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Abstract: Single cell RNAseq has been a big leap in many areas of biology. Rather than investigating
gene expression on a whole organism level, this technology enables scientists to get a detailed look
at rare single cells or within their cell population of interest. The field is growing, and many new
methods appear each year. We compared methods utilized in our core facility: Smart-seq3, PlexWell,
FLASH-seq, VASA-seq, SORT-seq, 10X, Evercode, and HIVE. We characterized the equipment re-
quirements for each method. We evaluated the performances of these methods based on detected
features, transcriptome diversity, mitochondrial RNA abundance and multiplets, among others
and benchmarked them against bulk RNA sequencing. Here, we show that bulk transcriptome
detects more unique transcripts than any single cell method. While most methods are comparable in
many regards, FLASH-seq and VASA-seq yielded the best metrics, e.g., in number of features. If no
equipment for automation is available or many cells are desired, then HIVE or 10X yield good results.
In general, more recently developed methods perform better. This also leads to the conclusion that
older methods should be phased out, and that the development of single cell RNAseq methods is still
progressing considerably.

Keywords: single cell sequencing; PlexWell; Smart-Seq3; 10X genomics; FLASH-seq; SORT-seq;
VASA-seq; HIVE; transcriptomics; benchmarking

1. Introduction

For more than 10 years, single cell RNA sequencing (scRNAseq) has been one of the
main technologies to transform science [1–3]. It has become common to not only investigate
tissue, but also to zoom in onto individual (rare) cell populations, to differentiate between
cell populations, between specialized cells within them, or diverging responses within the
same cell population [4,5]. While some of the first scRNAseq methods were complex with
a myriad of manual steps (e.g., [6] and references within), the ongoing development has
resulted in a large variety of commercial suppliers and kits, which are remarkably diverse
in the number of cells required, their protocol complexity, and equipment requirements.

Continuous development has improved the accuracy, sensitivity, and throughput of
scRNAseq methods, but also created a plethora of methods to choose from. There are
marked differences between these methods and choosing the right one for each application
can be challenging. As a genomics core facility, which routinely performs single cell
sequencing and implements new methods, we would like to recommend to our customers
the best method for each application. In addition, when considering which methods to
recommend to customers or which new methods to implement, various metrics need to
be evaluated.
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While the costs of reagents might be the most apparent for the customer, the required
technician’s hands-on time or technological considerations are no less important. With a
look to the underlying technology, it needs to be considered how diverse the underlying
cell population is, and if a low-throughput method with a 96- or 384-well plate might be
sufficient, or if a bigger population with many thousands of cells might be necessary. Other
factors such as the necessary sequencing depth, the possible detection of isoforms or the
sequencing of non-polyA-tailed transcripts make method selection not trivial.

Here, we evaluate a multitude of methods for their performance across a range of dif-
ferent quality control parameters. We discuss their suitability to deliver reproducible single
cell transcriptomics data. These results provide guidance both for individual researchers,
consortia, and for core facilities.

2. Materials and Methods

Detailed information for all methods can be found in the Supplementary Materials.

2.1. Cell Growth and Sorting

K562 is a human multiple melanoma cell line and was obtained for the ATCC (ATCC
CCL-243). Cells were maintained at 37 ◦C under 5% CO2 in RPMI medium supplemented
with 10% FBS and penicillin-streptomycin.

Mouse embryonic stem cells (mESCs) were cultured as previously described [7].
Mouse ESCs were cultured on 0.1% gelatin and FCS-coated plates in N2B27 medium
supplemented with 1000 U/mL LIF, 3 µM CHIR99021 (Axon Medchem, Groningen, The
Netherlands), and 2 µM PD0325901 (Merck, Amsterdam, The Netherlands). Cells were
cultured at 5% CO2 and 37 ◦C, passaged 1:5 every 2–3 days by trituration of colonies to a
single cell suspension using 0.05% trypsin-EDTA.

Cells were counted with a Countess II from Invitrogen/ThermoFisher Scientific
(Waltham, MA, USA). K562 and mESC cells for the plate-based single cell transcriptome
assays (Smart-seq3, PlexWell, FLASH-seq, SORT-seq, and VASA-seq) were sorted in a
checkerboard pattern into 96- or 384-well plates using CellenOne X1 (Scienion, Berlin,
Germany). Cells were sorted into 96- or 384-well plates containing different cell lysis
media, or were thermally or enzymatically lysed after sorting, depending on the method
(see Supplementary Materials). Plates were sealed and frozen at −80 ◦C in the case that
processing was not directly started.

2.2. Single Cell Transcriptome Assays

Eight different single cell RNAseq methods have been performed: PlexWell, Smart-
seq3 [8,9], FLASH-seq [10,11], 10X Chromium [12], VASA-seq [13], SORT-seq [14,15], Ever-
code WT mini (a commercial version of Split-seq [16]), and HIVE. All methods are described
in detail in the Supplementary Materials.

In brief, for the 5 plate-based methods (Smart-seq3, PlexWell, FLASH-seq, SORT-seq,
VASA-seq), cells were dispensed into a 96- or 384-well plate with a CellenOne instrument.
Cells were lysed, cDNA was generated, and in some methods, the cDNA concentrations
were quantified and further checked on a Bioanalyzer. The cDNA was tagmented and
amplified by PCR to generate Illumina sequencing libraries. The amount of input cells
specified in Supplementary Table S1 takes empty wells and other controls into account, and
therefore only includes dispensed K562 and mESC cells. As an example, the 384-well plates
for VASA- and SORT-seq contained 8 empty controls; therefore, only 376 cells are listed.

For 10X, 1 million/mL K562 and 1 million/mL mESCs cells were mixed 1:1 in PBS and
processed according to the manufacturer’s instructions in the Chromium Next GEM Single
Cell 3′ protocol v 3.1. Single cell emulsions were generated on the Chromium Controller
(10X Genomics, Leiden, The Netherlands), and 8250 cells were loaded to target a recovery
of 5000 cells.

For HIVE and HIVE CLX, the manufacturer’s instructions from the HIVE scRNAseq
v1 Processing Kit User Protocol (Honeycomb Biotechnologies, Waltham, MA, USA) were
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followed. A total of 15,000 cells were loaded, with the target to recover 6000 cells for the
HIVE and 30,000 on the HIVE CLX to recover 11,000. We processed three hives, with K562,
mESC, and 1:1 K562:mESC mixture. One additional HIVE and HIVE CLX with both K562
and mESC cells each were frozen (approximately 6 months and 6 weeks, respectively).

For the Split-seq library, the instructions in the Evercode WT Mini manual v 2.1.2 from
August 2023 (Parse Biosciences, Seattle, WA, USA) were followed, with minor modifications
(see Supplementary Materials).

2.3. Bulk RNAseq

RNA was isolated with the RNeasy plus Micro kit by Qiagen, with 500,000 cells per
sample. Bulk total RNA was prepared from triplicates of K562 cells and mESCs according
to the Illumina TruSeq stranded mRNA protocol (Illumina, San Diego, CA, USA). A part of
the workflow was automated with the Bravo automated liquid handling platform (Agilent
Technologies Inc, Santa Clara, CA, USA).

2.4. Sequencing

The generated libraries were sequenced on Illumina systems, either single read or
paired-end reads of 50 bp (Smart-seq3, PlexWell, FLASH-seq, Bulk) or paired end 26 and
60 bases (VASA-seq, SORT-seq) were generated. For 10X, the libraries were sequenced
yielding paired-end reads of 28 and 90 bp, for HIVE, paired-end reads of 26 and 51 bp.

Supplementary Table S1 describes in detail the read length and sequencing system for
each library.

2.5. Data Analysis

In brief, the data were processed in pipelines, designed to be as similar as possible to
the different methods, which were implemented in Snakemake v 6.11.0 [17] and used the
same reference genome, a concatenated FASTA file of GRCh38 [18] and GRCm38 [19] in-
cluded in the cellranger software refdata-gex-GRCh38-and-mm10-2020-A [12]. Differences
in the pipelines are attributable to intrinsic features of the sequencing method, differences
in paired-end status, UMI presence, barcode detection, and are mainly restricted to the pa-
rameters used in STAR [20]. All details can be found in the Supplementary Materials. It was
ensured that all pipelines run the same version of all included programs. All read files were
trimmed with CutAdapt [21] for 3′ adapters with the ‘–a’ option. In the case of paired-end
data, both reads were trimmed together, with the additional option ‘–A’ (3′ adapters for the
second read). Reads were mapped with star v 2.7.9.a [20]. The conversion of SAM/BAM
files and attainment of the related statistics was performed with SAMtools [22]. For most
analyses, all samples were normalized to 20,000 read pairs per cell on average, except for
the estimation of multiplets, non-detected genes, and sequencing saturation, which were
performed on the full data.

The python StatsModel package v 0.14 [23] was used for regression calculations.
The single cell count matrices were further analyzed in R 4.2.1 [24] with Seurat 4.3.0 [25].
Figures were generated in R 4.2.1 [24] or in Python3 with Matplotlib v 3.5.1 [26]. Figures
were assembled and annotated with Inkscape v 1.2.1 [27].

3. Results

We benchmarked a multitude of single cell transcriptome assays. For a systematic
comparison of the methods, we used two cell types. The human K562 cell line, which is
a very homogeneous cancer cell line, and mouse embryonic stem cells (mESCs), which
are native mouse cells. Bulk RNA sequencing data of both cell lines were generated as a
ground truth to assess differences between single cell and bulk assays. The study design,
workflows, and outcomes are depicted in Figure 1. For most assays, single cells were
dispensed by CellenOne (in one case F.SIGHT) into microtiter plates, except for Evercode
and HIVE where both cell types were mixed, and 10X genomics, where the cells were put
in emulsion droplets by the Chromium Controller. Subsequently, single cell libraries were
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made according to the published protocol or the manufacturer’s instructions, and then
sequenced. In the case of HIVE and HIVE CLX, one out of four in each batch were frozen
(six months and six weeks, respectively), according to the manufacturer’s instructions.
Sequencing data were normalized per protocol to an average of 20 k clusters per single
cell and aligned to a combined mouse and human reference genome. After read counting,
further analysis and visualizations have been created to show the performance of each
technology and compare them to each other and the ground truth (Figure 1).

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

1 24

CutAdapt

Spli�ng reads

UMI

Normaliza�on: 

 20k clusters/cell

Body

−10

0

10

−10 0 10
UMAP_1

U
M
A
P
_
2

species

R + Seurat Star

+

Plexwell

FLASH-seq

Smart-seq3

SORT-seq

VASA-seq

{ }
HIVE

Evercode WT

10X 3'

Bulk

Figure 1. Overview methods: the diagram depicts the workflow. Mouse and human cells were
utilized for all methods. Cells were applied separately or mixed for some of the workflows (bulk
RNAseq, 10X, HIVE), or were sorted into a well plate (96 or 384) in a checker-board pattern, alternating
human (red) and mouse (blue) cells (for Smart-seq3, PlexWell, FLASH-seq, VASA-seq, and SORT-seq).
All workflows utilized various equipment, depicted next to the workflows, except for HIVE, which is
a self-contained workflow. All samples were afterwards sequenced on an Illumina sequencer and
normalized to 20,000 reads per cell on average. The data were then trimmed with CutAdapt, mapped
with Star, and analyzed with Seurat. For Smart-seq3, the UMI and body reads were divided and
analyzed separately.
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3.1. Single Cell RNAseq Requirements

Besides the scientific results described in the following sections, the technological
requirements also need to be considered. All workflows utilized various equipment, which
can be expensive and complicated to acquire (Figure 1). HIVE is an exception, as it is a
self-contained workflow. The bulk RNAseq workflow does not require any automation
either but was partially automated with a Bravo automated liquid handler. The 10X
workflow requires the Chromium Controller from 10X as the only machine. All plate-based
methods require a method for cell sorting, in this case, the CellenOne or alternatively FACS.
These methods have the additional disadvantage of requiring many liquid dispensing and
pipetting steps, which for some (SORT- and VASA-seq) were performed with a Nanodrop II
pipetting robot and an Echo 525 robot liquid handler, and for others (Smart-seq3, PlexWell,
FLASH-seq) with a Mantis liquid handler, I.DOT liquid handler, and a Mosquito pipetting
robot. In theory, these steps can be performed manually, but even with automation, these
methods take 3–4 days to complete.

The overall required time between the different methods is quite comparable. Hands-
on time ranges between 8 and 16 h, yet the total time, including incubation times and other
logistic considerations like safe stopping points for freezing, is about 3 days. Bulk RNA
sequencing with automation only requires 2 days, whereas VASA-seq needs 4 days. Despite
similar levels of automation and commercial solutions being available, the hands-on time
varies and ranges between 8 h for 10X, 9 h for SORT-seq, and up to 16 h for PlexWell and
VASA-seq.

3.2. Quality Control

First, the alignment percentages of the two included reference genomes, the human
GRCh38 and the mouse mm10 (Figure 2), were assessed. A 90% mapping ratio of reads
(or of UMIs, where applicable) to one of the organisms was used to assign a cell to being
either human or mouse, whereas cells with a lower percentage were assigned as a multiplet.
Three of the five plate-based assays did not yield any mixed cells as expected due to the
single cell dispensation by CellenOne. The 10X genomics, HIVE, HIVE CLX, Evercode,
SORT-seq, and VASA-seq datasets indicated the presence of mixed cells, ranging from
2% (10X) to 9% (HIVE/HIVE CLX), with the Evercode WT Mini being an outlier (49%;
full details are available in Supplementary Table S1). In the 10X, HIVE, HIVE CLX, and
Evercode datasets, mixed cells also contained more overall features and a higher diversity.
This is indicative of mouse–human cell duplets in a single droplet/well as it is inherent
to the methodologies. Remarkably, in the SORT-seq and VASA-seq datasets, mixed cells
were called, despite the single cell dispense by CellenOne. All parameters for mixed cells
were in the same range as for the individual single cells. Most of the mixed cells in these
datasets remained close to the 90% cutoff.

A high amount of mitochondrial RNA is indicative for a poor cell condition, and it is
recommended to remove those cells from downstream analyses. The percentage of mtRNA
was plotted for each assay (Figure 3; detailed numbers are available in Supplementary
Table S2).

On average, the percentage of mitochondrial RNA is higher for human K562 cells
than for mouse ESCs. Bulk sequencing resulted in the least amount of mitochondrial RNA
in human cells, but in mouse cells, Evercode, HIVE CLX, and VASA-seq resulted in less
mtRNA (bulk 2.24%, Evercode 0.7%, HIVE CLX 1.3%, VASA-seq 1.4%). These methods also
showed the least amount of mtRNA in human cells, but more than bulk sequencing (bulk
1.8%; least amount in Evercode, 2.4%). A minimum amount of mtRNA is physiological for
all cells, as no cell had 0% of mtRNA, but should still be minimized for information gain.
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Figure 2. Multiplets: a varying number of multiplets is expected per method. A species cutoff of 90%
is used to define mouse (blue), human (red), or mixed cells (black). Alignment percentages of mouse
and human are indicated at the top and bottom, respectively. The numbers of counted cells for mouse
and human are indicated on the left and right, respectively.

Single cell handling and dispense adds additional stress to cells which translates to
higher mtRNA percentages. Smart-seq3 and SORT-seq show an elevated percentage of
mtRNA compared to the other plate-based methods, SORT-seq especially in mouse cells.
This shows variation between methods: The plates for both VASA- and SORT-seq were
prepared at the same time, yet VASA-seq resulted in better values for the mtRNA. In mouse
cells, the amount of mtRNA remained below 5%, except for SORT-seq with an average
of 12%, whereas in human cells, it remained mostly below 10% (except for SORT-seq and
Smart-seq3 body with 14%, and 10X nearly reaching 10%) [28]. Most methods maintain the
mtRNA at over 90% of the human cells below the cutoff (with the exception of 10X, SORT-
seq, and Smart-seq3 body), and in more than 80% below the cutoff for mouse cells (with
the exception of SORT-seq and Smart-seq3 body). No bimodal distribution was detected in
the sequencing data which had a higher average of mtRNA (Smart-seq3, SORT-seq, and
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10X). Despite these good averages, filtering remains necessary, since some cells exceed the
average by far. The highest amount of mouse mtRNA in a single cell was recovered in
Smart-seq3 body (32%) and in humans in the 10X data (87%), and such cells should be
excluded from further processing.

Figure 3. mtRNA: percentage of mtRNA is shown for each technology marked by color and plotted
against the percentage of cells. Each bar represents a range of 1% point, except for the last bar after
20+, which accumulates all cells with a mtRNA percentage of more than 20%. In each subplot, the
cutoff of 10% for human and 5% for mouse cells is indicated with a black line. A grey dotted line
represents the average for the technology.

3.3. Performance of the Single Cell Methods

An important metric to assess is the complexity of the library: are there many or
only a few different transcripts captured? The Shannon index [29] is a metric to evaluate
diversity, which was used to evaluate the spread of coverage over the various genes. A zero
indicates that all data points are equal (e.g., all read counts are equal to 1), while higher
numbers indicate a more unique data spread. Bulk RNAseq captures the most transcripts,
resulting in a diversity of 8.5 for both human and mouse. For the single cell sequencing
methods, HIVE CLX resulted in the most diverse read mapping for both cell types (7.4–7.5),
closely followed by PlexWell, VASA-seq, HIVE, Evercode, and FLASH-seq in humans (7.2
or better), and closely followed by PlexWell, VASA-seq, and FLASH-seq in mice (7.2 or
better). The overall range of values was not spread quite far, with the worst values obtained
by Smart-seq3 with values of 6.6–6.7 (Figure 4). Mixed cells from the 10X, HIVE/CLX, and
Evercode data resulted in a higher diversity than single-species sequence sets, but this
was not observed for the mixed cells from VASA- and SORT-seq (not shown). Smart-seq 3
showed the lowest diversity both for body and UMI reads in human, and lowest and third
lowest in mouse.



Genes 2023, 14, 2226 8 of 20

Figure 4. Diversity: Shannon diversity value per technology is indicated by the color plotted
against the percentage of cells. Each bar represents a range of 0.1, except for the bar below 6, which
accumulates all values below 6, independent of the actual value. A grey dotted line represents the
average of the technology.

Next, the number of features detected per assay on the normalized data was examined
(Figure 5). The average of detected genes in the single cell assays approximated mostly
around 2000–4000 (precise numbers can be found in Supplementary Table S2). Smart-seq3
UMI had the lowest averages (2400 human, 1600 mouse), and HIVE/CLX, PlexWell and
FLASH-seq detected the most features in both cell types. For the K562 data, FLASH-seq,
PlexWell, HIVE/CLX, and 10X are comparable, whereas in the mouse cells, 10X did not
perform. The highest number of features in a human single cell was detected by Evercode
and HIVE CLX with approximately 8400, and in mouse by Evercode with 8400.

We further investigated the feature overlap between the different single cell technolo-
gies and bulk RNA sequencing. Most features, which were detected in bulk sequencing,
were also detected in HIVE CLX, with ~800 human and ~500 mouse features not detected
in HIVE CLX, in both cases followed by HIVE and Evercode (Figure 6). Of all the fea-
tures which were detected between at least one single cell method and the bulk RNAseq
(14,141 to 20,030 in human cells, and 13,085 to 18,601 in mouse cells), most were detected
consistently between all of the investigated methods (11,865 features in human cells, and
11,066 features in mouse cells). The lowest number of features from the bulk sequencing
was detected in PlexWell for human (~6700 not detected) and for SORT-seq in mouse (~6000
not detected). Surprisingly, the single cell sequencing methods also detected a range of
features not detected in bulk sequencing. The HIVE CLX technology detected the most,
with more than 6000 in human cells and more than 4800 in mouse cells. The lowest number
of extra features was detected by PlexWell and FLASH-seq in humans (~500) and mouse by
SORT-seq (~300). It was further investigated how the features, which were not detected
in the various single cell methods, were ranked in the bulk sequencing data, e.g., if non-
detected genes were highly or lowly expressed. For both human and mouse, more than
50% of non-detected genes in the single cell methods ranked in the lowest 25% of expressed
genes in bulk, and more than 75% in the lowest 40% of expressed genes in bulk (if one
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outlier is excluded 93% and 92% on average are in the lowest 40% for human and mouse
respectively), indicating that in the single cell methods mostly lowly expressed genes are
missed. All single cell methods (except for one sample of HIVE CLX in mouse) missed at
least one gene in the top 50% of expressed genes, with some methods even missing genes
in the top 2% of expressed genes. In mouse cells, all methods except for the HIVE also
missed genes in the top 20% of expressed genes. This number was slightly lower in human
cells. In general, the more overlapping genes are detected between a single cell method
and bulk sequencing, the less likely it is that a highly expressed gene was not detected.

Figure 5. Features: number of features detected per cell. Each bar represents a range of 500 fea-
tures, with two exceptions. The bar labeled 8000+ represents all cells with more than 8000 features,
independent of the actual value. The bar labeled ~17,000/~18,000 contains the three replicates for
bulk RNAseq data, which contains these high number of features. A grey dotted line represents the
average of the technology.

In contrast, it was also considered how many genes were detected in the single cell
methods, but non detected in bulk sequencing. Also here, most genes which were newly
detected ranked rather low in expression, with on average more than 80% of newly detected
genes ranking in the lowest 20% of expressed genes, and on average more than 97% in the
lowest 40% of expressed genes. Not all newly detected genes ranked lowly, with some
methods also detecting new genes with a high gene expression, up to the top 10% or even
top 5% of expressed genes.
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Figure 6. Detection of genes in single cell RNA sequencing methods in comparison to bulk RNAseq.
(A) Human data, (B) mouse data. In each subpanel, on the left, the expression of genes only detected
in bulk RNAseq is depicted, on the right, the expression of genes only detected in the various single
cell methods (for cells identified as human/mouse in the subpanel (A,B). The intensely colored
middle of the bar represents the genes which were detected with at least one read in both methods.

Besides the total number of features, the relationship between new features gained and
additional sequencing depth is relevant. Therefore, the ratio between these two variables
on the non-normalized data was investigated (Figure 7). In humans, the HIVE CLX yields
the best ratio of features to reads, followed by Evercode and 10X. In mice, the first two
places are swapped, with Evercode yielding the best ratio, followed by HIVE CLX and
10X. The biggest difference can be seen for SORT-seq and HIVE. For SORT-seq, it does
not perform well in the K562 cells together with Smart-seq3 body, but performs well in
mouse cells. In contrast, for HIVE, it performs well in human cells, but has the worst yield
in mouse cells. Sequencing saturation is not reached at 200,000 reads per cell for most
methods, except for FLASH-seq and PlexWell in mouse, where the saturation plateaus after
this point.

In the case of methods where the cell is assigned based on a barcode, rather than
an Illumina index, the barcoding efficiency needs to be factored in. The sequencing data
need to be separated into the distinct barcodes, and not all barcodes will be derived from
cells, but rather from background. For the data presented here, SORT-seq, VASA-seq, and
10X Next GEM 3′ had the best efficiency, as 85–92% of the data were assigned to cells.
This efficiency was lower for the HIVE and HIVE CLX, where only 60% of the data were
assigned to a cell. The Evercode WT method showed a difference between human and
mouse cells, as in human cells 59% of the data were retained, whereas in mouse cells only
38% were retained, and the combined libraries were placed in between them (50%).
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Figure 7. Reads to features: this diagram shows the identified features per cell versus the number
of reads for that cell. Only cells with a maximum of 200,000 reads are displayed, as only a minor
number of cells contained more reads.
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One of the differentiating characteristics of single cell assays is full or partial transcript
coverage. Therefore, the distribution of reads over the whole gene was investigated and
shown in Figure 8. Each assay shows its own transcript coverage profile, which is always
as expected from the library construction technology used. Bulk RNAseq and FLASH-seq
yielded the most equal coverage, whereas a bias for an increased coverage at either the
3′ or 5′ was visible in most other methods. The plate-based assays (Smart-seq3 body,
FLASH-seq, and PlexWell) have coverage over the whole transcript, and from both strands
of the genome due to the paired-end sequencing. 10X, Hive, VASA-seq, Evercode WT
mini, and SORT-seq yielded only reads from the sense strand over the whole length of
the transcript, and show a preference for 3′ end reads. Some of the more internal reads
have previously been attributed to semi-random binding of internal polyA repeats [30].
UMIs of the Smart-seq3 protocol were only detected on the 5′ end of the genes. To quantify
the imbalance in coverage from 5′ to 3′ end of the transcript, we calculated the relative
coverage per exon (reads/base) over each gene. For all genes, which had at least half of
their exons covered, the relative standard deviation over their exon coverage was calculated
and averaged per dataset (Supplementary Table S3). FLASH-seq shows the least imbalance
with 14.9% relative standard deviation, followed by bulk RNAseq with 15.8%, and then by
PlexWell with 16.1%, Smart-seq3 body with 17.2%, Evercode WT with 18.3%, and VASA-seq
with 19.1%. The methods with known 3′ and 5′ bias had clearly higher deviations, with
10X having 20.1%, HIVE and HIVE CLX having 21.1%, Smart-seq3 UMI with 24.1%, and
SORT-seq with 24.7%.

Figure 8. Gene coverage: relative coverage over features. The x-axis shows the relative length of a
transcript, from 5′ to 3′. Black lines indicate coverage from reads aligning to the sense strand of the
genome, yellow lines indicate coverage from reads aligning anti-sense, e.g., for Smart-seq3, the UMI
is only present in reads starting from the TSO at the 5′ end of the transcript. Therefore, in Smart-seq3
UMI, we see high coverage at the 5′ side of the transcripts, and only alignment on the sense strand of
the genome. In contrast, Smart-seq3 reads body are derived from paired-end sequenced, tagmented
full-length cDNA, yielding reads over the whole transcript and on both strands of the genome.



Genes 2023, 14, 2226 13 of 20

3.4. Comparability of Profiles

One of the main questions is how comparable and reproducible the transcript profiles
are between any of these methodologies. UMAP grouping with Seurat showed on the first
component a separation of cells into human and mouse (Figure 9A). Furthermore, three
other main observations can be made from this plot. The first one is that the VASA-seq data
only slightly cluster with the other methods, as can be seen for the human cells in Figure 9B.
The second observation is that the bulk RNAseq data group within the VASA-seq cluster.
The third observation is that for the mouse cells the grouping is based on the method
although all technologies group together in lower dimensions, except for VASA-seq. The
UMI and body components of Smart-seq3 are also grouped together but show a clear
separation into both components. The PlexWell and FLASH-seq methods are derived from
Smart-seq2, and group together here. If the technologies are investigated separately, then
also a batch effect is visible for the mouse cells, but not the human cells. Otherwise, most
of the mixed cells from both 10X and HIVE are forming separate groups, which cannot be
seen for the SORT- and VASA-seq mixed cells. Overall, all methods are consistent, and
show good agreement and reproducibility. The technological impact of all methods is less
than the biological impact of the used cell material. This can also be seen in Figure 10,
which is another representation of all the combined datasets. In this case, we correlated
gene expression between the datasets (each dataset treated as a single expression profile).
The correlation within one method is in general high, exceeding 0.8 and in most cases 0.9.
Most datasets from different methods show a moderate correlation of 0.7 or higher to other
datasets, with the exceptions of VASA-seq, which shows mostly a different profile, and
Evercode WT, which shows a clearly distinct profile. The correlation of bulk RNAseq to
other datasets did not differ considerably from differences within the single cell methods
(except for Evercode), giving no method a noticeable advantage over others.

Figure 9. Cell clustering. (A) UMAP of all combined datasets, color based on species. (B) UMAP
of all combined datasets, color based on method. The bulk RNAseq points have been enlarged
and highlighted with arrows for better visibility. Both diagrams were generated with eight PCA
dimensions.
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Figure 10. Correlation matrix: the Pearson correlation of all expression profiles. (A) Correlation of
human gene expression. (B) Correlation of mouse gene expression.

4. Discussion

The field of single cell sequencing is growing in complexity and new methods appear
every year. This development has resulted in many commercial suppliers and kits, which
are remarkably diverse in the number of cells required, their protocol complexity, and
equipment requirements. We compared multiple available methods to evaluate their ad-
vantages and disadvantages and to provide guidance for individual researchers, consortia,
and core facilities.

4.1. Time Requirements and Automation

Most of the methods can be (partially) automated, to save hands-on time and reduce
errors. The plate-based assays require liquid handling and pipetting robots for efficient use.
This can be a big obstacle if these are not already present in a laboratory, since purchase
costs can be prohibitive. If they are available in a laboratory, then their use can make
any of the described assays efficient, with absolute handling times of less than 4 days
(including waiting times), and reduced error prone manual steps. Without any robots,
variable handling and incubation times for a larger number of cells would negatively
impact the results. There are two main alternatives, if such robots are not available. The
first is the 10X platform, which requires only one machine and has everything necessary
for single cell preparation built in. This decreases the complexity of the preparation, but
increases the upfront capital cost and the throughput. The second alternative are methods
which do not require any equipment and as much upfront capital investments, such as the
HIVE or Evercode. Also, here the costs increase, due to the commercially supplied package,
but are less of an investment than the 10X instrument. Since the necessary materials are
disposable, they need to be bought for each preparation. Such methods are therefore the
most suitable for laboratories, which do not have any instruments available nor perform
single cell sequencing regularly.

The required hands-on time after automation is less of a decisive factor than generally
anticipated. A total hands-on time of 8 h for 10X is a big relative time difference to the
maximum of 19 h hands-on time for Evercode. However, the number of laboratories
with sufficient throughput to make this a deciding factor is relatively small. The decision
between a low- or high-throughput method is more likely to make a difference.
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4.2. Filtering Cells

Apoptotic cells will be depleted of chromosomal RNA, due to the loss of membrane in-
tegrity; therefore, apoptotic cells will mostly yield the remaining mitochondrial RNA. It has
been best practice to date to remove apoptotic cells with a mitochondrial RNA percentage
higher than 5%, due to earlier indications of this being a reasonable threshold [31]. A recent
publication reported this as 10% for human cells and 5% for mouse cells [28] though, and
in some protocols, 15% is used [32]. The difference between human and mouse cells is
also visible in the data presented here. For all methods, except for SORT-seq, the fraction
of mitochondrial RNA was higher in human cells than in mouse cells. A non-negligible
part of human cells also exceeded the 10% threshold (Smart-seq3 and 10X), although only
in the Smart-seq3 datasets the 15% threshold is exceeded by a considerable number of
cells. Contrary to human, in mouse cells the 10% threshold is rarely exceeded (except for
SORT-seq). Overall, this correlates with the observations by Osorio et al. [28]. It would be
sensible to derive a threshold per method or per dataset, but in all our datasets, no bimodal
distribution is visible; therefore, it is not possible to derive a binary state of being apoptotic
or not and to filter on this, based purely on the mtRNA amount.

4.3. Multiplets

The intermixing of human and mouse cells facilitates estimation of the rate of mul-
tiplets in a dataset. Other research showed multiplet rates from 2.5 to 37% [33] and 10X
predicts a multiplet rate between 0.8 and 8% depending on the cell number [34] (although
this has been reported to be higher [35]). With a mixing of two different species, we assume
that we are able to detect 50% of all multiplets, as we will detect human/mouse and
mouse/human multiplets, but not mouse/mouse or human/human multiplets. In our
10X data of 2500 cells, we detected 2% mouse/human multiplets. Taking into account the
non-detectable, 1% human/human multiplets and 1% mouse/mouse multiplets, results in
a 4% multiplet rate. This is higher than the predicted multiplet rate by 10X (below 2.5%).
The same holds for HIVE, where the predicted multiplet rate is 9% for our HIVE datasets
and 14% for the HIVE CLX datasets [36], and our data show an inferred multiplet rate of
18%. An outlier in this case is the Evercode data, as the multiplet rate was significantly
higher than expected (49% detected, versus theoretically less than 2% [37]). It was however
noted by the manufacturer that mixing of cells with uneven RNA content can lead to failure
of the cells with lower RNA content, as they will be underrepresented in contrast to the
cells with higher RNA content. A lower amount of sequencing output from the mESC cells
in the pure libraries was noted, and therefore this can be a contributing factor, as a good
part of the multiplets might be genuine mESC cells with low RNA content, mixed with
high K562 background.

As shown in Figure 2, cell multiplets of distinct species are easily detected, due to
the varying mapping rate of these cells, the elevated feature rate, and increased Shannon
diversity. Difficult to detect are multiplets of same-species cells. As can be seen from
the data in this manuscript, such cells are not detectable by simple metrics. While the
multi-species multiplets show distinct characteristics compared to the single cells, this is
due to the greater genetic diversity within the double-species multiplets, and therefore
not applicable to single-species multiplets. A simple filtering for the cells ranking highest
for features or diversity is not applicable either, since the double-species multiplets may
rank lower than some of the single-species cells in these comparisons. It also cannot be
excluded that the highest scoring single-species cells are single-species multiplets. Various
computational methods have been developed [33] to detect these cell multiplets, but these
were not benchmarked, as this was not the focus of this research.

Only a few multiplets were seen in the plate-based assays, as expected. Some cells in
the SORT-seq and VASA-seq samples showed a human/mouse (or mouse/human) ratio
below 90%, which is in principle not expected in a plate-based assay (although more than
half of these showed a ratio >85%), but before sequencing all samples are mixed; therefore,
barcode hopping, background RNA, etc. could be wrongly assigned. These “multiplets”



Genes 2023, 14, 2226 16 of 20

did not show any characteristics of real multiplets, e.g., an elevated number of features or a
higher diversity, and are therefore probably misidentified. The other plate-based assays
showed no mixed cells, as expected.

4.4. Batch Effect

Multiple batches of K562 and mouse embryonic stem cells were used in this bench-
marking study. Two different main observations are made in this regard. The first obser-
vation is that the results for the K562 cell line and the mESC can be clearly distinguished.
Mouse and human cells were separated by both tSNE and UMAP and showed different
profiles. But while the clustering of the K562 cells yielded mostly overlapping groups for
the different methods, the mESC cells showed more of a gradient between the different
methods. The K562 cell line is a stable human cancer cell line, and in theory, no major
differences would be expected. In contrast, the mESCs do not seem as a biologically defined
group of cells, and vary, potentially due to biology and due to the amount of passaging in
the laboratory. Despite this, a clear grouping was still visible for both cell types.

4.5. Overlap and Difference between the Methods

The second main observation is that most methods overlap to some degree. VASA-seq
is an exception, showing a strong separation from the other methods, likely due to the
inclusion of more unique transcripts and non-polyadenylated transcripts, amongst which
are histone genes. The bulk RNAseq was grouped within the VASA-seq data, which on
first glance could be attributed to the additionally captured transcripts from VASA-seq,
yet the overlap between the detected genes shows that this cannot be the sole cause, as
other methods detect more overlapping transcripts. Some of the additionally detected
histone genes show a high expression; therefore, the cause is more likely quantitative, in
addition to being qualitative. Three of the investigated methods are in principle similar and
derived from each other (Smart-seq3, PlexWell, and FLASH-seq being variations/further
developments of Smart-seq2), which is also visible in the results. SORT-seq and 10X are
both 3′ methods, but despite the principal similarities in technology, do not form a strong
overlapping cluster. Despite these general differences between the methods, the agreement
is in general high, which indicates that most results probably can be trusted independent
of the method, but not yet high enough that a mixing of different methods within one
experiment can be recommended.

5. Conclusions

To conclude, multiple single cell sequencing methods that vary widely in methodol-
ogy were compared to each other and to bulk RNAseq (see Figure 11). In the case that
researchers do not need the single cell resolution, we would advise the use of the bulk
RNAseq method, since for many metrics, the bulk outperforms single cell methods. From
the tested single cell RNAseq methods, Smart-seq3, which is the oldest full-transcript
method used in this investigation, shows sub-par results, and we recommend researchers
to search for better performing methods. The metrics of the 10X data also do not compare
favorably in terms of transcript coverage and multiplets, but 10X still has the advantage of
yielding the highest throughput, which the other methods do not offer, except for HIVE
and Evercode. The HIVE seems to be the most suitable for laboratories, which do not
have the necessary equipment for the other methods and require a high throughput. The
Evercode method has in principle the same advantage, but cannot be recommended due
to the issues with the multiplets, which makes it not suitable in many situations, and use
cases will require more background knowledge. Moreover, with HIVE, samples can be
stored before performing the scRNA library preparation, which allows for sample retrieval
over time before processing or sending core facilities to sequencing in one batch. As shown
in the results, there are no notable differences observed, making storage indeed a viable
option. VASA-seq shows good results and detects non-polyadenylated transcripts, which
other methods do not. VASA-seq could therefore be the method of choice, especially if
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non-polyA transcripts are of interest. FLASH-seq and PlexWell show comparable perfor-
mances in many aspects and can be good alternatives if non-polyadenylated RNAs are not
of interest. However, the PlexWell kit has been recently discontinued by the manufacturer,
and therefore cannot be recommended anymore.

Figure 11. Overview of performance metrics. A method failed on a metric, if it showed worse
performance in comparison to the average of the other methods or did not meet known standards
(e.g., mtRNA cutoffs). If two groups were apparent, then the worse performing group was marked as
failed, the better as passed. SORT- and VASA-seq achieved a medium score for the multiplets, since
in theory, no multiplets should be present, yet we still detected some. 10X gets a medium score on the
equipment requirements, since only one machine is necessary, in contrast to no equipment required
or multiple robots being required. A recommendation for a method is given if it passed at least half
of the evaluated criteria. The exceptions are PlexWell, which cannot be recommended anymore since
it has been discontinued (although a new kit is available), and Evercode, since the multiplet issue
makes it not suitable in many circumstances.
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All methods have their advantages and disadvantages, which need to be evaluated
based on the biological background and proposed application, and a global single rec-
ommendation is hard to formulate (Figure 11); therefore, we propose multiple. (1) For
laboratories with the necessary robotic equipment, VASA-seq and FLASH-seq show good
performance. For laboratories without robotic equipment, which plan to perform any
single cell experiment, it depends on the throughput; therefore, three scenarios can be
distinguished. (2A) For many experiments which require high cell counts, 10X would be
recommended. (2B) For many experiments which require low cell counts, the acquisition
of the necessary robots to perform VASA- or FLASH-seq can be recommended. (2C) For
occasional single cell experiments, HIVE can be recommended.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14122226/s1, Supplementary methods and results, Table S1:
Datasets overview and characteristics, Table S2: mtRNA, features and diversity metrics, Table S3:
Exon coverage.
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