly different from Pre-ex; # indicates
significantly different from Post-ex. Table S1. Serum concentrations of protein markers associated
with inflammation and muscle damage. Data presented as the mean of each trial ± standard
deviations. LDH, lactate dehydrogenase; Mb, myoglobin; CK, creatine kinase. Table S2. Methylation
of skeletal muscle and leukocytes at baseline (trial A, Pre-ex). Note: p < 0.05 indicates a significant
difference between tissues. Data presented as means ± SD.
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