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Abstract: Sulfate transporters (SULTRs) are an essential plant transporter class responsible for the
absorption and distribution of sulfur, an essential plant growth element. SULTRs are also involved
in processes related to growth and development and in response to environmental stimuli. In the
present study, 22 TdSULTR family members were identified and characterized in the genome of
Triticum turgidum L. ssp. durum (Desf.) using available bioinformatics tools. The expression levels of
candidate TdSULTR genes were investigated under salt treatments of 150 and 250 mM NaCl after
several different exposure times. TdSULTRs showed diversity in terms of physiochemical properties,
gene structure, and pocket sites. TdSULTRs and their orthologues were classified into the known five
main plant groups of highly diverse subfamilies. In addition, it was noted that segmental duplication
events could lengthen TdSULTR family members under evolutionary processes. Based on pocket site
analysis, the amino acids leucine (L), valine (V), and serine (S) were most often detected in TdSULTR
protein binding sites. Moreover, it was predicted that TdSULTRs have a high potential to be targeted
by phosphorylation modifications. According to promoter site analysis, the plant bioregulators ABA
and MeJA were predicted to affect TdSULTR expression patterns. Real-time PCR analysis revealed
TdSULTR genes are differentially expressed at 150 mM NaCl but show similar expression in response
to 250 mM NaCl. TdSULTR reached a maximum level of expression 72 h after the 250 mM salt
treatment. Overall, we conclude that TdSULTR genes are involved in the response to salinity in
durum wheat. However, additional studies of functionality are needed to determine their precise
function and linked-interaction pathways.

Keywords: plant gene families; nutrient transporters; abiotic stresses; sulfur; gene expression

1. Introduction

Sulfur, an important and necessary element for optimal plant growth and development,
is involved in many cellular processes [1]. In addition, sulfur is present in the structure
of hormones, vitamins, amino acids, and coenzymes, and its deficiency will reduce the
quantity and quality of plant production [2]. Sulfur is also involved in the formation of glu-
tathione, which is sensitive to oxidative stress and functions to regulate oxidant-dependent
signaling pathways along with stress-related responses [1,3–5]. Also, sulfur-dependent
metabolites are effective at increasing the tolerance of plants to abiotic stresses such as salt
stress by controlling and regulating related molecular and physiological processes. Plants
absorb sulfate through root cells and use it for sulfur-dependent metabolism. Absorption
and distribution of sulfate occur through sulfate transporters (SULTRs) located in cell
membranes and those of organelles such as the vacuole and plastid [6,7]. SULTRs contain a
STAS (Sulfate Transporter/AntiSigma-factor) domain in its carboxyl-terminal region and
12 membrane-spanning domains [8–10].

Due to the importance of sulfur to subsequent plant growth processes, the SULTR
gene family has been subjected to detailed molecular investigation in model plants such as
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Arabidopsis [11–15]. Moreover, the SULTR gene family is classified into five groups and four
putative subfamilies, including subfamily SULTR 1, 2, 3, and 4 [11–15]. The function of
some members of these subfamilies has been determined. For example, subfamily SULTR
1 members, 1.1, 1.2, and 1.3, are primarily active in roots and are responsible for sulfate
absorption and transport [11,12]. SULTR 2.1 and SULTR 2.2 belong to group 2, which play
principal roles in transferring sulfate from roots to other plant organs [14]. Functional
activities for the five members of the SULTR 3 subfamily (SULTR 3.1, 3.2, 3.3, 3.4, and
3.5) vary and a specific function has not been determined [16]. SULTR 4.1 and SULTR
4.2, members of group 4, are involved in the transport and transfer of sulfate between
the vacuole and the cytosol [6,17]. SULTRs are predominantly involved in growth and
development processes, but studies have revealed that members of this gene family are also
involved in responding to environmental stress [18–21]. For example, subfamily SULTR
3 members have been found to interact with transcription factors (TFs) associated with
stress responses in potatoes [19]. It was reported that SULTR genes in maize are induced
as a response to heat and drought stress [22]. Heavy metal stress will also alter SULTR
expression [20,21].

Triticum turgidum L. ssp. durum (Desf.) is a tetraploid wheat, 2 n = 4 × = 28, that is
well adapted to arid regions [23,24]. As mentioned above, SULTRs play critical roles in the
absorption and transfer of sulfate and in responses to environmental stimuli. Some SULTR
gene family members have been identified and characterized in several plant models and
the functionality of some gene family members has been determined. However, this gene
family has not been studied in T. turgidum L. ssp. durum (Desf.). The SULTR family genes of
T. turgidum L. ssp. durum (Desf.) (TdSULTRs) studied here were identified and characterized
with the expression patterns of candidate TdSULTRs evaluated under salinity.

2. Materials and Methods
2.1. Identification of SULTRs

To recognize the SULTR family members in the genome of T. turgidum L. ssp. durum
(Desf.) (TdSULTRs), two domains Sulfate_transp (PF00916), and STAS (PF01740) were ap-
plied as queries with the BLASTP tool of Ensembl Plants database (Accessed: 20 December
2022) [25]. SULTR proteins were also obtained for the Oryza sativa Indica group, Triticum
urartu, Triticum aestivum, Hordeum vulgare, Sorghum bicolor, and Zea mays. The presence
of SULTR domains in identified proteins was investigated using the Pfam database (Ac-
cessed: 20 December 2022) [26] and the Conserved Domain Database (CDD) (Accessed:
20 December 2022) [27]. Several physiochemical properties of TdSULTRs, such as isoelectric
points (pI), molecular weight (MW), GRAVY, and instability index were evaluated by the
ExpasyProtParam tool (Accessed: 20 December 2022) [28]. The subcellular localization of
each TdSULTR was predicted using the BUSCA server [29].

2.2. Phylogenetics and Conserved Motif Analyses

To construct a phylogeny tree, the SULTR proteins from T. turgidum L. ssp. durum
(Desf.), O. sativa, T. urartu, T. aestivum, H. vulgare, S. bicolor, and Z. mays were analyzed by
Clustal-Omega, an online multiple alignment tool [30]. Next, the aligned sequences were
used to construct a phylogeny tree using the Maximum likelihood (ML) with 1000 bootstrap
replication and the default setting with IQ-TREE web server [31]. The resultant file was
imported into the iTOL online tool [32] to illustrate the phylogeny tree.

2.3. Duplication Analysis of TdSULTR Genes

To identify duplicated TdSULTR genes, the coding sequence of pairs of TdSULTR
genes was compared and screened for genes with an identity ≥0.85 [33]. Furthermore, the
non-synonymous (Ka) and synonymous (Ks) indexes were calculated for each duplicated
gene by MEGAX software [34]. In addition, the time of divergence for duplicated genes
was calculated using the following equation, T = (Ks/2λ) × 10−6. (λ = 6.5 × 10−9).
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2.4. Promoter Analysis

To identify putative cis-regulatory elements in the promoter regions of TdSULTR
genes, the Plant CARE tool (Accessed: 14 December 2022) [35] screened the 1500 bp region
upstream of each gene. All discovered cis-regulatory elements were separated by function.

2.5. Prediction of Three-Dimensional Structure of TdSULTR Proteins

In the current study, the Phyre2 [36] database (Accessed: 17 December 2022) was used
to predict the 3D structure of TdSULTR proteins. Predictions of pocket site locations as
ligand binding regions in the 3D structure of TdSULTR proteins were generated with the
Phyre investigator tool from the Phyre2 server (Accessed: 17 December 2022).

2.6. Prediction of Phosphorylation Region in TdSULTR Proteins

The region of phosphorylation events based on three amino acids, serine, tyrosine,
and threonine, was predicted in TdSULTR proteins using the NetPhos 3-1 server (Accessed:
18 December 2022) [37], and the potential value of each region was set with a high probabil-
ity, more than 0.90.

2.7. Interaction Network of SULTR Family

Protein-protein interaction of TdSULTRs was investigated with the String database
(Accessed: 13 December 2022) based on orthologues from the model plant Arabidopsis [38].
Direct and indirect interactions were discerned by setting the first layer of the network
to 5 and the second layer to 20 nodes. In addition, significant gene ontology (GO) terms
(FDR ≤0.01) were identified based on the molecular function and biological processes of
the interaction network nodes. The final interaction network was designed using Cytoscape
software (v3.9.1) [39].

2.8. Plant Materials and Treatments

The present study utilized the T. turgidum L. ssp. durum (Desf.) cultivar Yavaros.
Sterilized seeds were planted three per pot in peat moss. Seedlings were grown under
photoperiodic lighting (16 h of light: 8 h of dark) at a temperature of 24± 3 ◦C. Six-week-old
seedlings were separately treated with two salt concentrations, 150 and 250 mM NaCl, by
irrigation. The process was repeated after 24 h with three additional pots irrigated without
salt for use as controls. In the next step, seedling shoots were collected after 6, 24 and 72 h
of salt treatment. The harvested shoot samples were immediately frozen in liquid nitrogen
before being transferred to a −65 ◦C freezer.

2.9. Real-Time PCR Analysis

The total RNA of collected samples was extracted using an RNX plus kit (Cinaclone,
Tehran, Iran), following the included manufacturer’s protocol. Also, a reverse transcriptase
(Roche, Mannheim, Germany) enzyme was used to synthesize our cDNA based on the
provided manufacturer’s protocol. In this study, six TdSULTR genes were selected for
expression pattern analysis in response to salinity. The Actin7 gene was selected as a
housekeeping gene for data normalization. Primers (forward and reverse) for each selected
gene (Table S1) were designed using an online tool, Primer3 (Accessed: 10 December
2022) [40]. The observed expression patterns for the TdSULTR genes were evaluated by
ABI Step One using Maxima SYBR Green/ROX qPCR Master Mix (Thermo Fisher, Illkirch-
Graffenstaden, France), according to the manufacturer’s protocol. Lastly, gene expression
levels were estimated using the delta-delta ct protocol [41]. Three biological replicates were
used in this experiment.

3. Results
3.1. Identification and Physicochemical Properties of the SULTR Family

Twenty-two TdSULTR genes were identified within the T. turgidum L. ssp. durum
(Desf.) genome and their physicochemical properties are provided in Table 1. TdSULTR
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proteins ranged in length from 147 (TRITD6Av1G100790) to 698 (TRITD4Bv1G165010)
amino acids. Molecular weight (MW) ranged from 16.77 (TRITD6Av1G100790) to 75.69 kDa
(TRITD4Bv1G165010). In addition, exon numbers varied from 3 to 13. The endomembrane
system and organelle membranes were predicted to be the subcellular localization site for
TdSULTR (Table 1). Based on isoelectric point (pI) data, most members of the TdSULTR gene
family, with the exception of two proteins (TRITD6Av1G100790 and TRITD7Av1G260730),
were alkaline (pI ≥ 7.0) in nature. The positive value for GRAVY indicates the hydropho-
bic nature of the proteins, while negative values indicate the hydrophilic nature of the
proteins [42]. The value of GRAVY of all TdSULTR family members was positive, which
indicates the hydrophilic nature of TdSULTRs. Results showed that TdSULTR family mem-
bers have diverse physiochemical and structural properties, suggesting the SULTR gene
family has likely been influenced by evolutionary processes.

Table 1. Physicochemical properties for TdSULTR family members within the T. turgidum L. ssp.
durum (Desf.) genome.

Gene ID Stability MW (KDa) pI GRAVY CDS
(bp)

Exon
Number

Peptide
(aa) Subcellular

TRITD6Av1G100790 Stable 16.77 6.12 0.228 444 5 147 Localization
TRITD4Av1G015890 Stable 72.88 9.05 0.326 1995 12 664 Organelle
TRITD4Bv1G157570 Stable 72.8 9.17 0.307 1989 10 662 membrane
TRITD7Av1G260730 Stable 72.06 6.68 0.43 1983 13 660 Endomembrane
TRITD7Bv1G210460 Stable 72.23 8.86 0.465 1983 13 660 Endomembrane
TRITD4Av1G234520 Stable 71.48 9.4 0.541 2004 7 667 -
TRITD4Av1G009550 Stable 71.22 8.86 0.466 658 9 658 -
TRITD7Av1G025830 Stable 71.76 9.33 0.516 2010 7 669 Endomembrane
TRITD2Bv1G237240 Stable 72.99 9.15 0.502 2031 13 676 Endomembrane
TRITD2Av1G273870 Stable 72.96 9.19 0.463 2031 11 676 Endomembrane
TRITD4Bv1G165010 Stable 75.69 8.88 0.404 2097 9 698 Endomembrane
TRITD5Av1G160650 Stable 35.2 8.81 0.316 954 5 317 Endomembrane
TRITD4Bv1G157680 Stable 71.31 9.01 0.504 1989 4 662 Endomembrane
TRITD4Av1G015910 Stable 70.99 9.19 0.511 1980 4 659 Organelle
TRITD5Bv1G135630 Stable 72.08 8.99 0.395 1971 3 656 membrane
TRITD3Bv1G170350 Stable 70.68 8.82 0.481 1947 9 648 Endomembrane
TRITD5Av1G144960 Stable 72.05 8.92 0.399 1971 7 656 -
TRITD3Av1G187350 Stable 70.66 8.85 0.483 1950 13 649 Endomembrane
TRITD5Bv1G102400 Stable 74.13 8.85 0.429 2058 7 685 Endomembrane
TRITD5Av1G124080 Stable 73.97 8.76 0.442 2055 8 684 Endomembrane
TRITD6Bv1G171900 Stable 70.22 9 0.541 1953 10 650 Endomembrane
TRITD6Av1G182150 Stable 70.01 8.85 0.536 1950 10 649 Endomembrane

3.2. Phylogenetic Analysis of SULTR Family Members

A phylogenetic tree of 22 TdSULTR proteins and associated orthologues in T. aestivum,
T. urartu, S. bicolor, H. vulgare, O. sativa, A. thaliana, and Z. mays was constructed based on the
maximum likelihood (ML) method (Figure 1). The results indicated SULTR family proteins
could be classified into five main groups. The greatest diversity of SULTR proteins was
observed in group IV. In addition, the highest number of TdSULTR proteins was observed
in group III. Group IV was subdivided into two large subgroups, IV-a and IV-b. Group V
was the largest clade with 32 SULTR proteins. Groups I, II, III and IV included 12, 22, 27,
and 29 SULTR proteins, respectively. All SULTR 3.5 proteins were located in group I, while
SULTR 3.1 and 3.2 were placed in group II. Other SULTR 3 proteins, SULTR 3.3 and 3.4,
were located in group III, while all SULTR 1 proteins were in group V. Interestingly, SULTR
4 subfamily members along with SULTR 2 members were placed in group IV. A perusal of
the phylogeny tree indicated the diversity in SULTR gene family members likely occurred
after the derivation of monocots and dicots.



Genes 2023, 14, 333 5 of 14

Genes 2023, 14, 333 5 of 14 
 

 

3.2. Phylogenetic Analysis of SULTR Family Members 
A phylogenetic tree of 22 TdSULTR proteins and associated orthologues in T. aes-

tivum, T. urartu, S. bicolor, H. vulgare, O. sativa, A. thaliana, and Z. mays was constructed 
based on the maximum likelihood (ML) method (Figure 1). The results indicated SULTR 
family proteins could be classified into five main groups. The greatest diversity of SULTR 
proteins was observed in group IV. In addition, the highest number of TdSULTR proteins 
was observed in group III. Group IV was subdivided into two large subgroups, IV-a and 
IV-b. Group V was the largest clade with 32 SULTR proteins. Groups I, II, III and IV in-
cluded 12, 22, 27, and 29 SULTR proteins, respectively. All SULTR 3.5 proteins were lo-
cated in group I, while SULTR 3.1 and 3.2 were placed in group II. Other SULTR 3 pro-
teins, SULTR 3.3 and 3.4, were located in group III, while all SULTR 1 proteins were in 
group V. Interestingly, SULTR 4 subfamily members along with SULTR 2 members were 
placed in group IV. A perusal of the phylogeny tree indicated the diversity in SULTR 
gene family members likely occurred after the derivation of monocots and dicots. 

 
Figure 1. Phylogenetic analysis of SULTR gene family members from T. turgidum L. ssp. durum 
(Desf.) (TRITD prefix), T. aestivum (Traes prefix), T. uratu (TRIUR prefix), S. bicolor (SORBI prefix), 
H. vulgare (HORVU prefix), O. sativa (Os prefix), A. thaliana (AT prefix), and Z. mays (Zm prefix). 

3.3. Chromosome Location and Duplication Events in TdSULTR Genes 
Chromosome positioning for the 22 TdSULTR genes of T. turgidum L. ssp. durum (Desf.) 

illustrated that all were located on 12 chromosomes, an indication that TdSULTR genes 
were randomly distributed among the chromosomes (Figure 2a). For instance, four genes 

Figure 1. Phylogenetic analysis of SULTR gene family members from T. turgidum L. ssp. durum (Desf.)
(TRITD prefix), T. aestivum (Traes prefix), T. uratu (TRIUR prefix), S. bicolor (SORBI prefix), H. vulgare
(HORVU prefix), O. sativa (Os prefix), A. thaliana (AT prefix), and Z. mays (Zm prefix).

3.3. Chromosome Location and Duplication Events in TdSULTR Genes

Chromosome positioning for the 22 TdSULTR genes of T. turgidum L. ssp. durum (Desf.)
illustrated that all were located on 12 chromosomes, an indication that TdSULTR genes
were randomly distributed among the chromosomes (Figure 2a). For instance, four genes
in chromosome 4A, three chromosomes 4B and 5A, two genes in chromosomes 5B and 7A,
and a single gene in the 2A, 2B, 3A, 3B, 6A, 6B, and 7B chromosomes. Based on duplication
analysis, 20 genes were segmentally duplicated among TdSULTR gene family members
(Table S2). The first duplication event was estimated to have been around 32 million years
ago (MYB) for two SULTR3.3 genes including TRITD2Bv1G237240 and TRITD7Av1G260730
(Figure 2b). The Ka/Ks ratio was calculated for duplicated genes (Figure 2c). All duplicated
TdSULTRs showed Ka/Ks < 0.40, indicating that the duplicated TdSULTR genes were under
purifying (negative) selection.
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lines showed the duplicated genes (a), time of divergence of duplicated TdSULTR genes based on
million years ago (b), and the ratio Ka/Ks of duplicated genes of the TdSULTR gene family (c).

3.4. Analysis of TdSULTR Protein Structure

SULTR protein structures were modeled with more than 90% confidence and their
ligand binding sites (pocket sites) were also predicted (Figure 3). According to the 3D
structure results, different binding sites were predicted in TdSULTR proteins (Figure 3a).
Variation in protein structure may reflect their transport activity in response to environ-
mental stimuli. Based on pocket site analysis, leucine (L), valine (V), and serine (S) were
frequently observed in the binding residues at the ligand binding site for nearly all of the
TdSULTR proteins (Figure 3b). L was present in most TdSULTR proteins, while V and S
were absent in three TdSULTR proteins each. Generally, L is known as a key residue in
predicted pocket sites of TdSULTR proteins.
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Figure 3. Three-dimensional and pocket site analysis of TdSULTRs in T. turgidum (a), and frequency
of residues located in pocket sites of TdSULTRs (b). Red fill indicates the pocket site in the 3D
structure of TdSULTRs. Abbreviations: Alanine, (Ala, A); Arginine, (Arg, R); Asparagine, (Asn, N);
Aspartic acid, (Asp, D); Cysteine, (Cys, C); Glutamic acid, (Glu, E); Glutamine, (Gln, Q); Glycine, (Gly,
G); Histidine, (His, H); Isoleucine, (Ile, I); Leucine, (Leu, L); Lysine, (Lys, K); Methionine, (Met, M);
Phenylalanine, (Phe, F); Proline, (Pro, P); Serine, (Ser, S); Threonine, (Thr, T); Tryptophan, (Trp, W);
Tyrosine, (Tyr, Y); Valine, (Val, V).

3.5. TdSULTR Post-Translational Modifications and Predicted Phosphorylation Regions

Potential phosphorylation regions, important for post-translational modifications,
were investigated in TdSULTR proteins. Results revealed TdSULTRs are extremely likely
(>90%) to target kinases (Figure 4). TdSULTR 3 subfamily protein TRITD4Bv1G165010, with
67, possessed the highest number of potential sites. It was also uncovered that serine is more
influenced by phosphorylation modifications than the amino acids tyrosine and threonine.
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from G I (group 1) to G V (group 5).

3.6. Promoter Analysis of TdSULRs

Analysis of TdSULTR gene promoter regions led to the discovery of the putative
cis-regulatory elements affecting expression patterns (Table S3 and Figure 5). In the present
study, cis-regulatory elements were classified into four main groups, including hormone-
responsive elements (REs), growth REs, stress REs, and light REs (Figure 5a). Cis-regulatory
elements involved in plant stress responses were most abundant, at 35%, with cis-regulatory
elements involved in growth processes (8%) those least represented (Figure 5a). Cis-
regulatory elements related to hormone responses were divided into five groups, including
auxin REs, methyl jasmonate (MeJA) REs, abscisic acid (ABA) REs, GA Res, and salicylic
acid (SA) REs (Figure 5b). ABA REs and MeJA REs were distributed most in the promoter
region of TdSULTRs, indicating these gene family members are more induced by ABA and
MeJA. In addition, cis-regulatory elements involved in response to drought, anaerobic, and
low-temperature stresses are most often found upstream sites of TdSULTR genes (Figure 5c).
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3.7. Expression Profiles of TdSULTR Genes

The expression patterns of members of a gene family can reveal some aspects of their
function in response to different biological conditions. To clarify the potential biological
roles of durum wheat TdSULTR genes, the expression patterns of six candidates were
investigated under two levels of salt stress (150 and 250 mM NaCl concentration). Can-
didate genes showed differential expression patterns in response to salinity (Figure 6).
The TRITD3Bv1G170350 gene, from the TdSULTR 3.5 subfamily, showed a significant
down-regulation after 6 h of salinity in both applied salt concentrations, indicating that
this gene can be an early response of durum wheat in response to salinity. Moreover,
TRITD3Bv1G170350 illustrated down-regulation in all series after 250 mM of NaCl. Besides,
the TRID4Av1G015890 gene (TdSULTR 1.2 subfamily) was also down-regulated in all time
periods of 150 mM salt treatment, but up-regulated at 250 mM NaCl. TRID5Bv1G12400, a
TdSULTR 4 subfamily member, was induced 24h after salt treatment and showed high up-
regulation after 72 h of 250 mM NaCl. Thus, the TRID5Bv1G12400 gene remains inactive dur-
ing the early salinity stress response. TRID7Av1G260730 (TdSULTR 3.3 subfamily), showed
differential expression at 150 µM NaCl, up-regulation after 6h, and down-regulation after
24 h and 72 h of salt treatment. Two TdSULTRs, TRID4Bv1G165010 (TdSULTR 3.1 subfam-
ily) and TRID4Bv1G157680 (TdSULTR subfamily 2), showed similar expression patterns
with both genes showing upregulation at each time point, except 6 h after 150 mM NaCl.
Interestingly, all candidate genes, with the exception of TRITD3Bv1G170350, displayed the
highest expression levels 72 h after 250 mM salt treatment.
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3.8. TdSULTR Interaction Network

In this study, the SULTR protein interaction network revealed proteins associated
with sulfur assimilation such as SERAT, serine O-acetyltransferase, APS (adenosine 5′-
phosphosulfate), APR (adenosine 5′-phosphosulfate reductase), and APK (adenosine-5′-
phosphosulfate kinase) (Figure 7a). Gene ontology enrichment analysis based on network
elements revealed that molecular function terms including adenylyl sulfate transferase
(ATP) activity, adenylyl sulfate kinase activity, and adenylyl sulfate reductase (glutathione)
activity were significantly linked with the SULTR network (Figure 7b). Biological processes
such as the hydrogen sulfide biosynthesis process and sulfate reduction process were also
significantly associated with the SULTR network. Cellular component enrichment analysis
showed chloroplast and chloroplast stroma were the target sites of members of the SULTR
network. As expected, based on KEGG analysis, sulfur metabolism was recognized as a
metabolic process related to the SULTR network.
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4. Discussion

Sulfur is a nutrient factor is involved in photosynthesis and critical growth processes
and in plant responses to environmental stresses. Therefore, sulfur absorption and distribu-
tion in plant organs are very important. The sulfate transporters described here, as the main
factor of sulfate distribution, help to improve plant performance of [18,43]. In the present
study, 22 TdSULTR family members were identified and characterized by bioinformatic
analyses. Physicochemical property analysis disclosed that TdSULTR were hydrophilic
proteins, indicating that all TdSULTRs probably work under the same conditions. However,
TdSULTRs were diverse based on exon number, ranging from 3 to 13, and more exons
were observed in the structure of subfamily SULTR 3 genes. Exon numbers can affect
gene expression thus, genes with high exon numbers are slowly induced compared to
genes with fewer exons [44]. The phylogeny analysis showed the evolutionary process of



Genes 2023, 14, 333 11 of 14

each TdSULTR subfamily varied. In comparisons of relationships between the subfamilies
of monocot SULTRs with the dicot model, Arabidopsis, it can be concluded that diversity
within this family most likely occurred after the derivation of monocots and dicots [45,46].
In addition, subfamily TdSULTR 3 showed more diversity, suggesting that this subfamily
may be an ancestor of other subfamilies [47,48]. Segmental duplication was recognized as a
main evolution event, which expanded the number of TdSULTR family members. How-
ever, it was predicted that duplicated TdSULTR were under purifying selection based on
Ka/Ks ratio [49]. Predicting three-dimensional structures of TdSULTR proteins showed that
members of this gene family are structured similarly but possess different pocket regions.
Variations in protein active site location can influence interactions and levels of protein
activity [50,51]. L, V, and S were most abundant in the pocket regions, which showed
the importance of these amino acids to TdSULTR activity rates and possible interactions.
Hence, additional research is needed to better determine the effect of divergence in these
areas. The TdSULTRs were predicted to be proteins highly likely to be phosphorylated by
kinases. The presence of high-potential phosphorylation regions indicates TdSULTRs may
be controlled by kinase-dependent signaling pathways. Studying expression patterns of
target genes can provide a relative understanding of their biological functions. Few studies
have been conducted in the field that addresses the function of SULTRs [6,7,52,53] and their
roles in the plant environmental stress response are unknown. In this work, expression
profiles of candidate TdSULTRs were investigated under two different concentrations of
salinity, 150 and 250 mM NaCl. TdSULTRs showed diverse expression patterns in response
to 150 mM NaCl, while all TdSULTRs, except TRITD3Bv1G170350, were highly induced by
250 mM of NaCl after 72h. These results indicate that the expression pattern of SULTRs is
dependent on salt concentration and duration of stress. Also, it seems that TdSULTRs are
present in both early and delayed responses to salt stress. For instance, TRID5Bv1G12400, as
a member of subfamily TdSULTR 4, could not be classified in the group of early responses
to salinity. Hormones, cytosol Ca concentration, and kinases as well as ROS greatly induced
plant cell signaling elements in response to stresses [54]. Cis-regulatory elements related
to ABA and MeJA-responsive hormones were often found upstream of TdSULTR genes,
indicating TdSULTR genes can be controlled by stress-related hormones. These results
indicate sulfate transfer genes are diverse in structure and function and are involved in
several different cellular pathways.

5. Conclusions

In the present study, the structure and function of sulfate transporter gene family
members in T. turgidum L. ssp. durum (Desf.) (TdSULTRs) were investigated. We conclude
that TdSULTRs are diverse based on their physiochemical properties and structure. It also
appears that TdSULTRs were extended by segmental duplication events. Moreover, we
found that TdSULTR genes are involved in the hormone response to salinity and have
the potential to induce responses from phytohormones such as ABA and MeJA. However,
further functional analyses are required to understand the role of TdSULTRs in durum
wheat resistance to stress and to find the upstream elements induced by the TdSULTRs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14020333/s1, Table S1: List of TdSULTR primers used in
real-time PCR analysis; Table S2: List of the duplicated TdSULTR genes along with Ka and Ks values;
List Table S3: List of cis elements engaged in various developmental and stress responsive pathways
in TdSULTR genes.
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