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Abstract: Pustular microbial mats in Shark Bay, Western Australia, are modern analogs of microbial
systems that colonized peritidal environments before the evolution of complex life. To understand
how these microbial communities evolved to grow and metabolize in the presence of various environ-
mental stresses, the horizontal gene transfer (HGT) detection tool, MetaCHIP, was used to identify
the horizontal transfer of genes related to stress response in 83 metagenome-assembled genomes from
a Shark Bay pustular mat. Subsequently, maximum-likelihood phylogenies were constructed using
these genes and their most closely related homologs from other environments in order to determine
the likelihood of these HGT events occurring within the pustular mat. Phylogenies of several stress-
related genes—including those involved in response to osmotic stress, oxidative stress and arsenic
toxicity—indicate a potentially long history of HGT events and are consistent with these transfers
occurring outside of modern pustular mats. The phylogeny of a particular osmoprotectant transport
gene reveals relatively recent adaptations and suggests interactions between Planctomycetota and
Myxococcota within these pustular mats. Overall, HGT phylogenies support a potentially broad
distribution in the relative timing of the HGT events of stress-related genes and demonstrate ongoing
microbial adaptations and evolution in these pustular mat communities.

Keywords: microbial adaptation; molecular evolution; horizontal gene transfer; metagenome-assembled
genomes; microbial mat ecology; microbial phylogeny

1. Introduction

Pustular microbial mats are complex benthic microbial communities bound to sedi-
ments by an organic matrix. Microbial communities residing in pustular mats from Shark
Bay, Western Australia experience harsh environmental conditions including hypersalinity,
UV radiation, desiccation, and heavy metal toxicity [1–8]. Similar microbial mats have
colonized peritidal environments for over two billion years [9,10]. The successful survival
of these communities depends on the molecular adaptations and evolutionary responses of
the organisms that occupy these mats to these harsh environmental conditions. To combat
osmotic stresses, organisms in mats accumulate inorganic ions (“salt-in-cytoplasm” mecha-
nism) and other compatible solutes such as glycine betaine, trehalose, and proline [11–15].
Various community members also detoxify heavy metals and combat oxidative stress to
resist cellular damage caused by reactive oxygen species, free radicals, peroxides, and
heavy metals [7,16,17].

Genetic plasticity is key in shaping an effective response of microbial communities to these
environmental stressors. Horizontal gene transfer (HGT) between organisms is a mechanism
by which microbes can maintain genetic plasticity and adapt to environmental conditions.
HGT can be mediated by transformation (i.e., uptake of eDNA), conjugation (i.e., transfer of
genes through cell-to-cell plasmid exchange), or transduction (i.e., infection by phage). The
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role of HGT in the evolution of antimicrobial resistance has been particularly well studied, and
biofilms have been identified as hot spots for the horizontal transfer of antibiotic resistance
genes [18–21], especially in comparison to planktonic communities [22,23]. Previous studies
have also identified the importance of the horizontal transfer of metal resistance genes in the
adaptation and evolution of microbial communities from arsenic-rich acid mine drainages,
gold mines, and groundwater environments [24–26]. HGT events have also been identified
to play a role in the adaptation and speciation of archaea, enabling the acquisition of genes
related to oxidative stress resistance (e.g., catalase, DNA-binding protein from starved cells)
from acidophilic bacteria [27]. However, the contributions of HGT to the adaptation and
evolution of microbial communities in microbial mats remain to be assessed.

High-throughput shotgun metagenomic sequencing has enabled the profiling of natu-
ral communities across environments and can provide insight into microbial community
interactions, metabolism, and responses to environmental conditions. The identification
of HGT events between metagenome-assembled genomes (MAGs) within a metagenomic
community can reveal important information regarding community-level adaptations and
interactions. Several bioinformatic approaches have been developed for identifying HGT
events within metagenomic sequencing data [28–32]. MetaCHIP [31] has been utilized
as a stand-alone tool for identifying HGT events, specifically between MAGs in a natu-
ral community, and has been used to identify HGT events within various metagenomic
communities [33–39]. However, the methods by which HGT events are determined within
metagenomic datasets are continuously developing and there are currently no clear best
practices [40].

In this work, we investigate the horizontal transfer of genes associated with stress
resistance and response to osmotic stress, oxidative stress, and arsenic toxicity within a
microbial metagenome from Shark Bay, Western Australia. We use MetaCHIP to identify
HGT events between the 83 MAGs assembled from this microbial mat and determine the
efficacy of this tool by coupling maximum-likelihood phylogenetic approaches to these
analyses. We use these phylogenetic inferences to confirm the transfer of these genes
between the organisms within the microbial mat community, determine the relative timing
of numerous transfer events between these MAGs, and explore the evolutionary history
of microbial interactions based on the placement of horizontally transferred genes within
these phylogenetic trees.

2. Materials and Methods
2.1. Sample Procurement

Pustular mats from Carbla Beach, Shark Bay, Western Australia, were sampled and
sequenced according to Skoog et al. (2022). Briefly, whole genomic DNA was extracted from
a pustular mat and metagenomes were sequenced using an Illumina NextSeq sequencer
(Cambridge, MA, USA). Resulting DNA sequences were quality filtered, assembled, binned,
and taxonomically classified as previously described [5]. This analysis yielded 83 MAGs,
which this work utilizes for all subsequent analyses. From here on, they are referred
to as ‘MAG X’, where ‘X’ is 1–83. All MAGs are publicly available on Zenodo (https:
//doi.org/10.5281/zenodo.3874996, accessed on 28 November 2023) and on the Joint
Genome Institute website under the GOLD AP ID Ga0316160.

2.2. HGT Predictions

MetaCHIP (v1.10.10) was used to predict HGT events among all MAGs within the pus-
tular microbial mat community at the taxonomic class level ([31]; Figure 1A and Table S1).
MetaCHIP uses best-hit analysis between defined phylogenetic/taxonomic groups to iden-
tify candidate genes for HGT. The candidate events are subsequently refined and tested
using phylogenetic analysis and the reconciliation of species and gene trees. All MAGs
were at least 10% above the 40% MAG completeness requirement of the program. Results
were plotted using igraph (https://igraph.org/, accessed on 28 November 2023) and gg-
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plot2 in R v.3.6.0 (Figures 2 and S1). All identified genes were then annotated with Prokka
(v1.14.6; [41]).
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Figure 1. Schematic of HGT detection workflow and possible gene transfer scenarios. (A) Putative
horizontally transferred genes among Shark Bay (SB) metagenome-assembled genomes (MAGs) are
identified by MetaCHIP and (B) used as queries within NCBI BLAST to identify top hits for maximum-
likelihood (ML) phylogenetic analysis. ML phylogenetic trees may identify three scenarios: (C) HGT
within the SB microbial mat community, (D) HGT outside of the SB microbial mat community, or
(E) vertical gene transfer.
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2.3. Phylogenomic and HGT Analyses

All stress-related proteins identified by MetaCHIP as involved in HGT events were
selected and used as query sequences to identify the top 100 hits using the NCBI Basic
Local Alignment Search Tool (BLAST) with default search parameters (Figure 1B). These
proteins were also used as query sequences to identify hits in the unbinned pustular
mat metagenome. All sequences maintained a query cover of at least 80%, a minimum
e-value of e−45, and a percent identity of at least 46%. Seqkit was used to remove any
duplicate sequences [42]. Remaining sequences were aligned with MUSCLE (v3.8.31;
Ref. [43]). Maximum-likelihood phylogenetic trees were generated using IQTree (v1.6.3)
run with ModelFinder Plus (MFP) testing the following base models: LG+, WAG+ and
BLOSUM62 (Figure 1B; Ref. [44]). Support for bipartitions was determined using rapid
bootstraps (1000 replicates) and SH-aLRT tests (1000 replicates). Trees were mid-point
rooted, and FigTree (v.1.4.3) was used to visualize the resulting trees and identify branch
lengths for genes that were horizontally transferred. Averaged branch lengths between
identified transfer agents (Table S2) were used to construct a histogram and bin widths
were established using the Freedman–Diaconis rule [45].

3. Results

When making assertions about HGT events within a specific microbial community
dataset, it is crucial to differentiate whether these events actually transpired within the
analyzed microbial community or are remnants of more ancient transfers. Failing to do
so can result in misleading interpretations of the timing of adaptations and evolutionary
processes occurring within a given studied community, and it also has the potential to
erroneously imply interactions (assuming HGT occurs between organisms in close prox-
imity) among the constituent organisms. In order to assess HGT events and determine
whether or not they occurred within the pustular mat community in this study, we first
utilized MetaCHIP to identify potential HGTs, and then used these results to construct finer-
resolution, maximum-likelihood phylogenies incorporating data outside of the microbial
mat community. MetaCHIP predicted 631 gene transfers between 14 different taxonomic
classes in the analyzed metagenomic dataset from the pustular mat (Figure S1). Of these
predicted transfers, 89 (14%) were of genes that represented 31 different proteins associated
with stress responses (Table S1 and Figure 2).

Because MetaCHIP only identifies genes as putatively transferred within a metage-
nomic community, we constructed the maximum-likelihood phylogenies for each of the
31 different stress-related genes using publicly available gene sequences outside of our
Shark Bay community. Incorporating sequences outside of a given dataset provides a more
complete evolutionary history and more accurately represents potential HGT events. In
analyzing the transfer of a gene between an organism from ‘class A’ and an organism from
‘class B’, we expected the data to yield one of three scenarios. In Scenario 1, the genes
identified by MetaCHIP as horizontally transferred between an organism from ‘class A’
and an organism from ‘class B’ would be sister to one another in the maximum-likelihood
phylogenetic tree (Figure 1C). This would strongly indicate that the gene transfer occurred
between these two organisms within the pustular mat community. In Scenario 2, the gene
from ‘class A’ would be sister to a gene from ‘class B’ from an organism not identified
within the pustular mat community (Figure 1D). This would suggest that there was an
HGT event that occurred; however, this transfer likely did not occur within the microbial
mat. Instead, this transfer may have taken place prior to the establishment of the ‘class
B’ organism within the pustular mat. In Scenario 3, the gene from ‘class A’ and ‘class
B’ are identified within a group of other genes from organisms of ‘class A’ and ‘class B’,
respectively (Figure 1E). This would indicate that these genes identified by MetaCHIP as
horizontally transferred within the microbial mat were, in fact, vertically transferred.
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Of the 31 constructed maximum-likelihood phylogenies, 18 trees fell into Scenario 3
and supported vertical gene transfer phylogenies (Figure 1E). The remaining 13 trees re-
vealed HGT events which fell into either Scenario 1 or Scenario 2 (Figure 1C,D). These trees
identified transfer events involving genes related to osmotic stress (i.e., glycine/sarcosine N-
methyltransferase, osmoregulated proline transporter, trehalose transport system permease
protein, trehalase), oxidative stress (i.e., catalase-peroxidase, chaperone protein, rubrery-
thrin), arsenic toxicity (i.e., arsenate reductase, arsenite efflux permease), nutrient limitation
(i.e., DNA protection during starvation protein, polyphosphate phosphotransferase), and
antibiotic resistance (i.e., multidrug export ATP-binding/permease, N-ethylmaleimide
reductase). Of these, we explored gene transfer events related to osmotic stress, oxidative
stress, and arsenic toxicity in more detail as these are especially relevant stresses faced by
microbial community members in Shark Bay.

3.1. Osmotic Stress

Organisms adapt to osmotic stress in hypersaline environments by producing and
importing compatible solutes such as glycine betaine, proline, and trehalose [46]. Glycine/
sarcosine N-methyltransferase (GSMT) plays an important role in the production of the
osmoprotectant glycine betaine [47]. MetaCHIP analysis revealed the horizontal transfer of
this gene among Verrucomicrobia, Planctomycetes, Alphaproteobacteria, Myxococcota, and
Cyanobacteria (Table S1). GSMT phylogeny identified Proteobacteria as the most deeply
branching group and the remaining tree topology reflected a polyphyletic distribution
of these proteins, consistent with evolutionary histories of HGT (Figure 3). The GSMT
from Alphaproteobacteria MAG 25 was nested within the most deeply branching group
of GSMT genes from Proteobacteria and its closest homologous sequence was identified
in an Alphaproteobacterium from the marine environment (Figure 3). GSMT sequences
from all other MAGs placed within the polyphyletic portion of the tree. The genes from
Planctomycetota MAG 66 and Cyanobacteria MAG 54 were placed within clusters of
Planctomycetota and Cyanobacteria sequences, respectively, whereas the genes from Verru-
comicrobia MAG 9 and MAG 61 both were identified in separate groups of Verrucomicrobia
in this polyphyletic region (Figure 3). GSMT from Myxococcota MAG 28 was the only
Myxococcota GSMT present within a cluster of Planctomycetes, suggesting its potential
acquisition from this group. In contrast, the GSMT from Myxococcota MAG 59 resided
in a more deeply branching group comprised of other Myxococcota and Actinomycetota.
The GSMT from Verrucomicrobia MAG 8 was identified on a well-supported (87.9/90)
branch sister to a sequence from Candidatus Omnitrophota (MCA9411368.1), indicating a
likely gene transfer event between these two organisms (Figure 3). The presence of other
Verrucomicrobia outgroups in this cluster (shaded) and the absence of other sequences from
Candidatus Omnitrophota support the likely transfer of this protein from a Verrucomicrobia
to a Candidatus Omnitrophota organism (Figures 1D and 3).

The high-affinity proline transporter, opuE, is inducible under hyperosmotic condi-
tions and allows the import of exogenous proline, an osmoprotectant [48–51]. MetaCHIP
analyses identified the transfer of opuE between Planctomycetota MAG 7 and Myxococ-
cota MAG 28 from the pustular mat. Maximum-likelihood phylogeny of opuE revealed
MAG 7 and MAG 28 as well supported (99.8/100) sisters to one another, supporting the
hypothesis that opuE was transferred between these two MAGs within the microbial mat
community (Figures 1C and 4). Because more distal groups include both Planctomycetota
and Myxococcota, the direction of transfer could not be resolved.
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Figure 3. Midpoint-rooted maximum likelihood tree of glycine/sarcosine N-methyltransferase
(GSMT) homologs. Support values indicate approximate likelihood ratio test (aLRT)/ bootstrap
(100 replicates). The full tree contains 317 unique sequences. Collapsed groups are labeled with
taxonomic group names and are colored according to the legend. Circles on branch tips are present
and colored according to the sample origin, when data was available. MAGs from the Shark Bay
microbial mat metagenome are identified in parentheses as ‘MAG X’. Predicted HGT events involving
these MAGs are delineated by a red star. Branch lengths for taxa involved in HGT events are listed
above the leaves.



Genes 2023, 14, 2168 7 of 23

Genes 2023, 14, x FOR PEER REVIEW 7 of 24 
 

 

The high-affinity proline transporter, opuE, is inducible under hyperosmotic condi-
tions and allows the import of exogenous proline, an osmoprotectant [48–51]. MetaCHIP 
analyses identified the transfer of opuE between Planctomycetota MAG 7 and Myxococ-
cota MAG 28 from the pustular mat. Maximum-likelihood phylogeny of opuE revealed 
MAG 7 and MAG 28 as well supported (99.8/100) sisters to one another, supporting the 
hypothesis that opuE was transferred between these two MAGs within the microbial mat 
community (Figures 1C and 4). Because more distal groups include both Planctomycetota 
and Myxococcota, the direction of transfer could not be resolved. 

 
Figure 4. Midpoint-rooted maximum likelihood tree of osmoregulated proline transporter (opuE) 
homologs. Support values indicate approximate likelihood ratio test (aLRT)/bootstrap (100 repli-
cates). The full tree contains 122 unique sequences. Collapsed groups are labeled with taxonomic 
group names and are colored according to the legend. Circles on branch tips are present and colored 
according to the sample origin, when data was available. MAGs from the Shark Bay microbial mat 
metagenome are identified in parentheses as �MAG X�. Predicted HGT events involving these MAGs 
are delineated by a red star. Branch lengths for taxa involved in HGT events are listed above the 
leaves.  

Trehalose transporters similarly assist in intracellular resistance to osmotic stress un-
der varying salt concentrations. MetaCHIP results suggested the transfer of a trehalose 
transporter protein between Alphaproteobacteria MAG 16 and Gammaproteobacteria 
MAG 65, and identified the transfer of a trehalase (E.C.3.2.1.28) protein, involved in the 
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Figure 4. Midpoint-rooted maximum likelihood tree of osmoregulated proline transporter (opuE)
homologs. Support values indicate approximate likelihood ratio test (aLRT)/bootstrap (100 replicates).
The full tree contains 122 unique sequences. Collapsed groups are labeled with taxonomic group
names and are colored according to the legend. Circles on branch tips are present and colored
according to the sample origin, when data was available. MAGs from the Shark Bay microbial
mat metagenome are identified in parentheses as ‘MAG X’. Predicted HGT events involving these
MAGs are delineated by a red star. Branch lengths for taxa involved in HGT events are listed above
the leaves.

Trehalose transporters similarly assist in intracellular resistance to osmotic stress under
varying salt concentrations. MetaCHIP results suggested the transfer of a trehalose trans-
porter protein between Alphaproteobacteria MAG 16 and Gammaproteobacteria MAG 65,
and identified the transfer of a trehalase (E.C.3.2.1.28) protein, involved in the metabolism of
trehalose [52], between Alphaproteobacteria MAG 16 and Gammaproteobacteria MAG 20.
Maximum-likelihood phylogenies of both the trehalose transporter and trehalase proteins
revealed Alphaproteobacteria as the most deeply branching group. Clusters of Gammapro-
teobacteria and Betaproteobacteria were also present within the trehalose transporter and
trehalase trees, respectively (Figure 5). Alphaproteobacteria MAG 16 was monophyletic
with Alphaproteobacteria groups in both trees. The phylogeny of the trehalose transporter
protein identified Gammaproteobacteria MAG 65 as sister to an Alphaproteobacterium
(MBC6405981.1) from a marine sponge (Figure 5A), whereas the phylogeny of trehalase re-
vealed the sequence from Gammaproteobacteria MAG 20 as sister to the sequence from an
Alphaproteobacterium (MBI1182191.1) identified in a hot spring environment (Figure 5B).
This supports the horizontal transfer of these genes between MAGs from the pustular mats
and organisms outside of these mats (Figure 1D).
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Figure 5. Midpoint-rooted maximum likelihood tree of (A) trehalase and (B) trehalose transport
system permease protein homologs. Support values indicate approximate likelihood ratio test
(aLRT)/bootstrap (100 replicates). The full trehalase tree contains 111 unique sequences and the
full trehalose transport protein tree contains 195 unique sequences. Collapsed groups are labeled
with taxonomic group names and are colored according to the legend. Circles on branch tips are
present and colored according to the sample origin, when data was available. MAGs from the Shark
Bay microbial mat metagenome are identified in parentheses as ‘MAG X’. Predicted HGT events
involving these MAGs are delineated by a red star. Branch lengths for taxa involved in HGT events
are listed above the leaves.
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3.2. Oxidative Stress

Pustular microbial mat communities in peritidal environments produce reactive oxy-
gen species (ROS) and are consistently exposed to these molecules. Electron transport
chains involved in microbial photosynthesis and aerobic metabolisms as well as exoge-
nous sources such as xenobiotics and UV radiation can all generate ROS [7,53,54]. An
imbalance between the production and removal of ROS can cause irreversible oxidative
damage of cellular material [55–57], so microorganisms employ various mechanisms to
combat oxidative stress, including using enzymes such as catalases, peroxidases, catalase-
peroxidases, and rubrerythrin (RBR) [54]. MetaCHIP results suggested the transfer of
13 catalase-peroxidase genes among 9 different phyla within the pustular mat community
(Table S1). Maximum-likelihood phylogeny revealed that 12 of these catalase-peroxidases
were vertically inherited (Figure 1E) and the catalase-peroxidase of Chloroflexi MAG 17
constituted the only HGT event (Figure 1D). This sequence was placed sister to a sequence
from a marine Deltaproteobacterium (Figure 6). All other sequences predicted as HGT
by MetaCHIP were instead nested within the sequences from the same phyla, suggesting
vertical inheritance (Figure 1E).

MetaCHIP also inferred HGT of RBR between two Alphaproteobacteria and two
Gammaproteobacteria within the peritidal microbial mat community (Table S1). The
phylogeny of RBR revealed that these transfers did not occur between Proteobacteria
within the Shark Bay community (Figure 1D). RBR sequences from Gammaproteobacteria
comprised the most basal group with the exception of two more shallow Deltaproteobac-
teria and Betaproteobacteria clusters. An additional group contained sequences from
Alphaproteobacteria. Sequences of Gammaproteobacteria, Bacteroidota, and Thermod-
esulfobacteriodota nested within this group suggested a history of HGT events between
Alphaproteobacteria and these phyla (Figure 7). RBR from Alphaproteobacteria MAG 67
was present within this cluster and thus interpreted as vertically inherited (Figure 1E). RBR
from Gammaproteobacteria MAG 20 also resided within this group and was sister to an
RBR of an Alphaproteobacterium (NBC32262.1) from a microbial mat community from
Bridger Bay in Great Salt Lake, Utah, USA (Figure 7). This indicated the likely transfer
of this gene in similar surface-attached communities, yet from various locations. In fact,
most of the catalase-peroxidase and RBR gene sequences were identified in organisms
from saline systems and biofilm communities (i.e., hypersaline microbial mats, marine
sediments, estuary sediments, hydrothermal vents, cold seeps, activated sludge, coral reefs,
hot springs, marine sponges, salt marshes, and biocathode biofilms).

Molecular chaperone clpB encodes a highly conserved heat shock protein with the role
of stabilizing proteins and assisting in protein refolding following damage by oxidative
stress, heat, low pH, changes in osmolarity, nutrient starvation, etc. [58–61]. This clpB
gene was also indicated by MetaCHIP to be transferred between Planctomycetota MAG 66
and Myxococcota MAG 48 (Table S1). Maximum-likelihood phylogeny of clpB revealed
a polyphyletic sequence distribution that is indicative of multiple HGT acquisitions from
different donor lineages. The sequence from Planctomycetota MAG 66 was placed within
a Planctomycetota cluster indicating vertical gene transfer (Figure 1E), whereas the se-
quence from Myxococcota MAG 48 was sister to a sequence from an Alphaproteobacterium
(MCB9685528.1) from activated sludge (Figures 1D and 8). The identification of these
sequences in MAGs from two different phyla as sister to one another suggests horizontal
transfer of clpB between these two organisms (Figure 8), although the absence of a clear out-
group prevents us from establishing the direction of HGT. The fact that these proteins that
are sister were not both from MAGs from the pustular mat community dataset (Figure 1D)
reveals that this HGT event did not occur within the pustular mat community.
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bacteria, Deltaproteobacteria, Spirochaetes, Thermodesulfobacteria, Ca. Dadabacteria, Ignavibacte-
ria, Balneolaeota (C) Alphaproteobacteria, Gammaproteobacteria, Betaproteobacteria, Chloroflexi, 
Acidobacteria, Euryarchaetoa, Firmicutes, Bacteroidetes (D) Alphaproteobacteria, Chloroflexi, 
Gemmatimonadetes, Cyanobacteria (E) Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes, 
Candidatus Omnitrophica (F) Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, Gam-
maproteobacteria, Chloroflexi, Bacteroidetes, Ignavibacteria, Acidobacteria, Planctomycetes, two 
unbinned sequences (G) Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria. Legend 
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Figure 6. Midpoint-rooted maximum likelihood tree of catalase-peroxidase homologs. Support val-
ues indicate approximate likelihood ratio test (aLRT)/bootstrap (100 replicates). The full tree contains
1504 unique sequences. Collapsed groups are labeled with taxonomic group names and are colored ac-
cording to the legend. Collapsed groups that contain more than three different phyla were noted with
circled letters and constitute the following groups: (A) Myxococcota, Acidobacteria, Deltaproteobacte-
ria, Candidatus Latescibacteria (B) Bacteroidetes, Verrucomicrobia, Gammaproteobacteria, Deltapro-
teobacteria, Spirochaetes, Thermodesulfobacteria, Ca. Dadabacteria, Ignavibacteria, Balneolaeota
(C) Alphaproteobacteria, Gammaproteobacteria, Betaproteobacteria, Chloroflexi, Acidobacteria, Eu-
ryarchaetoa, Firmicutes, Bacteroidetes (D) Alphaproteobacteria, Chloroflexi, Gemmatimonadetes,
Cyanobacteria (E) Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes, Candidatus Omni-
trophica (F) Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, Gammaproteobacteria,
Chloroflexi, Bacteroidetes, Ignavibacteria, Acidobacteria, Planctomycetes, two unbinned sequences
(G) Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria. Legend shows the coloring of
circles on branch tips according to the sample origin, when data was available. MAGs from the Shark
Bay microbial mat metagenome are identified in parentheses as ‘MAG X’. Predicted HGT events
involving these MAGs are delineated by a red star.
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Figure 7. Midpoint-rooted maximum likelihood tree of rubrerythrin (RBR) homologs. Support values
indicate approximate likelihood ratio test (aLRT)/bootstrap (100 replicates). The full tree contains
331 unique sequences. Collapsed groups are labeled with taxonomic group names and are colored
according to the legend. Legend shows the colors of circles on branch tips according to the sample
origin, when data was available. MAGs from the Shark Bay microbial mat metagenome are identified
in parentheses as ‘MAG X’. Predicted HGT events involving these MAGs are delineated by a red star.
Branch lengths for taxa involved in HGT events are listed above the leaves.
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Figure 8. Midpoint-rooted maximum likelihood tree of chaperone protein (clpB) homologs. Support
values indicate approximate likelihood ratio test (aLRT)/bootstrap (100 replicates). The full tree
contains 156 unique sequences. Collapsed groups are labeled with taxonomic group names and are
colored according to the legend. Legend shows the colors of circles on branch tips according to the
sample origin, when data was available. MAGs from the Shark Bay microbial mat metagenome are
identified in parentheses as ‘MAG X’. Predicted HGT events involving these MAGs are delineated by
a red star. Branch lengths for taxa involved in HGT events are listed above the leaves.
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3.3. Arsenic Toxicity

Heavy metals, such as arsenic, can displace essential metal ions in metalloenzymes,
disrupt protein folding, inhibit enzymatic activity due to similar chemistry to enzyme sub-
strates and oxidize amino acids [62–64]. The hypersaline waters in Shark Bay contain some
arsenic (5.0 µg/L; [7]), and arsenic-related genes (e.g., arsC, acr3, etc.) in pustular, smooth,
and columnar microbial mat metagenomes from Shark Bay indicate the importance of
arsenic detoxification and metabolism in this environment [16,65]. MetaCHIP identified the
transfer of arsC between Myxococcota MAG 59 and three Alphaproteobacteria (i.e., MAG
24, MAG 57, MAG 79; Table S1). ArsC enables the detoxification of arsenate [As(V)] by re-
duction to arsenite [As(III)]. Maximum-likelihood phylogenies of these proteins recover the
monophyly of alphaproteobacterial sequences with the exception of some Cyanobacteria
from marine environments, Gammaproteobacteria from unidentified locations, Betapro-
teobacteria from freshwater localities and one Actinobacteria from an activated sludge
source (Figure 9). Homologous sequences of arsC from Alphaproteobacteria were identified
in multiple environments including stromatolites, hot springs, groundwater, activated
sludge from bioreactors, wastewater treatment plants, marine sediments and benthic turfs
(Figure 9). The arsC of Myxococcota MAG 59 was sister to a sequence identified from an
Alphaproteobacterium (WP_090875893.1) and was nested within a group of Alphapro-
teobacteria (Figures 1D and 9). This suggests the likely direction of transfer of this arsenate
reductase from an Alphaproteobacterium to Myxococcota MAG 59 and highlights that this
HGT event did not occur between organisms within the pustular mat community.

The arsenite efflux transporter, acr3, is involved in the subsequent step for arsenic
detoxification and extrudes As(III) from the cell. MetaCHIP analyses suggest the transfer
of acr3 among Gammaproteobacteria, Myxoccocota and Alphaproteobacteria (Table S1).
Maximum-likelihood phylogeny of this gene traces a more complex story. All sequences of
acr3 in Myxococcota MAGs from Shark Bay fall within a cluster of Myxoccocota sequences
from various habitats, including freshwater sediment and activated sludge (Figure 10),
suggesting the vertical inheritance of this gene within Myxoccocota (Figure 1E). acr3 of
Alphaproteobacteria MAG 21 also groups with other Alphaproteobacteria of unidentified
origins. However, acr3 from Gammaproteobacteria MAG 44 is sister to that of Alphapro-
teobacterium (WP_201240763.1), potentially suggesting the transfer of this gene from an
Alphaproteobacterium to this Gammaproteobacteria MAG (Figures 1D and 10). The place-
ment of Myxoccocota MAG 48 and Myxoccocota MAG 59 as sisters suggest the vertical
inheritance of acr3, as these MAGs share common taxonomy.



Genes 2023, 14, 2168 14 of 23Genes 2023, 14, x FOR PEER REVIEW 14 of 24 
 

 

 
Figure 9. Midpoint-rooted maximum likelihood tree of arsenate reductase (arsC) homologs. Support 
values indicate approximate likelihood ratio test (aLRT)/bootstrap (100 replicates). The full tree con-
tains 212 unique sequences. Collapsed groups are labeled with taxonomic group names and are 
colored according to the legend. Legend shows the colors of circles on branch tips according to the 
sample origin, when data was available. MAGs from the Shark Bay microbial mat metagenome are 
identified in parentheses as �MAG X�. Predicted HGT events involving these MAGs are delineated 
by a red star. Branch lengths for taxa involved in HGT events are listed above the leaves.  

The arsenite efflux transporter, acr3, is involved in the subsequent step for arsenic 
detoxification and extrudes As(III) from the cell. MetaCHIP analyses suggest the transfer 
of acr3 among Gammaproteobacteria, Myxoccocota and Alphaproteobacteria (Table S1). 
Maximum-likelihood phylogeny of this gene traces a more complex story. All sequences 
of acr3 in Myxococcota MAGs from Shark Bay fall within a cluster of Myxoccocota 

Figure 9. Midpoint-rooted maximum likelihood tree of arsenate reductase (arsC) homologs. Support
values indicate approximate likelihood ratio test (aLRT)/bootstrap (100 replicates). The full tree
contains 212 unique sequences. Collapsed groups are labeled with taxonomic group names and are
colored according to the legend. Legend shows the colors of circles on branch tips according to the
sample origin, when data was available. MAGs from the Shark Bay microbial mat metagenome are
identified in parentheses as ‘MAG X’. Predicted HGT events involving these MAGs are delineated by
a red star. Branch lengths for taxa involved in HGT events are listed above the leaves.
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Figure 10. Midpoint-rooted maximum likelihood tree of arsenite efflux permease (acr3) homologs.
Support values indicate approximate likelihood ratio test (aLRT)/ bootstrap (100 replicates). The full
tree contains 413 unique sequences. Collapsed groups are labeled with taxonomic group names and
are colored according to the legend. Legend shows the colors of circles on branch tips according to
the sample origin, when data was available. MAGs from the Shark Bay microbial mat metagenome
are identified in parentheses as ‘MAG X’. Predicted HGT events involving these MAGs are delineated
by a red star. Branch lengths for taxa involved in HGT events are listed above the leaves.

3.4. Relative Timing of HGT Events

One of the challenges to understanding the adaptation and evolution of modern
pustular mat communities is being able to distinguish genetic diversity that arose through
gene transfer events that predate this system from genes that were acquired through more
recent HGT in the mat itself. Molecular clocks are valuable tools for estimating the timing of
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evolutionary events because they can map the genetic divergence of genes or proteins and
estimate divergence times using fossil calibrations that place chronological constraints on
certain divergences within a phylogenetic tree [66–68]. However, molecular clock models
are difficult to apply to single genes for which calibrations are also lacking. In the absence
of such models, branch lengths still provide relative age information for specific lineages,
including those having undergone HGT. In such cases, the divergence of the reticulating
branch places a relative older-bound on the time of transfer, while the diversification of
the recipient lineage provides a relative younger-bound constraint (in cases where the
reticulating branch is terminal, the younger-bound constraint is essentially t = 0). Between
these bounds, the exact point of transfer cannot be inferred; therefore, shorter reticulating
branches provide more precise dating of HGT events than long reticulating branches.
Consistently short (i.e., ~0.05–0.1) lengths of terminal or near-terminal reticulating branches
indicate relatively recent HGT events within these trees. While long branches may also
contain recent transfer events, these are obscured by a lack of sampling within the HGT
donor lineage. Therefore, the distribution of reticulating branch lengths can inform the
expected frequency of recent HGT events within gene tree histories. Recent HGT histories
can also be inferred for HGT pairs where recipient groups include mat MAG sequences,
nested within other mat MAG sequences that constitute the donor lineage. To gain insight
on relative timing of these gene transfers, we calculated the branch lengths of each stress-
related HGT event and found that the phylogenies of HGT events across all trees revealed
a broad distribution of sister branch lengths ranging from 0.0517 to 0.51315 (Figure 11).
The average branch lengths between sister branches for acr3, arsC, GSMT, opuE, catalase-
peroxidase, trehalase, trehalose transport, clpB, and RBR genes were ~0.20, ~0.24, ~0.36,
~0.51, ~0.37, ~0.28, ~0.17, ~0.28, and ~0.05, respectively (Table S2).
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4. Discussion

Benthic microbial communities, and pustular mats specifically, have adapted to envi-
ronmental stresses for billions of years [8,9,69,70]. Reconstructing the HGT of stress-related
genes between organisms in a modern microbial mat is one mechanism by which we
can observe these processes. In light of the expected increase of HGT events associated
with biofilm communities [19], the identification of many HGT events in 83 MAGs from a
pustular mat in Shark Bay is unsurprising. More frequent exchange of genetic information
and faster rates of evolution are also hypothesized in microbial communities from extreme
environments relative to the communities that do not experience multiple and consistent
stresses [71]. While only 1 of the 89 stress-related genes is consistent with HGT that occurred
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in the analyzed pustular mat, each of these phylogenies suggest a rich history of ancestral
interactions within various environmental settings. MetaCHIP was able to construe gene
acquisition events; however, additional phylogenetic analyses clarified some of these HGT
predictions as vertical gene transfers and filled in the gaps to reveal a slew of transfer
histories that likely occurred prior to the establishment of these modern communities. It
is also important to acknowledge that the sequenced metagenome may not represent the
entire mat community, and it is possible that genes involved in HGT within the mat are
present in unrecovered organisms. Such a scenario would result in the failure to detect
some HGTs within the pustular mat.

4.1. Adaptations to Osmotic Stress

Microbial adaptations to environmental stresses may be key to the ecological success
of specific groups and taxa in these environments. The inferred transfer and acquisition
of opuE between Planctomycetota and Myxococcota in the pustular mat from Shark Bay
illustrates the ongoing adaptations of these organisms to environmental stresses. Phylogeny
of opuE supports this gene transfer as the only potential HGT event that occurred at the
taxonomic class level within the sequenced pustular mat community. The direction of
transfer of opuE between Planctomycetota MAG 7 and Myxococcota MAG 28 cannot be
resolved. However, the identification of this HGT event reveals the potential interaction
of Planctomycetota and Myxococcota within Shark Bay. The close relationship in this tree
between the opuE sequence in Planctomycetota MAG 7 and Myxococcota MAG 28 can
most simply be explained by the transfer of this gene within the mat. It is worth noting
that a less parsimonious hypothesis can accommodate deeper ancestry of this gene, where
Planctomycetota and Myxococcota independently acquired opuE earlier in their histories.
While less likely, this hypothesis cannot be ruled out.

The transfer and retention of a trehalose transporter by Gammaproteobacteria (MAG 65)
from another marine-associated Proteobacterium demonstrates the importance of this gene
within saline environments. Furthermore, trehalase (E.C.3.2.1.28) enzymes catalyze the hy-
drolysis of the α-glucosidic O-linkage of the sugar trehalose, producing α- and β-D-glucose
monomers which can be recovered as a carbon source following decreasing osmolarity [72].
The transfer of trehalase does not enable Gammaproteobacteria (MAG 20) to import and use
trehalose as a compatible solute, but it could allow this organism to leverage environmental
stress responses of other community members for its own energy production. The acquisi-
tion of both a trehalose transporter and trehalase-encoding genes by Gammaproteobacteria
MAGs within this pustular mat community suggests the potential exposure of this group of
organisms to this metabolite in pustular mats.

The patchy distribution of GSMT indicates a pattern of horizontal inheritance over
time, although only a few MAGs predicted by MetaCHIP to transfer GSMT showed clear
phylogenetic evidence of HGT events. In such cases, the placement of the GSMT sequences
from these MAGs within other phyla (i.e., Myxoccocota MAG 28 within a Planctomycetota
cluster) shows that organisms represented by MAGs may have a history of interaction
with other organisms outside of this environment. Given that these types of inferences are
necessarily limited by the availability of sequences, only deeper sampling and sequencing
efforts across many environments may identify the origins of GSMT sequences in the
organisms from Shark Bay. Additionally, the phylogeny of GSMT recovers sequences from
Verrucomicrobiota (MAG 8) and Candidatus Omnitrophota (MCA9411368.1) as sisters,
suggesting interaction between Verrucomicrobiota and Candidatus Omnitrophota.

4.2. Adaptations to Oxidative Stress

Photosynthetic microbial mats in peritidal environments undergo UV exposure and
oxidative stress [1,73]. The transfer and acquisition of bifunctional catalase-peroxidases
is especially beneficial for organisms exposed to oxidative stress, as these antioxidant
enzymes can exhibit both catalase (EC 1.11.1.6) and peroxidase (EC 1.11.1.7) activity, dis-
mutating a variety of ROS species including hydrogen peroxides and a broad range of
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peroxides (ROOH) [54,74]. The acquisition and maintenance of this gene by Chloroflexi
MAG 17 suggests the exposure of this Chloroflexi within the microbial mat community
to oxidative stress. Notably, neither MAG 17 nor the other Chloroflexi MAG within the
mat possesses any other catalase-peroxidase genes, underscoring the potential significance
of this acquisition. The identification of RBR within pustular mats from Shark Bay and
multiple other hypersaline microbial mats also suggests the potential importance of this
antioxidant in mats [75–79]. The identification of the HGT of this RBR mainly throughout
environments associated with biofilms (Figure 7) further supports this hypothesis. RBR
avoids the production of oxygen by other antioxidant enzymes such as catalase and su-
peroxide dismutase and has thus been implicated in the response of anaerobic bacteria to
peroxide stress [80–82]. The transfer of this gene throughout multiple biofilm environments
where oxygen concentrations likely vary (e.g., anaerobic digester, beach sand, microbial
mat, hydrothermal vent, hot spring, sponge, coral reef) suggests that this enzyme may
confer benefits on organisms that reside in surface-attached communities that are exposed
to changing redox conditions. The presence of this gene in Gammaproteobacteria MAG
20 from Shark Bay may serve to restrict oxygen exposure for this organism, which could
potentially reside in an anoxic or micro-oxic niche. The presence of genes involved in
both aerobic (i.e., cytochrome c oxidase) and anaerobic (i.e., adh) metabolism in this MAG
support this inference. The transfer of clpB points to additional adaptations of pustular
mats to oxidative and other stresses. Phylogeny of clpB indicates an extensive history of
HGT of this gene in multiple marine and biofilm-associated environments, likely because
of its essential nature (Figure 8).

4.3. Adaptations to Arsenic Toxicity

Some of the earliest microbial communities are hypothesized to have cycled arsenic [83,84].
Based on the phylogeny of the arsenate-detoxifying arsC (Figure 9), the acquisition of
arsC by Myxococcota MAG 59 from Shark Bay identifies the only reported transfer of
this gene to a member of the Myxococcota phylum. Additionally, the history of arsenite
efflux permease, acr3, appears to be rooted in Gammaproteobacteria, but the gene was
later transferred to Myxococcota, Betaproteobacteria, Actinomycetota, Planctomycetota
and finally to Gammaproteobacteria MAG 44 (Figure 10). This MAG has only one acr3
gene (the object of HGT) and arsC, so the acquisition of this gene may have conferred the
ability of this Gammaproteobacteria MAG to reduce arsenate and extrude the resulting
arsenite, increasing its tolerance to arsenic.

4.4. Ecological Context of HGT Events

By identifying the ecological context for HGT events involving MAGs sequenced
from the pustular mat, we can gain insight on the location and relative timing of these
transfers. With the exception of the HGT of opuE, between two members of the pustular mat
community, all other HGT events occurred outside of the Shark Bay community and did not
have outgroups that shared an environmental origin. However, many of these phylogenies
did consist of protein sequences from environments that harbor biofilms (e.g., [5,85–91]).
This may suggest that the transfer of these particular stress-response genes is particularly
beneficial within biofilm communities. Because a majority of these transfer events did not
occur within the pustular mat from Shark Bay, it is likely that these HGTs occurred prior to
the formation of this mat, but in some surface-attached community.

4.5. Relative Timing of Gene Transfers and Identification of Relationships among Microbes in
Complex Communities

The broad distribution of branch lengths involving HGT events (Figure 11) suggest
that some transfers occurred more recently, leading to shorter branches and others either
occurred deeper in time or there is poor sampling depth as a result of a lack of sequence
availability, so the branches in phylogenetic trees leading to them are longer. While the
older bounds on these HGTs cannot be constrained, shorter branch lengths can provide
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more precise timing of these events. The potential transfer of the RBR gene between
Gammaproteobacteria MAG 20 and an Alphaproteobacterium (NBC32262.1) involved
the shortest averaged branch lengths which suggests that this transfer likely constituted
the most recent HGT event among the stress-related genes observed. The transfer of the
trehalose transporter between Gammaproteobacteria MAG 65 and an Alphaproteobac-
terium (MBC6405981.1) constituted the second most recent HGT transfer; however, the
disparities in localities underscore that this event likely occurred prior to the establishment
of Gammaproteobacteria MAG 65 in the microbial mat (Figure 5B). In fact, the majority
of phylogenies depicting potential HGT events at the class level indicate that these events
likely occurred before the organisms from Shark Bay were established within these pustular
mats. This suggests that several of the organisms within the microbial mat were preadapted
to the stressors they face in Shark Bay, although further analyses at the species level, for
instance, can offer additional insights.

The identification of HGT events among organisms can also offer additional insights
into microbial interactions which can be otherwise difficult to decipher within complex
communities. These gene transfer events can serve as a snapshot of a past interactions
among microbes. The specific identification of the transfer of opuE between the Plancto-
mycetota and Myxococcota MAGs in Shark Bay reveals the potential interaction of these
two organisms within this pustular mat. All other HGT events recorded between organisms
inside and outside of the pustular mat community may also point to previous interactions
of these taxonomic classes in localities that are currently difficult to constrain. We would
have a higher degree of certainty about the locations of these transfers and participating
organisms in these HGT events only if every existing and pre-existing organism were
sequenced, and sequenced perfectly at that. Despite limitations in available sequence
data, these HGT detection and phylogenetic analyses methods provide valuable tools
for uncovering microbial interactions across diverse environments. They are particularly
potent when applied within biofilm communities, where organisms are sessile and HGT
is abundant.

4.6. Augmenting ‘Stand-Alone’ HGT Detection Methods

Overall, MetaCHIP and similar HGT-detection programs are important tools for
detecting HGTs within uncultivable microbial communities for which only MAGs exist.
These approaches can recognize genes that were likely horizontally transferred between
members of different phyla, classes, orders, etc. This study indicates high rates of false
positives which are likely not specific to stress-related genes. For this reason, hypotheses
developed using MetaCHIP and similar HGT-detection programs should be augmented by
phylogenomic relationships that use as many publicly available sequences as possible to
‘fill’ the tree space. Supplementing these HGT prediction tools with additional phylogenetic
analyses will provide a more accurate, fine-scale resolution of these potential HGTs and
can even provide insight into the relative timing and location of these transfers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14122168/s1, Figure S1: Relative HGT events predicted
between relative number of MAGs belonging to each phyla; Figure S2: Categorized genes involved
in HGT events as predicted by MetaCHIP; Table S1: Predicted HGT genes related to stress response;
Table S2: Average branch lengths of horizontally transferred genes.
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