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Abstract: Alzheimer’s disease (AD) and ischemic stroke (IS) are common neurological disorders, and
the comorbidity of these two brain diseases is often seen. Although AD and IS were regarded as
two distinct disease entities, in terms of different etiologies and clinical presentation, recent genome-
wide association studies (GWASs) revealed that there were common risk genes between AD and
IS, indicating common molecular pathways and their common pathophysiology. In this review,
we summarize AD and IS risk single nucleotide polymorphisms (SNPs) and their representative
genes from the GWAS Catalog database, and find thirteen common risk genes, but no common
risk SNPs. Furthermore, the common molecular pathways associated with these risk gene products
are summarized from the GeneCards database and clustered into inflammation and immunity,
G protein-coupled receptor, and signal transduction. At least seven of these thirteen genes can be
regulated by 23 microRNAs identified from the TargetScan database. Taken together, the imbalance
of these molecular pathways may give rise to these two common brain disorders. This review sheds
light on the pathogenesis of comorbidity of AD and IS, and provides molecular targets for disease
prevention, manipulation, and brain health maintenance.

Keywords: Alzheimer’s disease; ischemic stroke; genetics; molecular pathways

1. Introduction

In the elderly, brain health is mainly jeopardized by dementia or stroke [1]. About
60–80% of dementia cases are Alzheimer’s disease (AD), which is a progressive and ir-
reversible neurodegenerative disorder. Ischemic stroke (IS) accounts for almost 80% of
total stroke cases [2], and it is a leading cause of disability and mortality in the elderly
worldwide. Pathological studies have shown that the comorbidity of AD and IS is common,
infarctions were present in 51.3% of patients with probable AD and 62.5% of patients with
possible AD [3]. However, whether these two common brain disorders have the same
underlying molecular mechanisms is controversial [4–8].

Clinically, AD is characterized by the inability to recall recent events, changes in per-
sonality, and difficulty in solving problems, at the disease’s early stage. AD patients may
develop behavioral changes, confusion, disorientation, communication impairment, and
diminished social skills at a later stage, and eventually, the patients may have difficulties
in speaking, swallowing, and walking. Pathologically, AD is mainly characterized by hip-
pocampal neuronal loss, amyloid β (Aβ) extracellular deposition forming senile plaques,
and the formation of intracellular neurofibrillary tangles. Clinically, IS can present with a
variety of physical and cognitive manifestations depending on the brain areas affected and
associated with neuron lysis and death [9]. Multiple biological processes and molecular
pathways are involved in both AD and IS. Vascular dysfunction (hypertension, hyperlipi-
demia, diabetes, coronary artery disease, etc.) was considered to have significant direct
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and indirect impacts on neurodegeneration in AD [10], and the presence of hyperlipidemia
had a direct influence on the neuronal tau uptake in the entorhinal cortex [11]. The early
appearance of vascular dysfunction in the preclinical stage of AD indicates that vascular
events might be a part of the cause, rather than a passive contribution, of AD [12]. In
addition, AD before IS was considered to be an independent predictor of death in patients
under 80 years old [13]. The shared risk factors and protective factors between AD and
IS were also identified. The risk factors include low education, sedentary lifestyle, heart
diseases, advancing age [14,15], diabetes [16,17], and obesity [18,19], while the protective
factors include high levels of psychological well-being, a rich social network, and active
engagement in leisure activities [20].

Genetic risk factors play an important susceptible role in both AD and IS [6]. Genome-
wide association studies (GWASs) with a large sample size, and their meta-analyses, have
identified many AD and IS susceptible single nucleotide polymorphisms (SNPs) and
genetic loci [21,22]. Through comparing the causal and susceptible genes of AD and IS
by reviewing familial databases and GWAS databases, we aim to identify the common
genetic contributors, summarize the common pathways, microRNAs (miRNAs) within the
common mapped genes, and eventually provide molecular targets for the improvement of
brain health.

2. Searching Methodology

The literature was reviewed by searching the GWAS Catalog database (https://
www.ebi.ac.uk/gwas/, accessed on 14 September 2022 from the database’s inception to
14 September 2022. The GWAS Catalog data was extracted from the published GWASs,
identified through a weekly PubMed search (https://pubmed.ncbi.nlm.nih.gov/, accessed
on 14 September 2022). In the database, the search terms used were: “Alzheimer’s disease”
and “ischemic stroke”. The information on risk SNPs and their mapped genes was extracted
and aligned. If the SNP was located within a gene, that gene was listed, with multiple
overlapping genes separated into several genes. If the gene was intergenic, the upstream
and downstream genes were listed.

For familial genetic studies, the vascular neuropathologies of cases carrying familial
causative AD genes were reviewed, and genetic variants of AD causative genes in relation
to IS were investigated. Vice versa, the AD neuropathologies of cases carrying familial IS
genes were reviewed, and genetic variants of IS causative genes in relation to AD were
analyzed through a weekly Pubmed search.

Information on the pathways that the gene products were involved in was sourced
from the GeneCards database (version 5.12, https://www.genecards.org/, accessed on
17 September 2022). The section “pathways” provides links to pathways according to
information extracted from Cell Signaling Technology, R&D Systems, GeneGo (Thomson
Reuters), Reactome, Sino Biological, Tocris Bioscience, PharmGKB, Qiagen, GeneTex, Boster-
Bio, MedChemExpress, WikiPathways and PubChem, SuperPathways from PathCards, the
protein-protein interaction network was derived based on the STRING database (https://
cn.string-db.org/, accessed on 18 September 2022). We identified the miRNAs that regulate
the target genes through the TargetScan database (https://www.targetscan.org/vert_80/,
accessed on 18 September 2022). The molecular selection processes are shown in a flow
chart (Figure 1).

https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
https://pubmed.ncbi.nlm.nih.gov/
https://www.genecards.org/
https://cn.string-db.org/
https://cn.string-db.org/
https://www.targetscan.org/vert_80/
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neurons through decreasing the generation of soluble APPβ and increasing the levels of 
full-length APP, indicating that AD and IS may have the same therapeutic target [26]. 
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Figure 1. The molecular selection processes. Abbreviation: AD: Alzheimer’s disease; GWAS:
genome-wide association study; IS: ischemic stroke; miRNAs: microRNAs; SNP: single
nucleotide polymorphism.

3. The Roles of AD or IS Causative Genes in Its Counterpart

APP, PSEN1, and PSEN2 genes, are causal genes for AD, which encode proteins
called amyloid precursor protein (APP), presenilin1 (PSEN1), and presenilin 2 (PSEN2),
respectively. The Apolipoprotein E (ApoE) gene is a major player in sporadic AD. The
major hereditary IS diseases are cerebral autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy (CADASIL), cerebral autosomal recessive arteriopa-
thy/arteriosclorosis with subcortical infarcts and leukoencephalopathy (CARASIL), and
Fabry disease, which are caused by mutations in the notch receptor 3 (Notch3), htrA serine
peptidase 1 (HTRA1), and galactosidase alpha (GLA) genes, respectively.

3.1. AD Causative Genes in IS

No study has found a direct effect of APP, PSEN1, or PSEN2 mutations on the risk of
IS. However, they may influence the risk of IS through their effects on lipid metabolism [23].
When evaluating the protein oxidation and lipid peroxidation in the brain from knock-
in mice expressing mutant human APP and PSEN1, it was observed that knock-in mice
displayed increased oxidative stress, which is independent of dietary cholesterol [24].
Lipid peroxidation is closely related to endothelial dysfunction, and finally contributes to
atherosclerosis and IS [25]. Statins are widely used drugs that elicit plaque stabilization
and reduce inflammation in atherosclerotic plaque, and also reduce Aβ in human neurons
through decreasing the generation of soluble APPβ and increasing the levels of full-length
APP, indicating that AD and IS may have the same therapeutic target [26].

ApoE has been consistently considered as the major genetic risk for sporadic AD and
cognitive decline post-IS [27]. The ApoE ε4 is associated with an increased number of Aβ
plaques, but we did not find ApoE related to IS in the GWAS database, although ApoE has
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been shown to be associated with IS risk conditions, such as diabetes [28] and low density
lipoprotein cholesterol (LDL-C) [29], which may finally lead to IS.

3.2. IS Causative Genes in AD

It has been suggested that Notch3 and HTRA1 are associated with AD [30,31]. Among
5617 participants with AD and 4594 controls, Notch3 rs149307620 allele missense mutation
was observed in 10 participants with AD but not in the controls [30]. Notch3 was also an
important hit in the gene-based analysis (combined effect of all Notch3 variants) of AD,
suggesting its potential role as a modifier of AD [31]. It was found that the T allele of
HTRA1 rs2293871 upregulated HTRA1 expression and was associated with an increased
risk of AD and AD-by proxy [32]. The deficiency or increase of GLA induced by gene
variations has not been shown to be associated with AD.

4. Common Susceptibility Genes of AD and IS

We found there were thirteen common mapped genes in AD and IS, although no
common risk SNPs were found. The common genes are ALDH1A2, ANKRD22, ANTXR1,
DIO2-AS1, HDAC9, JH3, KCNN3, LNC-LBCS, MMP3, MMP12, PCSK6, RBMS3, and RNU6-
909P. Among them, ten genes are protein coding genes, including ALDH1A2, ANKRD22,
ANTXR1, HDAC9, JPH3, KCNN3, MMP3, MMP12, PCSK6, and RBMS3. The shared genetic
studies of AD and IS are summarized in Table 1. Among the thirteen genes, HDAC9, MMP3,
and MMP12 have been relatively well studied in AD and IS.

Table 1. Common susceptibility genes and their related SNPs in AD and IS.

Mapped
Gene Region SNP Position Relative to

Gene
Risk

Allele p Value Risk to Reference

ALDH1A2 15q21.3
rs4775044 intron variant N.A 4.0 × 10−6 AD Schwartzentruber et al.,

2021 [33]

rs4471613 intron variant A 5.0 × 10−7 IS Carty et al., 2015 [34]

ANKRD22 10q23.31
rs147285445 intron variant T 4.0 × 10−6 AD Mez et al., 2017 [35]

rs11202867 intron variant N.A 1.0 × 10−5 IS Kumar et al., 2021 [36]

ANTXR1 2p13.3
rs7561207 intron variant N.A 4.0 × 10−6 AD Nazarian et al., 2019 [37]

rs149587156 intergenic variant N.A 5.0 × 10−6 IS Kumar et al., 2021 [36]

DIO2-AS1 14q31.1
rs7155666 intron variant A 8.0 × 10−10 AD Chung et al., 2022 [38]

rs11846182 intron variant T 9.0 × 10−6 IS Lee et al., 2017 [39]

HDAC9 7p21.1

rs117756856 intron variant A 9.0 × 10−6 AD Mez et al., 2017 [35]

rs11984041 intron variant T 5.0 × 10−9 IS Network NSG. 2016 [40]

rs2023938 3’prime UTR variant G 8.0 × 10−7 IS Malik et al., 2017 [41]

rs71524263 intron variant N.A 2.0 × 10−12 IS Traylor et al., 2017 [42]

rs2107595 regulatory region
variant N.A 4.0 × 10−15 IS Malik et al., 2018 [22]

JPH3 16q24.2
rs117760708 non coding transcript

exon variant T 3.0 × 10−6 AD Mez et al., 2017 [35]

rs12445022 intergenic variant A 9.0 × 10−8 IS Traylor et al., 2021 [43]

KCNN3 1q21.3
rs16830122 intron variant A 2.0 × 10−6 AD Jun et al., 2016 [44]

rs114812453 intergenic variant N.A 3.0 × 10−7 IS Kumar et al., 2021 [36]

LNC-LBCS 6p22.3
rs62402815 intron variant N.A 2.0 × 10−6 AD Nazarian et al., 2019 [37]

rs9348394 intron variant N.A 5.0 × 10−6 IS Kumar et al., 2021 [36]
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Table 1. Cont.

Mapped
Gene Region SNP Position Relative to

Gene
Risk

Allele p Value Risk to Reference

MMP12 11q22.2
rs12808148 intergenic variant N.A 1.0 × 10−6 AD Kamboh et al., 2012 [45]

rs72983521 intergenic variant N.A 3.0 × 10−8 IS Malik et al., 2018 [22]

MMP3 11q22.2
rs12808148 intergenic variant N.A 1.0 × 10−6 AD Kamboh et al., 2012 [45]

rs72983521 intergenic variant N.A 5.0 × 10−8 IS Malik et al., 2018 [22]

PCSK6 15q26.3
rs146322114 intron variant A 2.0 × 10−6 AD Mez et al., 2017 [35]

rs528002287 intron variant N.A 6.0 × 10−6 IS Kumar et al., 2021 [36]

RBMS3 3p24.1
rs17022021 intron variant T 8.0 × 10−6 AD Mez et al., 2017 [35]

rs115182009 intron variant N.A 9.0 × 10−7 IS Kumar et al., 2021 [36]

RNU6-909P 5p14.1
rs150631144 intron variant T 1.0 × 10−7 AD Mez et al., 2017 [35]

rs13354619 intron variant N.A 2.0 × 10−6 IS Kumar et al., 2021 [36]

Abbreviation: AD: Alzheimer’s disease; IS: ischemic stroke; N.A: not available; SNP: single nucleotide polymor-
phisms.

4.1. HDAC9

Histone deacetylase 9 (HDAC9) is responsible for the lysine deacetylation residues on
the N-terminal part of the core histones. Histone deacetylation is involved in epigenetic
repression, and plays a significant role in transcriptional regulation, cell cycle progres-
sion, and some developmental events. In AD, the expression of HDAC9 was significantly
reduced in the sampled prefrontal and visual cortices [46]. However, the level of blood
HDAC9 mRNA expression was increased in AD twins compared to healthy twins [47]. The
circRNA HDAC9 (circHDAC9) decreased miRNA (miR)-138 expression, which reversed
excessive Aβ production, but circHDAC9 was reduced in AD patients [48]. Thus, in AD,
whether the risk allele (A) of rs117756856 is associated with the increased or decreased
expression of HDAC9 is not clear. An in vitro study showed that HDAC9 inhibition had
neuroprotective effects on IS by inhibiting inflammation [49], which confirmed that deple-
tion of HDAC9 could reduce cerebral injury in experimental stroke. In addition, HDAC9
contributed to brain micro-vessel endothelial cell dysfunction in IS, evidenced by reduced
tight-junction proteins’ expression, endothelial cell permeability dysfunction, increased
inflammatory responses, and cellular apoptosis [50]. It has also been demonstrated that a
higher methylation level of HDAC9 is associated with a lower risk of IS [51]. The risk allele
of rs2107595 increased the risk of atherosclerotic stroke through interaction with the HDAC9
promoter and increased the transcription capacity, which was related to higher HDAC9
mRNA levels [52]. Pathways associated with the risk alleles of rs2107595 are involved in
cholesterol efflux, platelet aggregation, and IL-6 signaling [53]. Thus, the risk alleles of
rs2107595, together with rs11984041, rs2023938, and rs71524263, may be associated with an
increased expression of HDAC9 contributing to IS.

4.2. MMP3 and MMP12

Matrix metalloproteinase 3 (MMP3) and matrix metalloproteinase 12 (MMP12) are
two members of the matrix metalloproteinases (MMPs) family, which are both involved
in the breakdown of the extracellular matrix (ECM). Microglia surround the Aβ plaques,
provoke an inflammatory response, and contribute to neuronal cell loss. Aβ1-42 induces the
upregulation of MMP3 and MMP12 in microglia, which further enhances the inflammatory
processes and accelerates the progression of AD [54]. The risk alleles of rs12808148 may be
associated with the increase of MMP3 and MMP12 in AD. In carotid atherosclerosis plaques,
MMP3 and MMP12 may play an important role in the plaque stability, and their low content
in plaque is related to a higher risk of ipsilateral stroke [55]. A previous study indicated the
causal link between lower serum MMP12 levels and a higher risk of IS [56], and MMP3
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exerted a negative effect on the progression of IS [57]. The risk allele of rs72983521 may be
associated with MMP3 and MMP12 levels in different sites, and thus is associated with IS.

4.3. Other Genes

ANTXR Cell Adhesion Molecule 1 (ANTXR1) is a type I transmembrane protein
and a tumor-specific endothelial marker. The higher peptide from ANTXR1 showed a
significant ability to discriminate AD patients from healthy controls, which suggested that
the risk allele of rs7561207 may increase the risk of AD through enhancing the expression of
ANTXR1 [58]. Ankyrin repeat domain 22 (ANKRD22) is a nuclear-encoded mitochondrial
membrane protein. The expression of ANKRD22 in AD patients was significantly lower
than those of normal controls. However, ANKRD22 stimulated the cytotoxic effect of Aβ
and reduced hippocampal neuronal cell viability in an AD cell model [59]. The T allele
of rs147285445 may influence the risk of AD differently in vivo and vitro. Proprotein
convertase Subtilisin/Kexin type 6 (PCSK6) is a protease in the extracellular matrix and
is expressed in many tissues, including the brain. The levels of PCSK6 were increased
in the fibrous caps of symptomatic carotid plaques. PCSK6 is possibly involved in the
inflammation, ECM remodeling, and dysregulation of smooth muscle cell proliferation in
atherosclerosis, and thus could lead to IS [60]. The risk allele of rs528002287 may enhance
the expression of PCSK6 and increase the risk of IS. The relationships of the aldehyde
dehydrogenase 1 family member A2 (ALDH1A2), DIO2 antisense RNA 1 (DIO2-AS1), JH3,
potassium calcium-activated channel subfamily N member 3 (KCNN3), long noncoding
RNAs bladder and prostate cancer suppressor (LNC-LBCS), RNA binding motif single
stranded interacting protein 3 (RBMS3) and RNA, U6 small nuclear 909, and pseudogene
(RNU6-909P) genes, and AD, IS were only observed in populational studies and have not
been confirmed in molecular studies yet.

To address the common AD and IS risk genes products in AD important molecules,
a STRING analysis was performed. The thirteen common AD and IS risk genes in
the AD important molecules network were identified. MMP3 and MMP12 links with
ApoE, indicating that ApoE may associate with IS through connecting with MMP3 and
MMP12 (Figure 2).
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Figure 2. The protein-protein interaction network of APP, MAPT, ApoE, and thirteen common
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ApoE. Abbreviation: ApoE: apolipoprotein E; APP: amyloid precursor protein; MAPT: microtubule
associated protein tau; MMP12: matrix metalloproteinase 12; MMP3: matrix metalloproteinase 3.
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5. Common Molecular Pathways

We observed three common pathways with at least three gene products related to-
gether. The HDAC9, MMP3, and MMP12 gene products are involved in the G protein-
coupled receptors (GPCR) pathway. Both HDAC9 and MMP3 gene products participate
in the macrophage-migration inhibitory factor (MIF) mediated glucocorticoid regulation
pathway, both MMP3 and MMP12 gene products are involved in the transendothelial mi-
gration of leukocytes pathway, and the two pathways are both immune related pathways.
MMP3, ALDH1A2, HDAC9, and PCSK6 gene products participate in the signal transduc-
tion pathway; ALDH1A2 and MMP3 gene products are involved in the estrogen receptor
(ESR)-mediated signaling and signaling by nuclear receptors pathways; ALDH1A2 and
HDAC9 gene products are involved in the ethanol effects on histone modifications pathway;
both MMP3 and MMP12 gene products participate in the urokinase-type plasminogen
activator (uPA) and urokinase plasminogen activator receptor (uPAR)-mediated signal-
ing and UPA-UPAR pathway, and these six pathways are signal transduction pathways
(Supplementary Table S1).

5.1. Inflammation and Immunity

Immunity is the protection against a disease generated by immunization, previous
infection, or other non-immunologic factors. Inflammation plays an important part in
immunity. Inflammation is a process of removing damaged cells, infectious microorgan-
isms, and starting to heal. When the trigger of the response is neutralized, immune cells
change their activity towards a pro-resolution status via anti-inflammatory signaling. After
a proper response, immune cells are recruited to the place where the attack occurs by
pro-inflammatory signaling pathways. But when it becomes dysfunctional and chronic,
systemic inflammation is an important factor in multiple diseases [61]. Increasing evi-
dence has shown that peripheral and neuroinflammation are the main causes of various
neuropsychiatric diseases, including AD and IS.

Neuritis aggravates brain injury, resulting in neuronal degeneration and synaptic
dysfunction. Recent studies have shown that inflammation is one of the important factors
in the pathogenesis of AD [62]. The type and severity of brain tissue damage is one of the
important factors that determines the inflammatory mode of AD. Although the purpose of
the initial inflammatory response is to protect the body from the effects of stress factors,
if the duration or level of the stimulation is too high, it may cause damage [63]. After
Aβ deposition, the pathological adaptations stimulate the release of pro-inflammatory
cytokines [interleukin-6 (IL-6), interleukin-1β (IL-1β) or tumor necrosis factor-α (TNF-
α)] and other pro-inflammatory molecules [macrophage inflammatory protein, monocyte
chemoattractant protein, coagulation factor, reactive oxygen species (ROS), nitric oxide,
protease, protease inhibitor, etc.], and some prostaglandin, thromboxane, leukotriene,
and C-reactive protein (CRP) from glial cells [64]. Activated microglia respond to the
Aβ, resulting in migration to the plaques as well as phagocytosis of the Aβ. However,
when the microglia become enlarged, or after prolonged periods, they are no longer
able to phagocytose the Aβ. Then peripheral macrophages may migrate to Aβ plaque
deposition to clear the Aβ. However, peripheral macrophages recruitment into the brain is
likely to exacerbate the effects of sustained inflammation and results in an exacerbation
of AD pathology [65]. The deterioration of the environment will lead to additional Aβ
accumulation and pro-inflammatory molecules [64], which will release reactive substances
such as nitric oxide, proteolytic enzymes, excitatory amino acids and complementary
factors, and cause damage to the adjacent neurons [66,67]. Although inflammation is mainly
considered to be what happens after IS, it also has a close relationship with atherosclerosis,
which is a key risk factor for IS. Numerous studies have shown that atherosclerosis is
initiated by endothelial injury or LDLs accumulation within the arterial vascular wall,
which generally involves in oxidization or modification. These modified or oxidized
LDLs, and low-grade inflammation are caused by small endothelial injuries, activate innate
and adaptive immune responses. These immune responses play important roles in the
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development of atherosclerosis [68]. Monocytes/macrophages, neutrophils, B lymphocytes,
and T lymphocytes are the major cell subtypes in the components of atherosclerosis [69].
The increased levels of IL-6, CRP and lipoprotein-associated phospholipase A2 (Lp-PLA2)
are related to an increased risk of IS [70].

MIF is a cytokine released from T-lymphocytes and macrophages stimulated by
glucocorticoids. MIF counter-regulates the inhibitory effects of glucocorticoids on pro-
inflammatory cytokines (IL-6, IL-8, IL-1β and TNF-α), and overcomes glucocorticoid’s
inhibition of T-cell proliferation [71]. MIF may exacerbate the effects of sustained inflam-
mation and leads to additional Aβ accumulation. In addition, T-lymphocytes are major
components of atherosclerosis [72]. Increased levels of IL-6 are related to an increased risk
of IS. Thus, MIF mediated glucocorticoid regulation is connected with an increased risk
of both AD and IS. In the functional enrichment analysis of the 49 differently expressed
genes among AD and control brain samples, transendothelial migration of leukocytes
was enriched in the AD group [73]. Transendothelial leukocyte migration is a key step
in the progression of vascular inflammation, the underlying molecular pathogenesis of
atherosclerosis [74]. Moreover, the differently expressed long noncoding RNAs (lncRNAs)
in IS are also mainly related to transendothelial leukocyte migration [75]. These indicate
that transendothelial leukocyte migration is closely associated with both AD and IS.

The inflammatory responses are initiated locally under aberrant local conditions in
both AD and IS, and elicited by the immune system (Figure 3). Therefore, AD and IS may
have common biological pathways involved in the immune system.
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5.2. GPCR

GPCRs are the largest membrane protein family of seven-transmembrane receptors
in humans. They are involved in neuronal signal transduction in response to various
extracellular signals such as hormones and neurotransmitters [76]. GPCRs may participate
in AD pathology through three aspects: the amyloid hypothesis, the tau hypothesis, and
the cholinergic hypothesis [77]. Microglia express several GPCRs to regulate microglial
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activation and its polarization status. Microglial GPCRs are involved in Aβ generation,
degradation, clearance, and trigger multiple inflammatory pathways in response to Aβ [78].
Family C GPCRs also play important roles in Aβ. Family C of GPCRs contains the calcium-
sensing receptor (CaSR), GABAB receptors (GABABRs), and other receptors. CaSRs are
involved in the neurotransmitter system of human cortical astrocytes and neurons in vitro.
The specific binding of Aβs to CaSRs hinders the release of soluble APP-α peptide and kills
human cortical neurons [23]. GABABRs block the Aβ peptides’ synthesis and prevent neu-
ronal hyperexcitability [79]. In AD, GPCRs are involved in tau phosphorylation via various
downstream kinases including glycogen synthase kinase-3β (GSK-3β), cyclin-dependent
kinase-5 (CDK-5), and extracellular signal-regulated kinases (ERKs) signaling cascade [80–82].
CX3C chemokine receptor 1 (CX3CR1) receptor is a microglia chemokine GPCR. Its binding
and interaction with tau lead to the internalization of tau into microglia [83]. These GPCRs
both promote and inhibit tau phosphorylation. In the cholinergic hypothesis, cholinergic
dysfunction is characterized by reduced acetylcholine release and impaired coupling of
muscarinic acetylcholine receptors (mAChRs) to heterotrimeric guanosine triphosphate
(GTP)-binding proteins (G proteins). Cholinergic dysfunction is also associated with Aβ
accumulation [84]. Atherosclerosis and type 2 diabetes are the risk factors for IS. GPCRs
influence the risk of IS by affecting its risk factors. Lysophospholipids (LPLs) are second-
generation bioactive lipid-derived signaling molecules. GPCRs mediate the biological
effects of LPLs in the development of atherosclerosis [85]. β-cells and enteroendocrine cells
are essential cells for insulin secretion modulation through expressing numerous GPCRs.
GPCRs specific for free fatty acid ligands (lipid GPCRs) are the target for the treatment of
type 2 diabetes because of their function in islet and gut hormone secretion [86]. Therefore,
different GPCRs may have different influences on AD and IS (Figure 4).
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5.3. Signal Transduction

The occurrence of both AD and IS are tightly regulated by a multitude of signal
transduction pathways. Nuclear receptors generally act as ligand-activated transcription
factors [87]. They regulate gene expression through binding to the specific ligand, and
present as therapeutic targets in AD and IS. The receptor interacting protein-140 (RIP140)
is known as a cofactor for some nuclear receptors. The overexpression of RIP140 was
shown to reduce the generation of Aβ by decreasing the transcription of β-APP cleaving
enzyme (BACE1) [88]. Elevated RIP140 also increases the risk of insulin resistance and
atherosclerosis, which are risk factors of IS [89]. Retinoids binds to the specific nuclear
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receptor, such as retinoid X receptors (RXRs) and retinoic acid receptors, to regulate the
expression of a variety of genes that code for enzymes, receptors, neuropeptide hormone,
etc., which are responsible for slowing down the accumulation of amyloids, reducing
neurodegeneration, and preventing pathogenesis of AD [90]. RXRs also negatively regulate
the platelet functional responses and thrombus formation, which might delay the onset
of IS [91]. Liver X receptor (LXR), also known as nuclear receptor subfamily 1 group H
member 3 (NR1H3), is a member of the nuclear receptor superfamily of ligand-activated
transcription factors, and plays a central role in the transcriptional control of cholesterol
homeostasis. The C allele of rs7120118 of NR1H3 gene was shown to reduce the risk of AD,
and the soluble Aβ42 levels were significantly reduced in the temporal cortex of patients
with the CC genotype [92]. In an AD mice model, LXR activation restored microvascular
morphology through decreasing tortuosity and increasing length, which were associated
with decreased deposition of perivascular Aβ [93]. The TT genotype of LXRα rs2279238 is
significantly associated with advanced carotid atherosclerosis, suggesting that this polymor-
phism may act as a genetic risk factor for atherosclerotic stroke [94]. Ex vivo LXR agonist
treatment decreases early atherosclerosis in LDL receptor-deficient mice through inhibiting
monocyte to endothelial adhesion [95]. In addition, the deficiency of LXR led to an increase
in atherosclerosis, with enhanced inflammation in foam cells of atherosclerotic plaques [96].
Peroxisome proliferator-activated receptor γ (PPAR-γ) is a nuclear receptor that plays a
crucial role in glucose and lipid homeostasis in the central nervous system. The PPAR-γ
agonist pioglitazone significantly increased PPAR-γ expression, lowered amyloid-β levels,
and improved the antioxidative capacity in the cortex of AD mice [97]. The PPAR-γ gene
rs1801282 GG genotype may be associated with an increased risk of IS [98]. The PPAR-γ
agonist improved the dyslipidemic profile and inflammatory status in atherosclerotic le-
sions in rats [99]. The nuclear receptor subfamily 4A 2 (NR4A2, also known as Nurr1) plays
important roles in diverse brain functions and its overexpression alleviated AD pathology
changes, including Aβ deposition and neuronal loss [100] in AD mice. The expression of
nuclear receptor subfamily 4 group A member 1 (NR4A1, also known as Nur77) was signif-
icantly increased in the hippocampus of AD mice; the overexpression of NR4A1 promoted
amyloidogenesis and accelerated tau hyperphosphorylation [101]. The absence of Nur77 in
macrophages led to upregulated toll-like receptor signaling, and imbalanced macrophage
polarization toward the proinflammatory M1 phenotype, indicating that Nur77 is an im-
portant target for modulating the inflammatory phenotype of macrophages and regulation
of atherogenesis [102].

In AD hypothalamic medial mamillary (MMN), a higher nuclear ESRα intensity
was significantly associated with larger nuclear and perikaryal sizes, indicating nuclear
ESRα may mediate extra activation in MMN that acts as a unique brain area to prevent
neurodegeneration [103]. In AD human brain tissue, ESRα co-localized with neurofibril-
lary pathology, and their interaction interrupted estrogen signaling, demonstrating that
sequestration of ESRα by tau pathology decreased the neuroprotective role of estrogen
in AD [104]. In both female aorta surgical sample and bilateral ovariectomized female
ApoE -/- mice samples, assay results indicated that estrogen prevented atherosclerosis
through upregulating ESRα expression to induce ESRα-mediated activation of autophagy
and reduce inflammation and cell pyroptosis [105]. In addition, in an ovariectomized
ApoE -/- mice model, it was demonstrated that ESRα inhibited the synthesis and secretion
of proprotein convertase subtilisin/kexin type 9 (PCSK9) and subsequently lowered the ac-
cumulation of cholesterol and triglyceride to prevent post-menopausal atherosclerosis [106].
Hyperinsulinemia and insulin resistance are important causes of atherosclerosis. Insulin
indirectly reduced the expression of ESRα, and thus interfered with estrogen regulation of
vascular smooth muscle cells’ proliferation, leading to atherosclerosis [107].

Urokinase-type plasminogen gene rs2227564 C-positive genotype (CC+CT) has been
reported to associate with a higher risk of developing AD [108]. Neuronal uPA protected the
synapse from the deleterious effects of soluble Aβ. However, in the frontal cortex of an AD
human brain and 5xFAD mice, uPA was decreased, leaving the deleterious effects of Aβ on
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the synapse unaffected [109]. UPAR was highly expressed in human symptomatic carotid
endarterectomies, and mainly found in ruptured plaque segments, suggesting that UPAR
may be connected with plaque rupture in the progression of symptomatic atherosclerotic
lesions [110]. UPA stimulated the differentiation of monocytes into macrophages, prolonged
the macrophage survival in the atherosclerotic lesion, increased lesion cellularity, and
eventually accelerated lesion development [111]. The role of ethanol effects on histone
modifications in AD and IS has not been reported.

6. Common miRNAs

At least nine of these thirteen genes can be regulated by 23 miRNAs identified from
the TargetScan database. Among the 23 miRNAs, four miRNAs regulate eight genes,
including hsa-miR-204-5p, hsa-miR-211-5p, hsa-miR-548c-3p, and hsa-miR-660-3p; and the
other miRNAs regulate seven genes. Among them, we found that thirteen miRNAs were
reported through a Pubmed search using the key words of each miRNA (Supplementary
Table S2). However, only two miRNAs were reported to be related to AD and/or IS. Hsa-
miR-204-5p is the product of the MIR204 gene, regulating ALDH1A2, ANKRD22, ANTXR1,
HDAC9, JH3, KCNN3, MMP3, and RBMS3. Hsa-miR-664b-3p is the product of MIR664B,
regulating ALDH1A2, ANKRD22, HDAC9, KCNN3, MMP3, MMP12, PCSK6, and RBMS3.
Heavy metals like Pb acetate increased the expression of has-miR-204-5p, deteriorated the
cognitive functions, and were associated with the overexpression of tau via pathways of
neurodegeneration-multiple diseases [112]. Has-miR-204-5p also participated in mixed B
vitamins’ better cognitive functions in AD, through linking to both mixed B vitamins and
cognitive function related genes [113]. Hsa-miR-664b-3p was negatively associated with
lead exposure and was decreased in AD human brain tissue compared with controls, and
its target genes participated in potentially AD relevant pathways [114]. It was upregulated
in human vascular smooth muscle cells (hVSMCs) during replicative senescence. Although
hsa-miR-664b-3p was not functionally well annotated in hVSMCs to date, it may play a
role in the adaptive immune system and toll-like receptor signaling 7/8/9 [115]. It may be
associated with vascular aging and atherosclerosis, contributing to IS. Hsa-miR-664b-3p
also regulates APP, PSEN1, MAPT, and HTRA1 (Supplementary Table S3).

7. Advantages and Limitations

Compared with other studies (Table 2), our study has summarized all up-to-date AD
and IS GWAS studies to identify the common risk SNPs and related genes. In addition,
we clustered the common molecular pathways indicated by the shared genes into three
common potential pathogeneses for AD and IS. Finally, we searched for the miRNAs that
regulated the commonly susceptible genes and identified 23 miRNAs that might regulate
both AD and IS. There are some limitations in our study. First, our study was only based
on GWAS datasets, so there might be other common susceptibility genes not covered in
this review. Second, other types of stroke, such as intracerebral hemorrhage, small vessel
disease, etc., might have their own specific genetic factors that are associated with AD, but
they were not covered in this review.

In this study, we used genetic data from the GWAS Catalog database and PubMed to
determine whether the same genetic loci contribute to AD and IS. We identified thirteen
common risk genes, which are involved in three common molecular pathways: immunity,
GPCR, and signaling transduction pathways. Furthermore, we identified 23 miRNAs that
regulated at least seven of the common risk genes. In summary, there are some common
genetic factors and pathways shared by AD and IS, which might be the molecular targets
for maintaining good brain health jeopardized by AD or IS.
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Table 2. The studies about the common genetic factors, pathways and molecular mechanisms between
AD and IS.

No. Reference
AD and IS

Common Molecular Pathways Involved Others
NoSG NoSS

1 Traylor et al.
2016 [4] 0 0

Phospholipid efflux, cholesterol efflux, reverse
cholesterol transport, negative regulation of nuclear
factor kappa B (NF-κB) transcription factor activity

(AD and small vessel disease)

One region
(ATP5H/KCTD2/ICT1)
associated with both
AD and small vessel

disease

2 Cui et al. 2018 [5] / /

Glioma, toll-like receptor signaling pathway,
non-small cell lung cancer, natural killer cell

mediated cytotoxicity, phospholipase D signaling
pathway, hepatitis B, cadherin signaling pathway,

wnt signaling pathway, immunoregulatory
interactions between a lymphoid and a

non-lymphoid cell, synthesis of PIPs at the plasma
membrane, cooperation of PDCL (PhLP1) and

TRiC/CCT in G-protein beta folding, PI metabolism,
signaling pathways in glioblastoma

56 biological processes,
95 cellular

components, and 28
molecular functions

3 Wei et al. 2019 [6] 16 / Immune system /

4 Rahman MR et al.
2019 [7] 22 / Alcoholism, MAPK signaling, glycine metabolism,

serine metabolism, threonine metabolism

Transcriptional
regulator: SPIB,

SMAD3, and SOX2

5 Wang T,
et al.2020 [8] 0 0

Different types of stroke, including any stroke, any
ischemic stroke, large artery stroke, and

cardio-embolic stroke would not be causally
associated with AD risk

/

6 This study 13 0

MIF mediated glucocorticoid regulation,
transendothelial migration of leukocytes, GPCR

pathway, signal transduction, signaling by nuclear
receptors, ESR-mediated signaling, ethanol effects

on histone modifications, urokinase-type
plasminogen activator (uPA) and uPAR-mediated

signaling, UPA-UPAR pathway

23 miRNAs regulate
more than seven

common risk genes

Abbreviation: ATP5H: adenosine triphosphate (ATP) synthase, H+ transporting, mitochondrial F0; ESR: estrogen
receptor; GPCR: G protein-coupled receptors; ICT1: Immature colon carcinoma transcript 1; KCTD2: Potassium
channel tetramerization domain-containing protein 2; MAPK: Mitogen-activated protein kinase; MIF: macrophage-
migration inhibitory factor; miRNA: microRNA; NoSG: Number of Shared Genes, NoSS: Number of Shared SNP,
PDCL: Phosducin like; PhLP1: PH domain and leucine rich repeat protein phosphatase 1; PI : Phosphatidylinositol;
SMAD3: SMAD family member 3; SOX2: SRY-Box transcription factor 2; SPIB: Spi-B Transcription factor;
TRiC/CCT: TCP1 ring complex/chaperonin containing TCP1 complex; uPAR: urokinase plasminogen activator
receptor; /: not reported.8. Summary.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/genes14020353/s1, Table S1: Common molecular pathways
related to the common susceptibility genes; Table S2: Summary of diseases/traits related to the
23 miRNAs in the literature [112–180]; Table S3: The common miRNAs that regulate the shared
susceptibility genes of AD and IS.
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