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Abstract: Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved and well-characterized
biological mechanism that ensures the fidelity and regulation of gene expression. Initially, NMD was
described as a cellular surveillance or quality control process to promote selective recognition and rapid
degradation of erroneous transcripts harboring a premature translation-termination codon (PTC). As
estimated, one-third of mutated and disease-causing mRNAs were reported to be targeted and
degraded by NMD, suggesting the significance of this intricate mechanism in maintaining cellular
integrity. It was later revealed that NMD also elicits down-regulation of many endogenous mRNAs
without mutations (~10% of the human transcriptome). Therefore, NMD modulates gene expression
to evade the generation of aberrant truncated proteins with detrimental functions, compromised ac-
tivities, or dominant-negative effects, as well as by controlling the abundance of endogenous mRNAs.
By regulating gene expression, NMD promotes diverse biological functions during development
and differentiation, and facilitates cellular responses to adaptation, physiological changes, stresses,
environmental insults, etc. Mutations or alterations (such as abnormal expression, degradation, post-
translational modification, etc.) that impair the function or expression of proteins associated with the
NMD pathway can be deleterious to cells and may cause pathological consequences, as implicated
in developmental and intellectual disabilities, genetic defects, and cancer. Growing evidence in
past decades has highlighted NMD as a critical driver of tumorigenesis. Advances in sequencing
technologies provided the opportunity to identify many NMD substrate mRNAs in tumor samples
compared to matched normal tissues. Interestingly, many of these changes are tumor-specific and are
often fine-tuned in a tumor-specific manner, suggesting the complex regulation of NMD in cancer.
Tumor cells differentially exploit NMD for survival benefits. Some tumors promote NMD to degrade
a subset of mRNAs, such as those encoding tumor suppressors, stress response proteins, signaling
proteins, RNA binding proteins, splicing factors, and immunogenic neoantigens. In contrast, some
tumors suppress NMD to facilitate the expression of oncoproteins or other proteins beneficial for
tumor growth and progression. In this review, we discuss how NMD is regulated as a critical mediator
of oncogenesis to promote the development and progression of tumor cells. Understanding how
NMD affects tumorigenesis differentially will pave the way for the development of more effective
and less toxic, targeted therapeutic opportunities in the era of personalized medicine.

Keywords: nonsense-mediated mRNA decay; splicing; gene expression; cancer

1. Introduction

Eukaryotic cells have a sophisticated and strictly synchronized gene expression to
promote diverse physiological functions, using a limited number of genes, and to maintain
genome integrity in response to various environmental challenges. This highly regulated
gene expression comprises a complex series of intersected mechanisms among which
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messenger RNAs (mRNAs) play pivotal roles. To ensure the fidelity of gene expression,
mRNAs are strictly inspected through several quality control mechanisms to identify poten-
tial errors that may produce defective proteins with compromised functions or deleterious
proteins with dominant negative effects. Nonsense-mediated mRNA decay (NMD) is one
such mechanism, which was initially described as an evolutionarily conserved surveillance
mechanism to selectively degrade erroneous transcripts [1,2]. Transcripts with a premature
translation-termination codon (PTC) are recognized and processed by NMD for cleavage
and elimination. PTCs generally arise from genetic mutations (such as nonsense or frame-
shift mutations), genomic rearrangements, errors in RNA splicing, regulated alternative
splicing, and alternative translation initiations [3–5]. In addition to surveillance, NMD
also regulates the abundance of a large repertoire of physiological transcripts (approxi-
mately 10% of the human transcriptome) [6,7]. Therefore, NMD plays a crucial role in
gene expression that shapes the transcriptome to support cellular functions. For example,
NMD has been implicated in several physiological processes, including development, cell
proliferation, differentiation, cellular stress, and immune responses (Figure 1) [8,9]. Since
NMD is a central mechanism in the gene expression pathway, this can affect different
biological processes by affecting gene functions; therefore, it is a crucial target for cellular
vulnerabilities. Indeed, NMD has been linked to a variety of human pathologies, includ-
ing neurological disorders, genetic defects, developmental abnormalities, compromised
immunity, hematopoietic defects, and cancer (Figure 1) [1,2,10,11].
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Figure 1. Regulation and dysregulation of nonsense-mediated mRNA decay (NMD) in physiology
and pathology. NMD is an evolutionarily conserved pathway comprising a dual function to modulate
gene expression: a surveillance or quality control mechanism to recognize and degrade erroneous
mRNAs selectively; and a regulatory mechanism to control transcript abundance. By regulating
gene expression, NMD promotes diverse physiological functions (shown at the top), including
development, cell proliferation, differentiation, cellular stress, immune responses, etc. Mutations or
alterations that impair the function or expression of proteins associated with the NMD pathway can
be deleterious to cells and may cause pathological consequences (shown in the bottom), as implicated
in developmental and neurological disability, genetic defect, cell signaling defect, hematopoietic
defect, compromised immunity, and cancer. Therefore, NMD is strictly regulated in cells to safeguard
the fidelity of gene expression.
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In this review, we concisely discuss different modes of regulation of NMD as a me-
diator of tumorigenesis to extend our understanding of the field. Based on accumulating
knowledge, we systematically describe how tumor cells exploit NMD for their survival
benefits, with extensive mechanistic insights. This will broaden our fundamental under-
standing of this intricate pathway in cancer cells versus normal cells and may provide
critical information for targeting the NMD pathway for cancer therapy.

2. Physiological Mechanisms of NMD

NMD is a translation-dependent process, which is promoted by the dynamic inter-
actions between mRNA and a series of NMD-associated proteins, and upon a complex
choreography of events between mRNA-bound proteins. The NMD pathway comprises
several complicated regulatory events consisting of the discrimination of NMD substrates
from other mRNAs, activation of NMD, and mRNA degradation. The molecular mecha-
nisms associated with the NMD pathway are still emerging. To date, several different NMD
pathways have been documented (such as the exon junction complex (EJC)-dependent and
the EJC-independent pathways, see below), differing in various fundamental aspects that
enhanced the visibility of this complex pathway to better explain its role in physiology
and pathology.

The way by which NMD discriminates its targets is still not entirely clear. Currently,
two major mechanisms are proposed in the field to explain how cells select the mRNA
target: the EJC-dependent model (Figure 2) and the EJC-independent model [12]. EJC is
a key regulatory player in the NMD pathway. EJC includes a core (comprising eIF4AIII,
MAGOH/MAGOHB, and Y14) and a peripheral shell (consisting of more than a dozen
proteins, including NMD factors) [13–16]. It is deposited ~20–24 nucleotides upstream of
most (~80%) exon–exon junctions in a sequence-independent manner during the last step
of pre-mRNA splicing [17,18]. EJC provides a functional bridging to facilitate metabolism
between nuclear and cytoplasmic mRNA and helps to recruit different factors essential for
mRNA export, translation, and NMD. During the first round of translation (pioneer round
of translation), EJCs are dissociated from the mRNA by translating ribosomes [13–16,19,20].
In certain transcripts that contain PTC > 55 nucleotides upstream of an exon–exon junction,
the ribosome stops at PTC and cannot displace the EJCs from the transcript downstream
of the PTC [13,21]. This allows the interactions between EJC and NMD factors to trigger
NMD [13,22]. At this stage, several NMD-associated factors come into play. The most
important core NMD factor is up-frameshift protein 1 (UPF1), an RNA helicase, which
interacts with the eukaryotic release factors eRF1 and eRF3, bound to the terminating
ribosome, and induces premature translation termination. After this, the SURF complex
is formed with SMG1 associated with SMG8 and SMG9, UPF1, eRF1, and eRF3, which is
facilitated by the RNA helicase DEAH box polypeptide (DHX34) [23]. The SURF complex
is then transformed into a decay-inducing complex (DECID) in which UPF1 interacts
with UPF2-UPF3B, either bound to the downstream EJC (EJC-dependent NMD model) or
diffused in the cytoplasm (EJC-independent NMD model) [12,24,25]. Subsequently, SMG1
induces the phosphorylation of UPF1 [24,26]. At this moment, translation is terminated
with the separation of the ribosomal subunits, release factors, and developing peptide.
Phosphorylated UPF1 triggers mRNA decay by two routes, depending on the involvement
of different NMD factors and the direction of degradation. One route is SMG6-mediated,
and the other is SMG5-SMG7 heterodimer or SMG5 and PNRC2 (Proline-Rich Nuclear
Receptor Coactivator 2)-mediated degradation [27–29]. SMG6, an endonuclease, interacts
with EJC to initiate the degradation by generating cleavage in the proximity of the PTC in
the NMD transcript [30–32]. SMG5-SMG7 or SMG5-PNRC2 recruits the decapping complex
(DCPC) and the deadenylation complex (CCR4-NOT) to remove the cap-binding complex
and the poly(A) tail. This subsequently facilitates 5′-to-3′ and 3′-to-5′ RNA degradation,
promoted by XRN1 and the RNA exosome, respectively [17,19,20,33]. Recently, it has
been revealed that SMG5 can substitute the role of SMG7 to activate NMD, whereas
SMG7 requires interaction with SMG5 and phosphorylated UPF1 for complete NMD
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activity [34,35]. Given that both routes target the same transcripts, SMG5-SMG7 and SMG6-
mediated degradation mechanisms are thought to be redundant [36]; they are independent
at the same time because downregulation of individual NMD factors (SMG5, 6, or 7) does
not inhibit NMD completely [12,37,38].
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UPF1 interacts with the eukaryotic release factors eRF1 and eRF3, bound to the terminating ribosome,
and induces premature translation termination. After this, the SURF complex is formed with SMG1
associated with SMG8 and SMG9, UPF1, eRF1, and eRF3. The SURF complex is then transformed
into a decay-inducing complex (DECID), where UPF1 interacts with UPF2-UPF3B, either bound
to the downstream EJC (the EJC-dependent NMD model) or disseminated in the cytoplasm (the
EJC-independent NMD model). Subsequently, SMG1 induces the phosphorylation of UPF1. At this
stage, translation is terminated with the separation of the ribosomal subunits, release factors, and
developing peptide. Phosphorylated UPF1 triggers the mRNA decay by promoting the recruitment of
different mRNA decay factors: SMG6 causes an endonucleolytic cleavage; SMG5-SMG7 heterodimer
recruits the CCR4-NOT deadenylation complex, and/or PNRC2, and subsequently recruits the
decapping complex (DCPC) to remove the cap-binding complex and the poly(A) tail. This facilitates
5′-to-3′ and 3′-to-5′ RNA degradation by XRN1 and the RNA exosome, respectively.

Besides the EJC-dependent NMD pathway, there exists evidence that shows that the
transcripts lacking EJCs are also targeted by NMD. This is called the EJC-independent
NMD pathway, which is less well-defined compared to the EJC-dependent NMD pathway.
This model (EJC-independent) recognizes unusually long 3′ untranslated regions (3′UTR).
This NMD pathway has been demonstrated quite elaborately in yeast and Drosophila, but
related NMD mechanisms have also been reported in mammalian cells [39–41]. According
to this model, the presence of a PTC far upstream of the 3′ end or long 3′UTR hampers
the interaction of cytoplasmic polyadenylate-binding protein (PABPC1) to the terminating
ribosome. This favors the interaction of ribosome-associated eRF3 to UPF1, rather than to
PABPC1, which happens during normal translation termination [42,43].

Although molecular features of NMD targets, as described above, are consistent for
many mRNAs, some NMD targets do not follow such rules. Some mRNAs with a PTC
can escape NMD, whereas some mRNAs without a PTC can be degraded by NMD. This
suggests there must be some exceptions to the canonical NMD regulation, which are
responsible for varied NMD efficiency. Several genomic approaches have been applied to
predict whether a particular PTC-containing transcript will go for NMD or not. On the
basis of cancer genome data analysis, some non-canonical rules have been suggested and
validated in some independent experiments [44–46]. As discussed, a PTC in a transcript
is generated not only through point mutation in the coding region, but also by mutations
in the splice site and insertions or deletions (indels), causing a frameshift of the open
reading frame. By default, these mutations are considered to result in the loss of function
of transcripts with a PTC because of the presumption that these transcripts are bound
to be degraded by NMD. However, the genomic data analyses revealed that many of
the PTC-containing transcripts, including disease-causing variants, actually evade NMD
completely or partially [47–49], resulting in the production of truncated proteins. As a
predictive estimate, in humans, roughly 50% of the potential PTC variants could partially
evade NMD degradation [49]. Transcriptome-wide analyses also identified that many
mRNAs encoding full-length proteins are targeted by NMD [8,48–50]. Therefore, NMD
is a complex process, and there are many poorly understood molecular features that can
fine-tune the regulation of the NMD pathway.

3. Regulation of NMD in Cancer

NMD generally protects cells through surveillance and gene expression regulatory
mechanisms, as discussed above. However, based on research in recent decades and accu-
mulating evidence, it is now clear that tumor cells often exploit NMD for their survival
benefits [51,52]. This is often accompanied either by activation of NMD or suppression
of NMD, affecting critical biological processes and subsequently favoring the growth and
progression of cancer cells. For example, NMD can facilitate tumor growth by downreg-
ulating tumor suppressors, important physiological proteins, or proteins with immune
functions (Figure 3). At the same time, suppression of NMD can also facilitate tumor
growth, metastasis, or adaptation to environmental stresses by upregulating oncoproteins
or activating signaling pathways (Figure 3). Understanding the precise mechanisms of
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how the NMD pathway regulates such processes is crucial to identifying important cellular
vulnerabilities that can be targeted for therapeutic development. Here, we describe several
representative examples with critical mechanistic insights linked with tumorigenesis.
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Figure 3. Regulation of NMD in cancer. (A) Schematics of different effectors of tumorigenesis,
which are targeted by NMD. Tumor cells regulate NMD to target the mRNAs of these effectors to a
favorable outcome that can help tumor growth and progression. (B) Differential regulation of NMD
to promote tumorigenesis. Tumor cells acquire NMD-inducing nonsense mutations preferentially
in tumor suppressor genes (e.g., TP53, WT1, RB, BRCA1/2) compared to oncogenes. Degradation
of tumor suppressors via NMD is favorable for tumor development and growth. Tumor cells often
induce NMD by upregulating NMD factors. Induction of NMD favors tumors by degrading proteins,
which are toxic or detrimental to tumor cells. For example, in colorectal cancers with microsatellite
instability (CRC MSI), NMD was induced by upregulation of several NMD factors (UPF1/2 and
SMG1/6/7). Activated NMD helped the degradation of many premature termination codon (PTC)-
containing mRNAs that are toxic against CRC MSI, such as a dominant negative (DN) mutant
protein HSP110DE9. Tumor cells also often inhibit NMD by downregulating NMD factors or by
deactivating mutations (mut) in NMD factors. Suppression of NMD favors tumors by upregulating
oncoproteins or activating signaling pathways that favor tumorigenesis, metastasis, or adaptation
to environmental stress. For example, disabling mutations in UPF1 in pancreatic adenosquamous
carcinoma (ASC) suppressed NMD and upregulated the expression of a truncated TP53 isoform
with dominant negative activity. In human adenocarcinoma (ADC), downregulated UPF1 inhibited
NMD activity, which subsequently increased epithelial-mesenchymal transition (EMT) and metastatic
events through upregulation of tumor growth factor β pathway (TGF-β). Therefore, tumor cells
exploit complex regulation in NMD to favor their growth and progression.

3.1. Activation of NMD to Promote Tumorigenesis

Tumor cells often leverage NMD mechanisms (both surveillance and regulation of gene
expression) to support uncontrolled growth and progression. Considerable evidence indi-
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cates that several tumors acquire somatic mutations in tumor suppressor genes, resulting
in PTCs in their mRNAs (Figure 3B). These PTC-containing tumor suppressor transcripts
are degraded by the NMD, allowing a favorable selection of cancer cells aggravating
malignancy. Numerous NMD transcripts have been identified using a gene expression
array-based technique, termed gene identification by NMD inhibition (GINI) [50]. Non-
sense mutations have been reported in genes that encode well-known tumor suppressors,
such as WT1, TP53, RB, and BRCA1/2 [53–56]. In support of this notion, it was observed
that tumor suppressor genes have a higher tendency to acquire nonsense mutations than
oncogenes [47].

Tumor cells often leverage induction of NMD to support uncontrolled growth and pro-
gression [57–64]. This is often accompanied by upregulated expression of NMD-associated
proteins or factors, or activation of NMD factors, through phosphorylation or dephospho-
rylation or other related mechanisms (Figure 3B). Indeed, TCGA pan-cancer data revealed
surprising amplification of several core NMD factors (UPF1, UPF2, UPF3B, SMG1, SMG5,
SMG6, and SMG7) in a variety of tumors [57]. In a study investigating colorectal cancer
(CRC), an interesting NMD regulation was observed [11]. The study investigated two
subgroups: CRC with microsatellite instability (CRC MSI) and CRC with stable microsatel-
lite sequences (CRC MSS). CRC MSI showed higher levels of PTC-containing mRNAs
(PTC-mRNAs), due to widespread instability in microsatellite sequences [11]. Interestingly,
the authors found upregulated expression of several critical NMD factors in CRC MSI
compared to CRC MSS, including UPF1/2 and SMG1/6/7. This upregulation enabled
CRC MSI tumors to survive the generation of the higher level of PTC-mRNAs, which were
degraded via NMD (Figure 3B). They further showed that experimental suppression of
NMD activity upregulated several PTC-mRNAs. Among these were several encoded de-
fective proteins with putative detrimental activity against CRC MSI. One notable example
was the HSP110DE9 chaperone mutant with a dominant negative effect against MSI CRC.
Inhibition of NMD in vivo impaired tumor growth in CRC MSI, but not in CRC MSS. In a
separate situation, if a PTC-containing tumor suppressor gene generates a truncated protein
that fully or partially maintains its original function, as opposed to a dominant-negative
function, the NMD-mediated degradation of its mRNA may aid in the development of
cancer. For instance, patients with germline NMD-sensitive mutations in the tumor sup-
pressor E-cadherin (CDH1) gene have a higher tendency to develop hereditary diffuse
gastric cancer (HDGC) than people with NMD-insensitive mutations [58]. This is because
NMD-insensitive mutations may still be able to produce truncated E-cadherin with normal
function [58].

Besides tumor suppressors, other candidates found to be targeted by NMD-inducing
mutations include genes encoding proteins involved in RNA metabolism, chromatin remod-
eling, and DNA repair [61]. Downregulation of these proteins by NMD may compromise
important cellular functions, which subsequently creates cellular vulnerability and favors
tumorigenesis. One relevant example is stomach adenocarcinoma, where NMD-inducing
mutations were identified in three genes involved in RNA metabolism: EIF5B, LARP4B,
and PTEN [62–64].

The NMD pathway is often regulated by the signaling pathway. For example, AKT is a
serine/threonine kinase (also known as protein kinase B, or shortly, PKB). AKT plays impor-
tant roles in many cellular functions, such as cell growth and cell cycle progression, genome
stability, transcription, protein synthesis, regulation of glucose metabolism, and neovascu-
larization [65–67]. Overexpression or activation of AKT is linked to increased cancer cell
proliferation [65–67]. Misregulation in AKT-regulated pathways is frequently identified in
many different cancers, including lung, ovarian, and pancreatic cancers [65–67]. It is also
commonly misregulated in many other human diseases, such as diabetes, cardiovascular
diseases, and neurological defects [65–67]. A recent paper unexpectedly discovered a novel
role of AKT as a mediator of NMD, which is stimulated by insulin [68]. The authors found
that AKT signaling promotes the formation of an alternative EJC that contains CASC3 but is
devoid of RNPS1 and UPF2. Furthermore, AKT promotes UPF1 phosphorylation through



Genes 2023, 14, 357 8 of 19

a distinct mechanism from UPF2, which augments UPF1 helicase activity and is crucial
to elicit NMD. It will be interesting to investigate the potential link of the AKT-mediated
NMD pathway in tumorigenesis or other human diseases.

3.2. Suppression of NMD to Promote Tumorigenesis

Tumor cells often suppress NMD for survival (Figure 3B). For instance, tumor cells
often acquire mutations in genes encoding critical factors in the NMD pathway. Some of
these mutations compromise the function or expression of the encoded proteins and, subse-
quently, inhibit NMD. This may elevate the aberrant mRNAs normally degraded by NMD,
which can contribute to tumorigenesis. A relevant example in this regard is pancreatic
adenosquamous carcinoma (ASC), which is notoriously known for its worse prognosis
and aggressive metastatic potential. ASC tumors frequently harbor somatically acquired
mutations in UPF1, a core component in the NMD pathway [69]. These tumor-specific mu-
tations were shown to generate aberrantly spliced isoforms of UPF1, affecting the essential
helicase domain and an important phosphorylation site [69]. The resultant transcripts were
predicted to have compromised activity or a dominant negative activity. Indeed, it was
found that these tumor-specific mutations in UPF1 perturbed NMD [69]. This subsequently
caused the upregulation of NMD substrate mRNAs, including one notable alternative iso-
form of p53 mRNA (TP53) harboring an in-frame PTC (Figure 3B) [69]. The authors further
showed that this alternative isoform of TP53 encoded a protein with a dominant negative
activity and was predicted to contribute to tumorigenesis in ASC. A similar mechanism
was also reported in inflammatory myofibroblastic tumors (IMT), where somatic mutations
in UPF1 upregulated an NMD substrate mRNA encoding NF-κB, contributing to immune
infiltration associated with IMT [70]. These observations suggest a general protective
function of NMD against tumorigenesis. Reduced expression of NMD factors could also
suppress NMD. For example, UPF1 is expressed at lower levels in human adenocarcinoma
(ADC) compared to normal lungs, which causes downregulated NMD activity in ADC [71].
The study further showed that lower NMD activity promoted the upregulation of several
factors in the tumor growth factor β pathway (TGF-β), which subsequently increased
epithelial-mesenchymal transition (EMT) and metastatic events (Figure 3B). In another
study, it was shown in hepatocellular carcinoma (HCC) that downregulation of UPF1, due
to promoter hypermethylation, inhibited NMD and upregulated expression of SMAD7 [10].
Note that SMAD7 is a negative regulator of the TGF-β pathway; therefore, inhibition of
NMD dysregulated the TGF-β pathway in this situation [10]. Therefore, suppression of
NMD could promote tumorigenesis, either by promoting or inhibiting the TGF-β pathway,
based on signaling within the tumor.

4. Regulation of Alternative Splicing Coupled to NMD in Cancer

Alternative splicing (AS) is a highly intricate, post-transcriptional mechanism that
enables proteome diversity using a limited number of genes. It is estimated that more than
90% of mammalian genes undergo alternative splicing [72]. AS is coordinately regulated
by cis-elements and trans-factors. Cis-elements comprise specific sequence motifs in the
RNA, also called exonic/intronic splicing enhancers/silencers (ESEs, ISEs, ESSs, and ISSs).
In contrast, trans-factors are RNA-binding proteins, also called splicing factors (SFs). SFs
are often tightly regulated in a tissue-specific manner [73,74]. The formation of functional
ribonucleoprotein complexes (RNPs) is coordinated with high precision during splicing to
ensure that RNA and cognate proteins are complemented correctly. Impaired biogenesis of
RNPs, by disrupting the cis-elements or by compromising the RNA-binding activity of SFs,
can cause errors in AS, and often produce mRNAs with PTCs. These erroneous mRNAs
with PTCs are then recognized and degraded by NMD. This combined action is referred to
as AS coupled to NMD (shortly, AS-NMD). The advancement of sequencing technologies
in recent decades enabled us to reveal many alternatively spliced mRNA isoforms, which
are predicted targets for NMD. As an estimate, in mammals, one-third of the alternative
splicing events are non-productive, as they generate a PTC and are degraded by NMD [75].
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In recent decades, AS-NMD has been identified as a major driver of tumorigenesis. Many
of these tumorigenic AS-NMD events are caused by alterations in splicing factors, such as
mutation, abnormal expression, degradation, post-translational modification, etc. Here, we
briefly discuss the roles of splicing factors promoting tumorigenic AS-NMD.

4.1. Roles of SR Protein Splicing Factors Regulating AS-NMD in Cancer

Serine/arginine-rich proteins (SR) belong to a family (SRSF1-SRSF12) of splicing
factors and generally function as splicing enhancers (Figure 4) [76]. They contain RNA
recognition motifs that bind to RNA and serine/arginine-rich (RS) domains for protein–
protein interactions (Figure 4B). When SR proteins are overexpressed in normal cells,
they autoregulate their expression via AS-NMD to maintain homeostasis [9,77–85]. SR
protein genes harbor ultraconserved regions, such as PTC-containing non-coding exons,
also called poison exons (PEs), or 3′UTR intronic or poison sequences (PSs) (Figure 4A).
The inclusion of poison exons introduces a PTC and targets the mRNAs for degradation by
NMD (Figure 5A) [9,77,83]. In contrast, splicing of the 3′UTR intronic or poison sequences
introduces a new exon–exon junction, which marks the original stop codon as a PTC
and elicits NMD. For example, SRSF2 autoregulates its own expression by promoting the
inclusion of a poison exon and retention of an intron in the 3′UTR [78]. This feedback
autoregulation is also evident for several other SR proteins, including SRSF1, SRSF3, SRSF4,
SRSF5, and SRSF6 [9,77–82]. Besides autoregulation, SR proteins also cross-regulate the
expression of other SR proteins via AS-NMD [9]. SR proteins are frequently upregulated
in a variety of solid tumors [73,74,86,87]. Interestingly, the feedback regulation of SR
proteins via AS-NMD was altered in several of these tumors [9]. For example, the Cancer
Genome Atlas RNA-sequencing of breast tumors revealed that the inclusions of SR protein
poison exons were significantly lower in breast tumors compared to adjacent normal
tissues [9]. This suggests that reduced inclusions of poison exons contribute to increased SR
protein expression in tumors. Upregulated expression of SR proteins often turns them to
function as oncoproteins [73,74,86,87]. For example, slight overexpression of SRSF1 could
sufficiently promote the transformation of fibroblasts and mammary epithelial cells [88,89].
Similarly, gastric cancer exhibits increased expression of SRSF7, whereas colorectal cancer
exhibits increased expression of SRSF3, SRSF5, and SRSF6 [73,74]. Upregulated SR proteins
promote splicing alterations to downstream target genes, some of which function as drivers
of oncogenesis. It was reported that overexpression of SRSF1 promotes the skipping of
exon 11 of the RON proto-oncogene (MST1R) to generate the RON∆11 isoform, which
enhances cell motility and invasion [90]. SRSF1 overexpression also generates an isoform
of BIN1 that lacks tumor-suppressor activity by promoting the inclusion of exon 12a. This
isoform with exon 12a lacks the ability to bind to MYC [88].

In addition to regulation in alternative splicing, SR proteins also function in mRNA
export, translation regulation, and NMD [73,74,79,86,87,91]. Several SR proteins (SRSF1,
SRSF2, SRSF3, SRSF4, SRSF6, and SRSF9) have been shown to enhance NMD [91]. Although
SR proteins commonly elicit NMD, the mode of action of individual SR proteins could be
different. For example, in the absence of EJC, NMD activity is still observed for SRSF1, but
not for SRSF2 [91,92]. This was explained after the observation that SRSF1 increases the
binding of NMD factor UPF1 to nuclear-associated mRNAs, bypassing UPF2 recruitment
to promote NMD [91]. In contrast, SRSF2-promoted NMD follows the canonical EJC-
dependent NMD mechanism, including EJC, UPF3B, UPF2, and UPF1 [92].

As noted earlier, SR proteins are frequently upregulated in a variety of solid tumors.
Recurrent mutations in SR proteins are rarely identified, except for SRSF2 in hematologic
malignancies, including myelodysplastic syndromes (MDS) and leukemia [73,74,92,93].
Surprisingly, unlike solid tumors, RNA-sequencing data from CD34+ cells of patients with
MDS exhibited no significant difference in the inclusion of SR protein poison exons in
SRSF2 mutated samples compared to wild-type (WT) samples [9]. These data suggest
that solid tumors evade AS-NMD to maintain higher expression of SR proteins, which is
not evident in SRSF2-mutated hematological malignancies. Rather, mutations in SRSF2
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induce AS-NMD of downstream targeted genes, some of which affect hematopoiesis [92].
One aberrant AS-NMD event promoted by the mutant SRSF2 target is the inclusion of a
poison exon in the EZH2 encoding enhancer of zeste homolog 2 protein. EZH2 catalyzes
histone methylation and functions in chromatin remodeling (Figure 5B). Mutation in SRSF2
changes its binding affinity from a G-rich motif to a C-rich motif. This subsequently renders
the inclusion of the EZH2 poison exon in SRSF2-mutated patients [92–94]. The resulting
transcript generates a PTC and is degraded by NMD. This causes an overall reduction
in EZH2 protein levels, which subsequently impairs hematopoietic differentiation. This
mechanism was further supported by the observation that restoring EZH2 expression
partially rescues hematopoiesis in SRSF2 mutant cells [94]. Another robust aberrant AS-
NMD target of mutant SRSF2 is INTS3 [92,95]. INTS3 is a member of the Integrator complex.
This complex plays important functions in transcription initiation, the release of paused
RNA polymerase II, small nuclear RNA (snRNA) processing, etc. [95,96]. Altered binding
affinity promoted by mutations in SRSF2 causes the retention of two consecutive introns
(introns 4 and 5) in INTS3. This aberrant regulation generates INTS3 transcript isoforms
with a PTC, which are degraded by NMD [92,95].

Genes 2023, 14, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 4. Gene and protein structures of SR protein splicing factors. (A) Schematics of SR protein 

genes with coding exons, non-coding regions, and internal poison exons or 3′UTR poison sequences 

(not to scale). The presence of poison exons or 3′UTR poison sequences in each gene is shown on the 

right. (B) Schematics of protein structure and domain organization of SR proteins (not to scale). PE: 

poison exons; PS: poison sequences; RRM: RNA recognition motif; RS: serine-arginine rich domain; 

Zn: zinc knuckle. 
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genes with coding exons, non-coding regions, and internal poison exons or 3′UTR poison sequences
(not to scale). The presence of poison exons or 3′UTR poison sequences in each gene is shown
on the right. (B) Schematics of protein structure and domain organization of SR proteins (not to
scale). PE: poison exons; PS: poison sequences; RRM: RNA recognition motif; RS: serine-arginine rich
domain; Zn: zinc knuckle.

4.2. Roles of Other Splicing Factors and RNA Binding Proteins Regulating AS-NMD in Cancer

Heterogeneous nuclear ribonucleoproteins (hnRNPs) are another group of splicing
factors that generally function as splicing repressors [73]. Splicing autoregulation via
AS-NMD is also evident in several paralogs of hnRNPs, such as hnRNP L and hnRNP LL,
PTBP1 and PTBP2, and hnRNP D and hnRNP DL [83]. When hnRNPs are upregulated,
they bind to their own transcripts and promote exon-skipping, leading to the generation
of a PTC, and are subsequently degraded by NMD. For example, upregulated PTBP1
(also known as hnRNP I) promotes the skipping of exon 11 of its own transcript, which
generates a PTC to control its own expression via AS-NMD [83]. In cancer cells, PTBP1 and
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PTBP2 promote the skipping of an exon of SRSF3, therefore impairing the autoregulation
of SRSF3 [83]. This subsequently upregulates SRSF3, which can function as an oncoprotein.
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Figure 5. Regulation of AS-NMD in cancer. (A) When SR proteins are overexpressed in normal
cells, they autoregulate their expression via AS-NMD for homeostasis. SR protein genes harbor
ultraconserved regions containing non-coding exons, also called poison exons (PEs) or 3′UTR poison
sequences (PSs). When poison exons are included, they introduce a premature termination codon (PTC)
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and target the mRNAs for degradation. In contrast, splicing of the 3′UTR poison sequences introduces
a new exon–exon junction, which marks the original stop codon as a PTC and elicits NMD. SR
protein autoregulation via AS-NMD is inhibited in certain tumors. (B) SRSF2 is recurrently mutated
in hematologic malignancy. One aberrant AS-NMD event promoted by the mutant SRSF2 is the
inclusion of a poison exon in EZH2. EZH2 catalyzes histone methylation and functions in chromatin
remodeling. Mutation in SRSF2 changes its binding preferences for a C-rich motif. This causes the
inclusion of the EZH2 poison exon, which generates a PTC and is degraded by NMD. Therefore, the
expression of EZH2 protein is downregulated, contributing to impaired hematopoietic differentiation.

SF3B1 is an essential RNA splicing factor. SF3B1 is frequently mutated in hematologic
malignancies, including MDS and leukemia [93]. One aberrant AS-NMD event in SF3B1-
mutated patients is the inclusion of a poison exon in the tumor suppressor BRD9 [97]. This
is a core component of the non-canonical BAF chromatin-remodeling complex. Mutant
SF3B1 recognizes an aberrant branchpoint within BRD9, which promotes the recognition
of a poison exon and subsequent degradation of BRD9 mRNA, resulting in the loss of
tumor-suppressing activity [97].

RNA-binding proteins (RBPs) are also reported to be important in the development
of cancer. For instance, Mex-3 RNA Binding Family Member A (MEX3A) is strongly asso-
ciated with cancer. It was shown that MEX3A is overexpressed in ovarian cancer tissues
and associated with increased proliferation and invasion of ovarian cancer cells [98,99].
Further investigation revealed that TIMELESS is a critical downstream target of MEX3A.
TIMELESS promotes the growth and invasion of ovarian tumor cells [98]. Mechanistic
analyses revealed that MEX3A promotes the splicing of intron 23 in TIMELESS mRNA,
which is critical for the expression of TIMELESS and oncogenic ability [98]. Knockdown of
MEX3A causes retention of intron 23 in TIMELESS mRNA and is subsequently degraded by
NMD. Therefore, the MEX3A/TIMELESS oncogenic signaling pathway is a key regulator
of ovarian cancer, which is suppressed by AS-NMD in normal cells [98]. Another study
showed that MEX3A promotes nasopharyngeal carcinoma by positively activating the
NF-κB signaling pathway [100]. In inflammatory myofibroblastic tumors, it was demon-
strated that somatic mutations in UPF1 triggered alternative splicing of UPF1 [70] and
disrupted the NMD pathway. This subsequently caused the upregulation of several NMD
targets, including NIK mRNA encoding a potent activator of NF-κB. NIK-dependent NF-κB
induction critically contributed to immune infiltration [70].

5. NMD under Tumor Microenvironment

The tumor microenvironment during tumorigenesis is characterized by aberrant
angiogenesis, hypoxia, acidosis, nutritional deprivation, oxidative stress, and other different
cellular stresses. Cancer cells develop adaptability against adverse microenvironments to
support growth, proliferation, invasion, and metastasis [101,102]. Interestingly, NMD is
often suppressed under a hostile microenvironment. For instance, environmental stress-
mediated NMD suppression was promoted by both eIF2α phosphorylation and the mTOR
signaling pathway [102]. It was also shown that hypoxia enhanced cellular resistance to
the integrated stress response and promoted tumor progression by inhibiting NMD in an
eIF2α phosphorylation-dependent manner [101]. The study also suggested that promoting
NMD by downregulating the expression of hypoxia-inducible factor 1 (HIF-1) could be an
effective therapeutic strategy to target hypoxic tumors.

Nutritional starvation (such as amino acid or glucose) is commonly observed in the
tumor microenvironment, due to dysregulated blood vessels and rapid cellular growth.
NMD inhibition, induced by amino acid starvation, upregulated the transcripts that en-
hanced amino acid homeostasis, promoted autophagy, and suppressed genomic noise [7].
A similar study reported that amino acid starvation enhanced the adaptability of yeast by
upregulating eIF2α phosphorylation-mediated gene expression [103]. It has been found
that cancer cells promote tumorigenesis and enhance resistance against cancer therapy by
increasing endogenous antioxidant synthesis under oxidative stress. For instance, SLC7A11,
a cystine/glutamate amino acid transport system, was upregulated to enhance cystine
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transport for the synthesis of glutathione. Similarly, the downregulation of NMD by the
tumor microenvironment and cellular stress increased SLC7A11 expression, promoted
cystine transport, and enhanced intracellular glutathione synthesis [104]. Therefore, pro-
moting NMD could hamper the adaptability of cancer cells to hostile microenvironments
and improve the efficacy of radio- and chemotherapy.

Cancer cells are not tightly regulated by the immune system, unlike microorganisms,
because of the lack of strong tumor rejection antigens. Moreover, mRNAs encoding the
highly immunogenic neoantigen peptides are often selected for decay by NMD. It was
reported that inhibition of NMD suppressed tumor growth by increasing the expression of
neoantigen and promoting T cell infiltration in the tumor microenvironment [105]. Pan-
cancer data showed that around 30% of frame-shift insertion/deletion mutations in tumor
suppressor genes (TSGs) are insensitive to NMD [61]. A similar study confirmed that
NMD-escaping mutations exert stronger immune blockade against tumors compared to
those with no NMD-escaping mutations [106]. Therefore, stimulation or inhibition of
NMD under specific conditions could enhance the efficacy of immune response, as well as
immune therapy, against cancer.

6. Perspectives and Concluding Remarks

Studies of NMD in cancer over the last few decades have substantially extended
our fundamental understanding of NMD far beyond the physiological regulations in
surveillance and transcript abundance. Transcriptome-wide studies of cancer cells revealed
that NMD shapes the mutational landscape for selection in favor of tumor survival and
globally shapes the transcriptome to support the development and progression of tumor
cells [44,45,107]. Although these studies broaden our understanding of the molecular
regulations of NMD in cancer, there are certain facts that remain to be explored in the field.
Since many of the NMD events are tumor-specific and often fine-tuned in a tissue-specific
manner, future studies with comprehensive profiling of NMD targets in different tissues will
aid in the understanding of spatiotemporal regulation of NMD in a tumor-specific manner.
In the context of tumor evolution, it is imperative to understand which individual step(s)
(early, intermediate, or late stage of tumor development) is(are) affected by NMD. This will
help to determine the feasibility of targeting NMD at specific stages of cancer therapy. To
address the above-mentioned issue, a specific NMD target could be profiled by knockdown
and rescue experiments at different stages of tumor development and progression. In
the context of molecular regulation, it is also important to know which individual step(s)
in the NMD pathway is(are) affected in the journey of a tumorigenic NMD substrate
mRNA. This will give the advantage of targeting transcript-specific (or gene-specific) NMD
modulation rather than global NMD modulation. Note that global modulation of NMD
could show a partial beneficial effect for a particular tumorigenic mRNA substrate, but
it will compromise the surveillance regulation of many endogenous mRNAs important
for normal physiology and cellular integrity. Therefore, more investigations should be
employed for detailed mechanistic characterization of tumor specific NMD target mRNAs.
One recent study investigated detailed characterization using a reporter NMD substrate of
HBB in the context of SRSF2-mutated hematologic malignancies [92]. The authors dissected
the metabolism of the NMD substrate in cells expressing SRSF2 WT or SRSF2 mutant. They
showed that the SRSF2 mutant promotes stabilization of the exon junction complex (EJC)
downstream of the PTC, which subsequently enhances the association of other key NMD
factors to elicit mRNA decay. The authors further showed that antisense oligonucleotides
(ASO)-mediated targeted blocking of EJC in the NMD substrate mRNA could evade
aberrant NMD promoted by mutant SRSF2. This experiment provided an example of
mechanism-based targeted inhibition of NMD or AS-NMD in a gene-specific manner
(Figure 6). However, restoring the expression of a PTC-containing transcript is predicted
to generate a truncated protein (Figure 6). Therefore, this strategy will be beneficial only
for those proteins having functional or catalytic activities within the truncated portion of
the protein. An alternative strategy could be using ASO in combination with a translation
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readthrough compound (RTC) that was described by the same group in another study [108].
During translation readthrough in the presence of RTCs, the stop codon is recognized as
a triplet coding for an amino acid by the translational machinery, which promotes the
translation of a full-length protein from a PTC-containing mRNA [109]. However, NMD
limits the efficacy of RTCs due to the degradation of PTC-containing mRNAs [108]. It was
shown that ASO-mediated NMD inhibition, along with the readthrough compound G418
targeting PTC-containing HBB mRNA, successfully restored the full-length HBB protein
with greater efficiency [108]. Therefore, the combinatorial use of ASO and RTC could be a
promising targeted therapeutic approach against NMD-associated cancer (Figure 6). For
modulating AS-NMD, ASO-mediated splice-switching to generate canonical protein could
be an effective therapeutic strategy. In a recent study with an SF3B1-mutated hematologic
malignancy, splice-switching ASOs could successfully switch the generation of mRNA
from a poison exon-including NMD isoform of BRD9 to the canonical isoform, restoring
the expression of BRD9 [97]. They further showed that splice-switching ASOs could
reduce tumor size and growth in vivo, suggesting that splice-switching ASOs could be a
promising therapeutic strategy to target AS-NMD-associated cancer. Although therapeutic
approaches targeting NMD or AS-NMD in several genetic diseases have exhibited clinical
success [74,86,87,110], this is still an underexplored area in cancer. This is due to the complex
regulation of NMD or/and AS-NMD in cancer because multiple genes are targeted with
tumor-specific responses. Elucidating the mechanisms of individual targets will provide
valuable information in the development of personalized medicine. Furthermore, the
possibility of manipulating several targets simultaneously may provide a more effective
strategy to better combat cancer.
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Figure 6. Gene-specific NMD inhibition and targeted augmentation of protein synthesis. (A) A
premature termination codon (PTC)-containing mRNA is degraded by nonsense-mediated mRNA
decay (NMD), inhibiting the expression of the encoded protein. (B) Antisense oligonucleotides
(ASO) targeting gene-specific exon junction complex (EJC)-binding sites can inhibit NMD, allow-
ing the expression of a truncated protein from a PTC-containing mRNA. The truncated protein
may or may not be functional depending on the presence or absence of the functional domain(s).
(C) Gene-specific ASO-mediated NMD inhibition, along with the readthrough compound (RTC), can
allow the expression of a full-length protein from a PTC-containing mRNA.
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