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Abstract: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer.
Although immunotherapy is effective for some patients, most find it difficult to benefit from it.
This study aims to explore the impact of specific immune pathways and their regulated molecular
mechanisms in TNBC. The gene expression data of breast cancer patients were obtained from the
TCGA and METABRIC databases. Gene set variation analysis (GSVA) revealed specific upregulation
or abnormal expression of immunodeficiency pathways in TNBC patients. Multi-omics data showed
significant differential expression of Primary Immunodeficiency Genes (PIDGs) in TNBC patients,
who are prone to genomic-level variations. Consensus clustering was used in two datasets to
classify patients into two distinct molecular subtypes based on PIDGs expression patterns, with each
displaying different biological features and immune landscapes. To further explore the prognostic
characteristics of PIDGs-regulated molecules, we constructed a four-gene prognostic PIDG score
model and a nomogram using least absolute shrinkage and selection operator (LASSO) regression
analysis in combination with clinicopathological parameters. The PIDG score was closely associated
with the immune therapy and drug sensitivity of TNBC patients, providing potential guidance
for clinical treatment. Particularly noteworthy is the close association of this scoring with RNA
modifications; patients with different scores also exhibited different mutation landscapes. This study
offers new insights for the clinical treatment of TNBC and for identifying novel prognostic markers
and therapeutic targets in TNBC.

Keywords: triple-negative breast cancer; primary immunodeficiency; prognosis model; RNA modifi-
cation; immunotherapy

1. Introduction

Triple-negative breast cancer (TNBC) is the most aggressive subtype, accounting for
10–20% of breast cancer cases [1]. Due to the lack of estrogen receptors (ER), progesterone
receptors (PR), and human epidermal growth factor receptor 2 (HER2), TNBC has a higher
recurrence rate and limited response to conventional treatments compared to other subtypes
of breast cancer, making it the subtype with the worst clinical prognosis [2,3]. Therefore,
exploring the set of genes with abnormal expression in TNBC compared to non-TNBC and
analyzing the mechanisms behind TNBC development, as well as their relationship with
patient prognosis, is crucial for clinical treatment.
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Through GSVA analysis, we observed a significant increase in the abnormal expression
of Primary immunodeficiency (PID) in TNBC compared to non-TNBC. This suggests a
potential close association between PID and the onset or treatment of breast cancer. PID
refers to congenital immune system abnormalities caused by genetic mutations, which are
characterized by recurrent and life-threatening infections, autoimmune diseases, and cancer,
posing significant challenges for diagnosis and treatment [4]. Many PIDs are associated with
malignant tumors, each with distinct mechanisms underlying cancer development [5,6].
However, their specific mechanisms in TNBC remain unclear. The observed higher inci-
dence of cancer in individuals with PIDs underscores the role of the immune system in
controlling malignant tumor progression [7]. Furthermore, it is worth exploring whether
treatment targeting PID can be combined with existing treatment methods to achieve en-
hanced therapeutic efficacy. Hence, it is crucial to explore personalized immunotherapies
targeting PID-associated pathways in TNBC. In the presence of PID, immunotherapy offers
promising treatment modalities for clinicians combating malignant tumors.

Currently, treatment options for TNBC remain limited, with neoadjuvant chemother-
apy being one of the main treatment modalities [8]. Nonetheless, immunotherapy is
considered to have significant potential in TNBC treatment [9–11]. The most successful
immunotherapy currently involves immune checkpoint inhibitors (ICIs) [12], aimed at
enhancing the cytotoxicity and proliferation capacity of tumor-infiltrating lymphocytes
(TIL), although it has not yielded favorable results in TNBC [13,14]. Therefore, finding
effective treatment drugs and targets remains an urgent and crucial challenge in the clinical
practice of TNBC.

This study systematically analyzes the expression of Primary Immunodeficiency Genes
(PIDGs) and their impact on the development, prognosis, tumor microenvironment, and
treatment response of TNBC patients. Using the cancer genome atlas program (TCGA) and
the molecular taxonomy of breast cancer international consortium (METABRIC) databases,
two distinct PID subgroups were identified in TNBC, and their molecular characteristics
and immune cell infiltration were studied. By constructing the PIDG score, the relationship
between the PIDG score and RNA modification-related genes was examined, predicting
the clinical prognosis, immune therapy effectiveness, and clinical chemotherapeutic drug
efficacy for TNBC patients. We hope this study will potentially contribute to clinical
treatment and possibly provide new directions in TNBC therapy.

2. Methods
2.1. Data Collection

Gene expression data, clinical information, copy number variations, and mutation
data for 1113 breast cancer (BRCA) tumor samples and 113 adjacent non-cancer sam-
ples were downloaded from the the cancer genome atlas program (TCGA) database
(https://portal.gdc.cancer.gov) with a retrieval date of 17 August 2023. BRCA patients
with clinical immunohistochemistry information indicating “breast_carcinoma_estrogen_
receptor_status”, “breast_carcinoma_progesterone_receptor_status”, and “lab_proc_her2_
neu_immunohistochemistry_ receptor_status” as “Negative” were selected for TNBC sam-
ples. Ultimately, 116 TNBC samples were screened and identified, with 115 having survival
information.

Gene expression profiles and clinical data for 2509 breast cancer samples were obtained
from the molecular taxonomy of breast cancer international consortium (METABRIC)
database through the cBioPortal (https://www.cbioportal.org, accessed on 17 August
2023) with a retrieval date of 26 September 2023 [15]. A total of 320 patients with clinical
information “ER_STATUS”, “HER2_STATUS”, and “PR_STATUS” as “Negative” were
selected for TNBC samples. These samples ultimately had complete survival information.

https://portal.gdc.cancer.gov
https://www.cbioportal.org
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2.2. Collection of m1A/m5C/m6A/m7G-Related Modification Genes

The writer, reader, and eraser genes of m6A/m1A/m5C were obtained from the
literature [16]. The relevant genes for m7G were obtained from the literature [17], and
duplicate genes were removed (Table 1).

Table 1. RNA methylation-related genes of m6A/m5C/m1A/m7G.

RNA Methylation Writer Reader Eraser

m6A

METTL3, METTL14,
METTL16, WTAP, KIAA1499,

RBM15, RBM15B, RBM1,
ZC3H13

YTHDC1, YTHDC2, YTHDF1, YTHDF2,
YTHDF3, IGF2BP1, IGF2BP2, IGF2BP3,

HNRNPA2B1, HNRNPC, HNRNPG,
RBMX, FMR1, LRPPRC

FTO, ALKBH5

m5C
NOP2, NSUN1, NSUN2,

NSUN3, NSUN4, NSUN5,
NSUN7, TRDMT1,

ALYREF TET2, YBX1

m1A
TRMT6, TRMT61A, TRMT61B,
TRMT61C, TRMT10C, BMT2,

RRP8
YTHDF1, YTHDF2, YTHDF3, YTHDC1 ALKBH1, ALKBH3

m7G METTL1, WDR4, NSUN2

AGO2, CYFIP1, EIF4E, EIF4E1B, EIF4E2,
EIF4E3, GEMIN5, LARP1, NCBP1,
NCBP2, NCBP3, EIF3D, EIF4A1,

EIF4G3, IFIT5, LSM1, NCBP2L, SNUPN

DCP2, DCPS, NUDT10,
NUDT11, NUDT16, NUDT3,

NUDT4, NUDT4B

2.3. Functional Enrichment Analysis

We utilized the kyoto encyclopedia of genes and genomes (KEGG) gene set
(c2.cp.kegg.v7.4) [18] and performed GSVA on breast cancer samples.

2.4. Analysis of Gene Variations

The mutation landscape of genes was analyzed using the “maftools” R package
(version 4.3.1) [19], which included the frequency of copy number variations (CNVs) and
their locations on chromosomes.

2.5. Identifying Hub Genes in PPI

The protein–protein interaction networks (PPI) data for these genes was obtained
from the STRING database “https://string-db.org (accessed on 7 October 2023)” with a
confidence level > 0.400. Using Cytoscape v3.10.1, hub genes were filtered based on their
degree of interaction.

2.6. Consensus Clustering Analysis

We utilized the “ConsensusClusterPlus” package for consensus clustering analysis.
We conducted 50 iterations with an 80% resampling rate, employing the k-means clustering
algorithm to ensure the stability of classification. Principal component analysis (PCA) was
performed to explore the distribution of samples between different clusters.

2.7. Analysis of the Biological Features of PID Subtypes

Gene Set Enrichment Analysis (GSEA) was used to investigate the functions of dif-
ferent subgroups in TNBC. Single sample Gene Set Enrichment Analysis (ssGSEA) was
employed to evaluate the immune infiltration status in TNBC patients and the difference in
immune cell content between different subgroups.

2.8. Development of the Risk Score

We used the “sva” package ComBat function to merge and standardize the gene
expression profiles of the TCGA and METABRIC datasets to analyze the relationship
between PIDG subgroup-related genes and prognosis. Univariate Cox regression analysis
was performed on the intersection of differentially expressed genes (DEGs) between the two

https://string-db.org
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datasets. Subsequently, the combined matrix was randomly divided into training and test
sets at a 1:1 ratio. In the training set, the expression profiles of genes significantly associated
with prognosis were normalized, with this gene expression matrix as the independent
variable and survival time and survival status as the response variables, undergoing least
absolute shrinkage and selection operator (LASSO) regression analysis [20,21]. The optimal
penalty parameter λ was determined through 10-fold cross-validation, corresponding to
the number of variables involved in the model. The PIDG score was calculated as the
sum of the product of the model gene expression levels and regression coefficients. The
effectiveness of the PIDG score in predicting the survival of TNBC patients in the training
and test sets was evaluated through Kaplan–Meier survival analysis and receiver operating
characteristic (ROC) curves.

2.9. Establishment of a Predictive Nomogram

The PIDG score was combined with clinicopathological variables to create a nomogram
for TNBC patients. The accuracy and effectiveness of the nomogram were evaluated using
calibration curves, ROC curves, and decision curve analysis (DCA) at 1, 3, and 5 years.

2.10. Immune Landscape Analysis of PIDG Score

The ESTIMATE algorithm was employed to calculate the immune score, stromal
score, and ESTIMATE score for TNBC patients [22]. We compared the difference in tumor
microenvironment scores between the high-risk and low-risk groups. The CIBERSORT
algorithm was used to assess the relative abundance of 22 immune cell types in TNBC
patients [23]. Spearman correlation analysis was performed to explore the relationship
between the PIDG score and the immune cell content. Using the Wilcoxon rank-sum test,
PIDG score was employed to compare the expression level difference of immune checkpoint
genes between the high-risk and low-risk groups.

We evaluated the Tumor Immune Dysfunction and Exclusion (TIDE) score and im-
mune response of TNBC samples using the TIDE database “http://tide.dfci.harvard.edu
(accessed on 7 October 2023)” [24]. We compared the difference in immune escape and
immune response rates between the high-risk and low-risk groups using the chi-square
test and Wilcoxon rank-sum test. Immunophenoscore (IPS) was obtained from The Cancer
Immunome Atlas database “https://tcia.at/home (accessed on 8 October 2023)” [25], and
the difference in IPS between different PIDG score risk groups was compared.

2.11. Mutation and Drug Sensitivity Analysis

The somatic mutation of high- and low-risk TNBC patients was analyzed using
the “maftools” R package, and the mutation landscape of these groups was visualized.
We utilized the “calcPhenotype” function from the “oncoPredict” package to predict the
sensitivity of 198 commonly used chemotherapeutic drugs for TNBC samples [26]. We
compared the difference in chemotherapeutic drug sensitivity between the high-risk and
low-risk groups using the Wilcoxon rank-sum test.

2.12. Statistical Analysis

All statistical analyses were performed using R software version 4.3.1. Wilcoxon tests
were used for pairwise group comparisons. Kaplan–Meier survival analysis and log-rank
tests were used to compare survival difference between the two groups. Univariate Cox
analysis was used to select prognostically significant genes, and LASSO regression analysis
was employed to build the prognostic model. ROC curves were used to assess the predictive
value of the regression model. A significance level of p < 0.05 was considered statistically
significant.

http://tide.dfci.harvard.edu
https://tcia.at/home
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3. Results
3.1. Identification and Molecular Characterization of Primary Immunodeficiency Features in TNBC

To explore the dysregulated functional gene sets in TNBC, we conducted GSVA analy-
sis on samples from TCGA and METABRIC databases, comparing TNBC with non-TNBC
samples. The results revealed that the PID pathway was significantly upregulated in TNBC
samples in both datasets (Figure 1A,B). The PID pathway comprises 35 genes (Primary
Immunodeficiency Genes, PIDGs) that are crucial for the development of various cancers.
To further investigate the molecular characteristics of PIDGs, we analyzed their expres-
sion levels in the TCGA database. We demonstrated that most PIDGs were significantly
overexpressed in TNBC samples compared with non-TNBC samples (Figure 1C).
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Figure 1. Molecular characterization of PID in TNBC. (A,B) GSVA heatmaps of TNBC and non-
TNBC patients (A-TCGA; TNBC, n = 116; non-TNBC, n = 997) (B-METABRIC; TNBC, n = 320;
non-TNBC, n = 2189). (C) Significance analysis of PIDGs between TNBC and non-TNBC patients.
(*, p < 0.05; **, p < 0.01; ***, p < 0.001). (D) Copy number variation (CNV) of PIDGs in TNBC patients.
(E) Chromosomal locations of CNVs for PIDGs in TNBC patients. (F) Protein–protein interaction
networks (PPI) analysis of PIDGs in TNBC.
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Subsequently, we analyzed the mutation status of PIDGs, showing that 11.22% of
TNBC patients exhibited mutations in PIDGs, with the highest mutation frequencies ob-
served in genes such as CD4, PTPRC, and IL2RG (Figure S1A). The most common genes
with copy number increases were RFX5, DCLRE1C, and PTPRC. In contrast, genes such as
LCK, CD3E, and CD3D had the highest frequency of copy number decreases (Figure 1D).
Copy number variations were predominantly found on chromosomes 10–12 and the X
chromosome (Figure 1E).

To investigate the interactions between PIDGs, we conducted a PPI analysis. We
found that while all the 35 PIDGs demonstrated significant interactions, the hub genes
within PIDGs were CD4, PTPRC, CD40, CD8A, CD19, and RAG1A (Figure 1F). Network of
correlation analysis revealed a synergistic interaction among PIDGs (Figure S1B). Kaplan–
Meier survival analysis showed that high expression of ADA, AIRE, BTK, CD40, CD4 and
PTPRC was associated with adverse outcomes in TNBC patients (Figure S1C). In contrast,
low expression of DCLRE1C, RFXANK, TAP2, and TNFRSF13C correlated with poorer
prognosis (Figure S1D). These findings suggest that PIDGs exhibit dysregulated expression
in TNBC, manifesting extensive genomic instability that influences patient survival and
can be used as a potential molecular target for the clinical treatment of TNBC.

3.2. Identification and Comparison of PID Subtypes and Their Biological Features

To further investigate the expression patterns of PIDGs in TNBC patients, we per-
formed consensus clustering analysis on the TCGA and METABRIC sample cohorts sep-
arately. Based on the gene expression matrix of PIDGs, both cohorts displayed the most
stable clustering results at k = 2 (Figures 2A,B and S2A,B). PCA analysis revealed signifi-
cant inter-group distribution difference between clusters A and B (Figures 2C and S2C),
suggesting that the consensus clustering analysis distinguished the cohorts into two groups.
Furthermore, the results of differential expression analysis showed that most PIDGs had
higher expression levels in cluster A (Figures 2D and S2D).

We conducted GSEA analysis on different PIDGs subgroups in TNBC patients to
explore their biological functions. The results showed that patients in cluster A exhibited
significant enrichment in immune-related pathways, including allograft rejection, antigen
processing and presentation, autoimmune thyroid disease, graft versus host disease, and
type I diabetes mellitus (Figures 2E and S2E). Analysis of immune cell infiltration in the
microenvironment revealed that, compared with cluster B, cluster A had higher levels of
most immune cell types, including activated B cells, activated CD4+ T cells, and activated
CD8+ T cells (Figures 2F and S2F). These results suggest that the subgroup with high
expression of PIDGs may have higher immune cell content and more robust immune
functions.

To delve deeper into the biological functions of PIDG subgroups, we examined the
entire genome for difference between the subgroups (log|FC| > 1, p < 0.05). In both the
TCGA and METABRIC databases, we identified 1046 and 560 DEGs, respectively. Notably,
395 genes were found to be differentially expressed in both databases (Figure 2G). Sub-
sequent KEGG and GO analyses of these 395 DEGs revealed significant enrichment in
immune-related pathways and functions, including cell adhesion molecules (CAMs), anti-
gen processing and presentation, Th1 and Th2 cell differentiation, Th17 cell differentiation,
as well as immune system process, immune response, regulation of immune response, and
cell activation (Figure 2H,I). These findings further indicate that PID subtype-associated
genes are involved in multiple immune-related biological functions and pathways, high-
lighting their potential importance in immunotherapy for TNBC.
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consensus clustering for k = 2; (C) PCA showing the distribution of PIDGs subgroups. (D) Expression
level distribution of 35 PIDGs among different subgroups. (E) GSEA shows molecular functional
differences among PIDGs subgroups. (F) Differences in immune cell content among different PIDGs
subgroups (*, p < 0.05; **, p < 0.01; ***, p < 0.001). (G) Venn diagram of the significance analysis of
PID clustering in TCGA and METABRIC cohorts. (H) KEGG enrichment analysis of differentially
expressed genes. (I) GO enrichment analysis of differentially expressed genes.

3.3. Construction and Validation of a Prognostic Model Based on the PIDG Score

PIDGs and their associated genes may play a crucial role in immune regulation.
Therefore, we established a prognostic model based on the PIDG score to explore the
potential value of these genes in the prognosis analysis of TNBC patients. Firstly, we
conducted univariate Cox regression analysis of the influence of 395 DEGs on TNBC patient
survival (from the TCGA and METABRIC cohorts, totaling 435 cases). The results revealed
that a total of 183 genes were closely associated with the prognosis of TNBC patients
(Supplementary Table S1). Subsequently, using a random method, TNBC patients were
divided into a training group (218 cases) and a test group (217 cases). LASSO regression
analysis was performed on these 183 prognosis-related genes in the training group. When
the mean square error was minimized, the optimal λ was determined, resulting in four
variables: IL18RAP, STX11, IL15RA, and RASSF5 (Figure 3A,B). According to the results of
the LASSO regression analysis, the formula for calculating the PIDG score is as follows:

PIDG score = (−0.0193) × IL18RAP + (−0.0364) × STX11 + (−0.0106) × IL15RA + (−0.0187) × RASSF5

Then, we calculated the PIDG score for each TNBC sample and classified patients
into high-risk and low-risk groups based on the median risk value in the training group.
The Kaplan–Meier survival analysis results for the training set, test set, and complete
set demonstrated that the overall survival (OS) rate of the low PIDG score group was
significantly higher than that of the high PIDG score group (Figures 3C and S3A,B). The
area under the ROC curve (AUC) values for the one-, three-, and five-year ROC curves of
the complete group were 0.640, 0.602, and 0.577, respectively, indicating that the model
had high prognostic predictive ability (Figure 3D). The training and test sets also exhibited
similar predictive performance (Figure S3A,B). The risk plot of the PIDG score indicated
that with an increase in the PIDG score, the OS of the patients decreased, and the mortality
rate increased (Figure 3E,F). Additionally, we observed that the model genes IL18RAP,
STX11, IL15RA, and RASSF5 were relatively highly expressed in the low PIDG score group
(Figure 3G). To validate the superiority of PIDG score in prediction, we randomly selected
five established TNBC risk scores published within the last three years for evaluation. Com-
pared to other risk scores, the PIDG score demonstrates better performance (Supplementary
Table S2 and Figure S3C–G). This series of analyses and results suggest that the PIDG score
prognostic model can effectively predict the survival status of TNBC patients.

3.4. Construction of a Nomogram by Combining PIDG Score and Clinicopathological Variables

We utilized PIDG score along with clinicopathological variables such as patient age,
chemotherapy, hormone therapy, radiotherapy, breast surgery, staging, tumor size (T),
lymph node status (N), and distant metastasis status (M) to construct a nomogram for
predicting one-, three-, and five-year OS. PIDG score, patient age, and breast surgery were
identified as independent prognostic factors for TNBC (Figure 4A).
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Figure 3. Construction of the PIDG-score-based prognostic model. (A) LASSO regression coefficient
distribution of differentially expressed genes regulated by PIDGs, each color line represents a gene.
(B) Selection of the best parameter (lambda) in LASSO regression; (C) Kaplan–Meier analysis of
the prognosis difference between high- and low-risk groups based on PIDG score. (D) ROC curve
evaluating the accuracy of the PIDG score prognostic model. (E) Ranked dot plot showing the
distribution of PIDG score risk scores. (F) Scatter plots displaying the survival status distribution
of different PIDG score risk scores. (G) Heatmap showing the expression of genes involved in
constructing the PIDG score model.
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based on PIDG score in combination with clinicopathological factors. (B) Prediction of one-, three-,
and five-year calibration plots; (C) ROC curve. (D) Decision curve analysis at one, three, and five
years to evaluate the model performance. (**, p < 0.01; ***, p < 0.001).
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Calibration curves demonstrated high consistency between predicted and observed
values for one-, three-, and five-year survival rates, indicating the nomogram’s predictive
accuracy (Figure 4B). The AUC values for one, three, and five years were 0.763, 0.735, and
0.722, respectively, suggesting excellent prognostic predictive capability of the nomogram
(Figure 4C). Moreover, the one-, three-, and five-year DCA curves of the nomogram notably
deviated from the reference line, indicating significant net benefits in clinical application
(Figure 4D). These results emphasize the critical role of PIDG score in the nomogram and
underscore the essential clinical applicability of our nomogram for predicting survival rates
in TNBC patients.

3.5. Differential Mutation Landscapes between the High- and Low-Risk Patient Groups

To better understand the biological features concerning the PIDG score in TNBC
patients, we further analyzed the gene expression patterns in patients with different PIDG
scores. A box plot was used to visualize the differential expression of PIDGs between
patients with high and low PIDG scores. The results indicated that most PIDGs were
significantly upregulated in the low PIDG score group (Figure 5A).
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According to the waterfall plot of the high and low PIDG score groups, we observed
that among TNBC patients, the five genes with the highest mutation frequencies were TP53,
TTN, SYNE1, MUC16, and KMT2D. Except for TP53 and SYNE1, the mutation frequencies
of the other three genes were higher in the high PIDG score group than in the low PIDG
score group. Additionally, the somatic mutation rate was slightly higher in the high PIDG
score group compared with the low PIDG score group (95.12% vs. 94.64%) (Figure 5B).
These results highlight the difference in gene expression and mutation patterns among
patients with different PIDG scores.

3.6. Relationship between PIDG Score and Methylation Modifications

RNA modification is an emerging mechanism in gene regulation. This reversible
post-transcriptional modification is regulated by “writers” (methyltransferases), “readers”,
and “erasers” (demethylases), influencing various molecular functions [27–29]. Common
RNA modifications include m6A, m5C, m1A, and m7G [30–32]. Recent advances in epi
transcriptomics have revealed the functional associations between RNA modification and
various human diseases [33], and studies have suggested that RNA modification may be
improperly regulated in human cancers, making it a potentially ideal target for cancer
therapy [34–36]. To better understand the regulatory mechanism of PIDG score concerning
various methylation levels, we collected the genes related to m1A, m5C, m6A, and m7G
modifications and performed correlation analyses with the model genes. We found the
highest correlation with m7G (Figure 6A). Additionally, we observed that the PIDG score
were positively correlated with AGO2, NUDT10, and NUDT11 in m7G modification while
negatively correlated with CYFIP1, DCP2, EIF4E3, EIF4G3, and IFIT5 (Figure 6B). We also
identified some correlations with other methylation modifications, such as the positive cor-
relation of the PIDG score with TRMTG1A and YTHDF1 in m1A modification (Figure S4A),
the negative correlation of PIDG score with NSUN3 in m5C modification (Figure S4B). In
the case of m6A modification, PIDG scores were positively correlated with YTHDF1 while
significantly negatively correlated with IGFBP2, HNRNPA2B1, YTHDC2, WTAP, RBM15,
and IGF2BP3 (Figure S4C).

While m7G methylation appears to have the highest probability of regulating the PIDG
score, other methylation modifications such as m6A may also play a role in the regulation
of PIDG score, providing important clues for our understanding of the mechanism of PIDG
score in TNBC.

3.7. Varying Immune Landscapes between the High- and Low-Risk Patient Groups

TNBC patients with different PIDG scores demonstrated varying immune landscapes.
Correlation analysis revealed the positive correlation of PIDG score with Macrophages
M0 and activated Mast cells. At the same time, it exhibited s negative correlation with
Macrophages M1, Monocytes, NK cells resting, T cells CD4 memory activated, and T cells
CD8 (Figure 7A). Further analysis indicated that compared with the high PIDG score group,
TNBC patients in the low PIDG score group exhibited higher immune scores, stromal
scores, and ESTIMATE scores, potentially aiding in the resistance against tumor growth
and dissemination (Figure 7B).
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score (***, p < 0.001). (C) Correlation of modeling genes of PIDG score with immune cell infiltration
in the microenvironment; (*, p < 0.05; **, p < 0.01; ***, p < 0.001). (D) Expression levels of immune
checkpoint genes in high- and low-PIDG score groups. (**, p < 0.01; ***, p < 0.001). (E) Immune
response status in high- and low-risk groups based on PIDG score. (F) Immune escape status in high-
and low-risk groups based on PIDG score. (***, p < 0.001).

We also found that the model genes IL15RA and IL18RAP exhibited higher signifi-
cant correlation with immune cells. Their expression levels showed significant positive
correlation with CD8+ T cells, CD4+ T cells memory activated, and Macrophages M1 while
demonstrating significant negative correlation with CD4+ T cells memory resting, activated
Mast cells, and Macrophages M2 (Figure 7C). There was a substantial difference in the
expression of immune checkpoint genes between different PIDG score groups. Specifically,
the expression levels of immune checkpoint genes CTLA4 and PDCD1 (the gene coding
for PD-1) were significantly increased in the low PIDG score group, suggesting an active
immune state and a stronger anti-tumor immune response. Conversely, in the high PIDG
score group, the immune checkpoint genes CD276 and VTCN1 exhibited higher expres-
sion levels, possibly associated with immune suppression and warranting more targeted
immunotherapy strategies (Figure 7D).

Notably, in terms of immune response, patients in the low PIDG score group demon-
strated a higher rate of immune response occurrence compared with the high PIDG score
group (61% vs. 42%) (Figure 7E). Additionally, the TIDE score in the high PIDG score group
was significantly higher than that in the low PIDG score group (Figure 7F). These findings
underscore the distinct immune landscapes in TNBC patients with different PIDG scores,
providing valuable insights for the development of personalized immunotherapy.

3.8. IPS Scores and Drug Sensitivity Analysis

Immunotherapy is currently a promising treatment strategy in TNBC [13]. To inves-
tigate the response levels to immunotherapy in patients with different PIDG scores, we
compared the Immunophenotype Scores (IPS) between the different groups. The results
showed that the low PIDG score group exhibited higher IPS scores (Figure 8A), indicating
that patients with low PIDG scores may be more sensitive to immunotherapy. Through the
assessment and comparison of the sensitivity to commonly used breast cancer chemother-
apeutic or targeted drugs, we also found that the low PIDG score group demonstrated
greater sensitivity to drugs such as cisplatin, cyclophosphamide, docetaxel, epirubicin,
olaparib, and paclitaxel (Figure S5).

Additionally, we identified that certain drugs, including OSI-027, sb505124, and BI2536,
exhibited enhanced sensitivity in the high PIDG score group (Figure 8B). In contrast, drugs
such as Eg5_9814, CDK9_5038, and Staurosporine demonstrated improved sensitivity in the
low PIDG score group (Figure 8C). These findings illustrate the difference in immunother-
apy response and drug sensitivity among patients with different PIDG scores, providing
vital information for developing personalized treatment strategies.
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4. Discussion

PID can affect various components of the immune system, and patients with PID are
prone to infections and exhibit manifestations of autoimmune diseases, malignancies, or
other immune dysregulations [7]. It has been suggested that when DNA repair proteins
are genetically defective, lymphocyte development may be impaired, leading to PID in
patients and compromising tumor immune surveillance. Patients with PID often tend to
have stronger predispositions to cancer development [37]. While lymphomas account for
the majority, an increasing incidence of non-lymphoma tumors, such as breast cancer, has
also been observed [38].

Through GSVA, we identified aberrant expression of primary immunodeficiency in
TNBC patients. Compared with non-TNBC samples, the PID pathway showed a significant
upregulation trend. A considerable proportion of patients had mutations in PIDGs, sug-
gesting that primary immunodeficiency may play an important role in the occurrence and
development of TNBC. Expressly, PPI network analysis and survival analysis indicated
that genes such as CD4, PTPRC, CD40, CD8A, CD19, and RAG1A play a significant role
in PIDGs and are closely related with the survival rate of TNBC patients. These findings
provide important clues for further exploration of the role of immunodeficiency-related
pathways in TNBC.

Next, through integrated analysis of multi-omics data from the TCGA and METABRIC
databases, we divided TNBC patients into high-risk and low-risk subtypes based on the
molecular expression patterns of PIDGs. The two subgroups showed significant differences
in immune infiltration and function. The expression difference of PIDGs may be the driving
factor in our search for appropriate treatment strategies. We further analyzed the common
DEGs related to the characteristics of the two subgroups in the TCGA and METABRIC
cohorts and performed KEGG and GO analyses, with most of these differentially expressed
genes enriched in immune-related functions or pathways. These findings highlight the
importance of immune-related therapies in TNBC treatment. Although immune checkpoint-
based immunotherapy has been investigated at different clinical stages for TNBC [39], the
PIDG score provides new direction for investigation of the applicability of immunotherapy
in TNBC patients for improved outcomes.

Furthermore, we investigated the molecular regulatory mechanisms of innate immun-
odeficiency in TNBC patients. We successfully constructed a LASSO regression model
and screened out four model genes related to innate immunodeficiency, namely IL18RAP,
STX11, IL15RA, and RASSF5. Subsequently, we created a nomogram and found that the
PIDG score model accurately predicts the prognosis of patients. Another perspective re-
vealed that, apart from surgical treatment, other treatment modalities do not significantly
improve the prognosis of TNBC patients. Compared with other risk scores, we observed
better performance in PIDG score. This might be attributed to our approach in constructing
the risk model and the number of samples selected. We utilized a total of 435 cases for
validating and constructing the PIDG score, whereas the sample size in other risk scores
was comparatively smaller than ours.

RNA methylation is one of the most prevalent forms of RNA modification within
cells, and modified RNA may be secreted extracellularly, serving as a molecular target
in clinical liquid biopsies of patient blood and other fluids. While there are numerous
modifications that occur on DNA, detecting DNA modifications through liquid biopsies is
challenging. Hence, the authors of this paper consider analyzing the impact of primary
immunodeficiency on target genes from the standpoint of RNA modifications, aiming to
provide theoretical support for future clinical applications.

We found that PIDG score is likely primarily regulated by m7G methylation. This
does not mean that the role of other methylation modifications is ignored. Our research
has revealed that m5C methylation is mainly associated with the writer genes, while
m6A methylation is more related to the reader genes. These findings suggest that in the
regulation of PIDG score, m6A methylation may be more involved in the recognition and
regulation processes of genes, while m5C methylation may predominantly influence gene
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coding and transcription. This difference provides crucial clues for a deeper understanding
of the regulatory mechanism of PIDG score.

We found that PIDG score patients have different immune microenvironments and
mutation landscapes, which may serve as prognostic biomarkers and provide patient
stratification for the selection of different immunotherapy for TNBC.

There are certain limitations regarding the standardized treatment approach for TNBC,
such as paclitaxel or anthracycline drugs. This treatment regimen is effective for less
than 30% of TNBC patients and the recurrence and mortality rates remain higher than
non-TNBC subtypes [40]. Based on the findings of patients with different PIDG scores,
immunotherapy is more effective for patients with a low PIDG score. Additionally, our
analysis of the sensitivity of some commonly used chemotherapeutic drugs revealed that
most drugs are effective only for TNBC patients with a low PIDG score, with poor efficacy
for those with a high PIDG score. Encouragingly, we have identified some drugs, such
as OSI-027 (mTOR inhibitor), sb505124 (TGFβR inhibitor), and BI2536 (PLK-1 inhibitor),
which demonstrate higher sensitivity in patients with a high PIDG score. These drugs have
been validated in vitro experiments for their inhibitory effects on TNBC cell growth and
metastasis [41–43], offering new treatment prospects for patients with a high PIDG score.
Additionally, we have discovered some drugs targeting low PIDG score that have not been
used in clinical treatment, such as Eg5_9814, CDK9_5038, and Staurosporine, which may
provide new options for clinical treatment.

5. Conclusions

In summary, this study comprehensively elucidates the important role of PID in the
development of TNBC. A prognostic model and clinical prediction tool based on PIDG
offers novel scientific evidence for the clinical treatment and prognosis assessment of TNBC
patients. Our research provides a new theoretical basis for developing more effective
personalized immunotherapy strategies and drug selection, offering new hope for the
prognosis and survival of TNBC patients.
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