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Abstract: The survival motor neuron 2 (SMN2) gene is a recognized modifier gene of spinal muscular
atrophy (SMA). However, our knowledge about the role of SMN2—other than its modification of
SMA phenotypes—is very limited. Discussions regarding the relationship between homozygous
SMN2 deletion and motor neuron diseases, including amyotrophic lateral sclerosis, have been mainly
based on retrospective epidemiological studies of the diseases, and the precise relationship remains
inconclusive. In the present study, we first estimated that the frequency of homozygous SMN2
deletion was ~1 in 20 in Japan. We then established a real-time polymerase chain reaction (PCR)-
based screening method using residual dried blood spots to identify infants with homozygous SMN2
deletion. This method can be applied to a future prospective cohort study to clarify the relationship
between homozygous SMN2 deletion and motor neuron diseases. In our real-time PCR experiment,
both PCR (low annealing temperatures) and blood (high hematocrit values and low white blood cell
counts) conditions were associated with incorrect results (i.e., false negatives and positives). Together,
our findings not only help to elucidate the role of SMN2, but also aid in our understanding of the
pitfalls of current SMA newborn screening programs for detecting homozygous SMN1 deletions.

Keywords: spinal muscular atrophy; SMN1; SMN2; motor neuron diseases; real-time PCR; dried
blood spot

1. Introduction

The survival motor neuron 2 (SMN2) gene is a modifier gene of spinal muscular
atrophy (SMA); a lower SMN2 copy number is associated with increased disease severity [1].
SMA is one of the more common lower motor neuron diseases with autosomal recessive
inheritance. It is characterized by the degeneration of the anterior horn cells of the spinal
cord, leading to proximal muscle atrophy and weakness [1].

In 1995, SMN1, located on human chromosome 5q13, was identified as the causative
gene for SMA [2]. Chromosome 5q13 has a large duplication region, and two homologous
genes (i.e., paralogs) are aligned on the telomeric and centromeric sides. SMN1 is on the
telomeric side, and SMN2 is on the centromeric side. Lefebvre et al. reported the absence
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of SMN1 (i.e., homozygous SMN1 deletions) in more than 95% of SMA patients; intragenic
mutations in SMN1 (i.e., small mutations in SMN1) were identified in the remaining
patients [2]. However, an absence of SMN2 was found in 5% of control individuals but in
none of the patients with SMA [2]. No patients with a complete absence of both SMN1 and
SMN2 have yet been reported [1].

SMN1 and SMN2 are almost identical, with the exception of several single
nucleotides [2–4]. The cytosine nucleotide (C) at the 6th position of exon 7 of SMN1
causes exon 7 inclusion in all SMN1 mRNA species (i.e., full-length SMN1 mRNA). By
contrast, the thymine nucleotide (T) at the 6th position of exon 7 of SMN2 causes exon
skipping in a large portion of SMN2 mRNA (i.e.,47 SMN2 mRNA) [5,6]. Notably, a small
portion of full-length SMN2 mRNA, including exon 7, may play a role in improving SMA
symptoms [1], although it has been reported that the protein product of47 SMN2 mRNA
(i.e.,47 SMN2 protein) may increase the amount of functional SMN complex that is present
in the motor neurons of SMA model animals [7]. In any case, SMN2 works to compensate
for the loss of SMN1, at least to some extent.

Other than as a modifier of SMA, the role of SMN2 remains unclear. There are
some reports of a relationship between homozygous SMN2 deletion and SMA with distal
muscle involvement. For example, in 2001, Srivastava et al. reported a patient with
homozygous SMN2 deletion and distal muscle involvement, suggesting that SMN2 might
confer additional disease susceptibility in a select subset of SMA patients [8]. However,
this report was criticized because it appeared to ignore the relatively high frequency
of homozygous SMN2 deletions in the general population [9]. Nonetheless, in 2012,
Liping et al. reported a similar case with homozygous SMN2 deletion and distal muscle
involvement [10].

The relationship between homozygous SMN2 deletion and amyotrophic lateral scle-
rosis (ALS) has also been controversial. In 1998, Moulard et al. identified homozygous
deletions of SMN2 in 36% of individuals with sporadic adult-onset lower motor neuron
disease, but in only 6.2% of individuals with sporadic ALS and in 1.5% of individuals with
familial ALS [11]. However, the lower motor neuron disease patients in their study were
later recognized as having the lower motor neuron form of ALS [12]. Subsequently, the
relationship between SMN2 and ALS has often been discussed [13–17]; some researchers
have concluded that homozygous SMN2 deletion may be a risk factor for ALS [14,16],
while others have stated that it may be a protective factor for the disease [15]. To further
complicate matters, a third group of researchers has insisted that homozygous SMN2
deletion is not related to survival or respiratory decline in ALS patients [17].

The quarter-century discussion about the relationship between homozygous SMN2
deletion and motor neuron diseases has been mainly based on retrospective epidemiologi-
cal studies of the diseases, and the data remain inconclusive. Notably, there have been no
reports of prospective cohort studies of people with homozygous SMN2 deletion to date.
Prospective cohort studies may allow for a more definite conclusion regarding the rela-
tionship between homozygous SMN2 deletion and motor neuron diseases. Unfortunately,
cohort studies require large amounts of funding and effort, and are unlikely to be readily
available. However, we believe that establishing a methodology of real-time polymerase
chain reaction (PCR) with residual dried blood spot (DBS) samples would be worthwhile
for its use in future cohort studies.

The establishment of such a methodology would also be of great benefit to the current
newborn screening for SMA (SMA-NBS), which detects homozygous SMN1 deletion and
is now being implemented around the world. The incidence of SMA is approximately 1
in 10,000 to 20,000 live births [18] and, as mentioned earlier, homozygous SMN1 deletions
have been identified in more than 95% of SMA patients. Currently, the main methodology
of SMA-NBS involves the detection of homozygous SMN1 deletion with real-time PCR
using DBSs. We are able to assume that the factors that affect the results of real-time PCR
using DBSs are common to systems used to screen the homozygous deletion of SMN1
or SMN2.
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In the present study, we first estimated the frequency of homozygous SMN2 deletion
in Japan using PCR restriction fragment length polymorphism (PCR-RFLP) with DBSs. We
then established a real-time PCR-based screening method using residual DBSs to detect
infants with homozygous SMN2 deletion. In the future, this method can be applied to a
future prospective cohort study to clarify the relationship between homozygous SMN2
deletion and motor neuron diseases. We also studied the perturbation factors that may
cause incorrect results in the screening system for homozygous SMN2 deletion; these
findings will be helpful for understanding the potential pitfalls of the current SMA-NBS
programs used to detect homozygous SMN1 deletion.

2. Materials and Methods
2.1. Residual DBS Samples and Ethics Committee Approvals

In the current study, 300 residual DBS samples from SMN1-retained infants were
analyzed. They were randomly selected from residual samples that had been collected
from 4157 newborn infants in Japan between January 2018 and April 2019 for our previous
pilot study [19]. All 4157 newborn infants were confirmed to carry at least one copy of
SMN1. Although the samples had been anonymized, this study was made public through
an opt-out procedure. The study was approved by the Ethics Committee of Kobe University
Graduate School of Medicine (reference B230027, approved on 14 June 2023) and the Ethics
Committee of Kobe Gakuin University (regarding this study with residual DBS samples
conducted in Kobe Gakuin University: reference 23-02, approved on 16 October 2023). Both
the previous pilot investigation and the present study were conducted in accordance with
the World Medical Association Declaration of Helsinki.

2.2. PCR-RFLP

PCR-RFLP was performed according to the method reported by van der Steege
et al. [20]. Briefly, a punched circle (1.2 mm in diameter) from the DBS card was placed
directly into a PCR mixture containing 1 unit of DNA polymerase KOD FX Neo™ (Toyobo,
Osaka, Japan) to a final volume of 50 µL (Table S1). Primer sequences are shown in Table 1.

Table 1. Nucleotide sequences of the primers used in this study.

Primer Name Sequences (5′→3′) Ref.

PCR-RFLP
R111 AGA CTA TCA ACT TAA TTT CTG ATCA [2]

X7-Dra CCT TCC TTC TTT TTG ATT TTG TtT [20]
Real-time

PCR
cenSMNex7forw TTT ATT TTC CTT ACA GGG TTT TA

[21]cenSMNint7rev GTG AAA GTA TGT TTC TTC CAC gCA
Lowercase letters indicate mismatched nucleotides introduced to the primer sequences. PCR, polymerase chain
reaction; RFLP, restriction fragment length polymorphism.

To amplify exon 7 of SMN1/SMN2 in the DBS samples, conventional PCR experiments
were performed using a Mastercycler® Nexus (Eppendorf SE, Tokyo, Japan). The PCR
conditions were as follows: (1) an initial denaturation at 94 ◦C for 7 min, (2) 30 cycles of
denaturation at 94 ◦C for 1 min, annealing at 56 ◦C for 1 min, and extension at 72 ◦C for
1 min, and (3) a final extension at 72 ◦C for 7 min (Table S1).

Thereafter, restriction enzyme treatment was performed on the amplified products
using the restriction enzyme Dra I (Takara Bio Inc., Shiga, Japan) at 37 ◦C for 12 h (Table S1).
An aliquot of the digested product was then electrophoresed on a 4% agarose gel in
1× Tris/borate/ethylenediaminetetraacetic acid buffer and visualized using Midori Green
Direct Stain (Nippon Genetics, Tokyo, Japan). Figure 1 shows a diagram illustrating the
primer positions and pre- and post-digestion products.
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Figure 1. Primer positions and pre- and post-digestion products in PCR-RFLP analysis. Dra I
treatment creates two products of 187 bp and 24 bp from SMN2 fragment, but it does not lead to any
change in SMN1 fragment.

2.3. Real-Time PCR

A punched circle (1.2 mm in diameter) from the DBS card was placed directly into the
PCR mixture containing 1 unit of DNA polymerase KOD FX Neo, intercalating fluorescent
dye EvaGreen® (Biotium, Hayward, CA, USA), and ROX Reference Dye (Thermo Fisher
Scientific Inc., Waltham, MA, USA) to a final volume of 25 µL (Table S2). The ROX was
used to correct the well-to-well variation caused by pipetting inaccuracies and fluorescence
fluctuations. The primer sequences are shown in Table 1.

To amplify exon 7 of SMN2 in the DBS samples, real-time PCR experiments were
performed using the StepOne™ Real-Time PCR System (Thermo Fisher Scientific Inc.). The
PCR conditions for the 300 samples were as follows: (1) an initial denaturation at 94 ◦C
for 7 min, (2) 45 cycles of denaturation at 94 ◦C for 1 min, annealing at 56 ◦C, 58 ◦C, 60 ◦C,
or 62 ◦C for 1 min, and extension at 72 ◦C for 1 min, and (3) a final extension at 72 ◦C for
7 min (Table S2). Figure 2 shows a diagram illustrating the primer positions used in the
real-time analysis in this study.
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2.4. Analysis of Perturbation Factors in the DBS Samples

For the purpose of analyzing perturbation factors in the DBS samples, we collected fresh
ethylenediaminetetraacetic acid-anticoagulated blood from a healthy volunteer (Table S3).
We confirmed that SMN2 was retained in the blood prior to use.

To investigate the effects of red blood cells on real-time PCR amplification, three types
of blood with different hematocrit values (40%, 60%, and 80%) were prepared by mixing
concentrated red blood cells and plasma. The white blood cell (WBC) counts of these
artificial bloods were roughly similar (Table S4).

To explore the effects of WBCs on real-time PCR amplification, three types of blood
with different WBC counts were prepared by adding concentrated WBCs to the artificial
blood with 50% hematocrit; the WBC counts of the artificial bloods were 300, 700 and
4100/µL (Table S4).

The complete blood counts of all artificial blood prepared in this study were performed
using a Sysmex KX-21 (Sysmex Corporation, Hyogo, Japan). The precise data of the artificial
bloods are shown in Table S4. Then, we prepared DBS samples on the FTA® Elute Cards
using these artificial bloods.

The PCR conditions for the DBS samples with artificial blood were as follows: (1) an
initial denaturation at 94 ◦C for 7 min, (2) 55 cycles of denaturation at 94 ◦C for 1 min,
annealing at 62 ◦C for 1 min, and extension at 72 ◦C for 1 min, and (3) a final extension at
72 ◦C for 7 min (Table S2). We repeated the whole procedure with the same DBS sample
five times.

2.5. Statistical Analyses

After creating contingency tables, the sensitivity and specificity values of homozygous
SMN2 deletion under different PCR conditions (different annealing temperatures) were
determined using a Microsoft Excel add-in software, BellCurve for Excel (Social Survey
Research Information Co., Ltd. Tokyo, Japan). The sensitivity, specificity, and their 95%
confidence intervals (95% CIs) were calculated using the same software. Welch’s t-test
was performed using Microsoft Excel to compare the Ct values between two samples with
different hematocrit values and between samples with different WBC counts. A p-value of
<0.05 was considered significant in all statistical analyses.

3. Results
3.1. Detection of SMN2 Deletion by PCR-RFLP

To confirm the presence or absence of SMN2 in the 300 DBS samples, each DNA
pre-amplification product was digested by incubating the samples overnight with Dra I.
The pre-amplified products derived from SMN2 had a Dra I restriction enzyme site (TTT
AAA) and were digested by Dra I, whereas the pre-amplified products derived from SMN1
did not have a Dra I site and were not digested.
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As shown in Figure 1, the PCR fragment size of SMN2 before Dra I digestion is 187 bp.
Digestion with Dra I produced two fragments, 163 bp and 24 bp in size. Because the small
24 bp fragment is difficult to see clearly on agarose gels, previous studies, including van
der Steege et al. [20] and Srivastava et al. [8], have used only the large 163 bp fragment as
clear evidence for the presence of SMN2. Thus, we show only the large 163 bp fragment in
the gel electrophoresis picture.

Figure 3 shows the results of four representative DBS samples. In the post-digestion
products of Samples 119 and 124, the presence of both SMN1 (an upper band, 187 bp) and
SMN2 (a lower band, 163 bp) can be observed, whereas in the post-digestion products
of Samples 108 and 111, the presence of SMN1 (an upper band, 187 bp) and the absence
of SMN2 (no band) can be observed. We therefore determined that Samples 119 and 124
were true-negative for homozygous SMN2 deletions, and that Samples 108 and 111 were
true-positive for homozygous SMN2 deletions.
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Figure 3. Detection of SMN2 deletion using PCR-RFLP.

In the PCR-RFLP assay, homozygous SMN2 deletion was detected in 16 of the 300 sam-
ples. Based on these results, we determined that 16 samples were true-positive homozygous
SMN2 deletions.

The left and right bands of the fragment pairs show the pre- and post-digestion
products, respectively. The post-digestion products indicate that Samples 119 and 124
were true-negative for homozygous SMN2 deletions, whereas Samples 108 and 111 were
true-positive for homozygous SMN2 deletions.

3.2. Detection of SMN2 Deletion by Real-Time PCR
3.2.1. Amplification Curves of DBS Samples with and without Homozygous
SMN2 Deletion

We compared the results of real-time PCR using annealing temperatures of 56 ◦C,
58 ◦C, 60 ◦C, and 62 ◦C. In the present study, we determined the true-positive or true-
negative status based on the results of the PCR-RFLP analysis. As shown in Figure 4, when
real-time PCR was performed at annealing temperatures of 56 ◦C–60 ◦C, the amplification
curves of DBS samples with and without homozygous SMN2 deletion were unable to
be distinguished. However, at 62 ◦C, the amplification curves of DBS samples with and
without homozygous SMN2 deletion were able to be clearly separated.

Samples 119 and 124 did not have homozygous SMN2 deletions, whereas Samples
108 and 111 had homozygous SMN2 deletions. When real-time PCR was performed at
annealing temperatures of 56 ◦C–60 ◦C, the amplification curves of DBS samples with and
without homozygous SMN2 deletion were unable to be distinguished (A, B, C). However,
at 62 ◦C, the amplification curves of DBS samples with and without homozygous SMN2
deletion were able to be clearly distinguished (D). DBS, dried blood spot.
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3.2.2. False Positives and False Negatives at Different Annealing Temperatures

In the real-time PCR analysis at specific annealing temperatures, DBS samples that had
amplification curves with a cycle threshold (Ct) value > the mean plus 2 or more standard
deviations were defined as SMN2-lacking samples. Table 2 contains four contingency tables
showing the results of PCR-RFLP and real-time PCR. At an annealing temperature of 64 ◦C,
the amplification efficiency was extremely reduced in many DBS samples.

When real-time PCR was performed at an annealing temperature of 62 ◦C, the mean
and SD of the Ct values of the DBS samples retaining SMN2 (based on the data of PCR-RFLP,
n = 284) were 33.02 and 2.43, respectively. On the other hand, the mean and SD of the Ct
values of the DBS samples lacking SMN2 (n = 16) were 40.26 and 1.83, respectively. Thus,
we used 37.88 as the cutoff Ct value of mean plus 2SD. Here, the sensitivity was 93.8% (95%
CI: 67.3%, 99.99%) and the specificity was 98.9% (95% CI: 96.84%, 99.77%). We judged 62 ◦C
to be the best annealing temperature in the present study.

We also performed a sequencing analysis of a false negative sample. The sequencing re-
sults of the false-negative sample are shown in the supplementary materials (Figures S1 and S2).
This sample suggested that SMN2-specific primers can amplify SMN1 sequences via the
mis-annealing of the primers to the SMN1 sequence under some conditions, including a
low annealing temperature.

3.3. Perturbation Factors in DBS Samples

To investigate perturbation factors, we performed real-time PCR using the artificial
blood with different hematocrit values or WBC counts (Figure 5). To examine the effects of
the hemoglobin concentration on PCR amplification, we prepared three DBS samples using
artificial bloods with different hematocrit values (40%, 60%, and 80%). As the hematocrit
value increased, the Ct value also increased. Similarly, to investigate the effect of WBC
counts, we prepared three DNA samples with different WBC counts (300, 700, and 4100/µL).
As the WBC count decreased, the Ct value increased.
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Table 2. Sensitivity and specificity of real-time PCR at different annealing temperatures.

(A) Annealing temperature of
56 ◦C

PCR-RFLP Total
Homozygous

SMN2 deletion (+)
Homozygous

SMN2 deletion (–)

Real-time
PCR

Homozygous
SMN2 deletion (+) 4 5 9

Homozygous
SMN2 deletion (–) 12 279 291

Total 16 284 300
Sensitivity: 25.00% [95% CI: 7.27%, 52.38%]
Specificity: 98.20% [95% CI: 95.87%, 99.41%]

(B) Annealing temperature of
58 ◦C

PCR-RFLP Total
Homozygous

SMN2 deletion (+)
Homozygous

SMN2 deletion (–)

Real-time
PCR

Homozygous
SMN2 deletion (+) 2 5 7

Homozygous
SMN2 deletion (–) 14 279 293

Total 16 284 300
Sensitivity: 12.50% [95% CI: 1.55%, 38.35%]
Specificity: 98.20% [95% CI: 95.87%, 99.41%]

(C) Annealing temperature of
60 ◦C

PCR-RFLP Total
Homozygous

SMN2 deletion (+)
Homozygous

SMN2 deletion (–)

Real-time
PCR

Homozygous
SMN2 deletion (+) 7 7 14

Homozygous
SMN2 deletion (–) 9 277 286

Total 16 284 300
Sensitivity: 43.75% [95% CI: 19.75%, 70.12%]
Specificity: 97.54% [95% CI: 94.92%, 99.05%]

(D) Annealing temperature of
62 ◦C

PCR-RFLP Total
Homozygous

SMN2 deletion (+)
Homozygous

SMN2 deletion (–)

Real-time
PCR

Homozygous
SMN2 deletion (+) 15 3 18

Homozygous
SMN2 deletion (–) 1 281 282

Total 16 284 300
Sensitivity: 93.80% [95% CI: 67.30%, 99.99%]
Specificity: 98.90% [95% CI: 96.84%, 99.77%]

CI, confidence interval.
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the effects of different WBC counts on the amplification curves and Ct values. Lower WBC counts 

Figure 5. Effects of perturbation factors on amplification curves and Ct values. The upper panel
summarizes the effects of different hematocrit values on amplification curves and Ct values. Higher
hematocrit values appeared to inhibit the amplification of the target fragment, although they may
also have quenched the fluorescence (see the Discussion for details). The lower panel summarizes
the effects of different WBC counts on the amplification curves and Ct values. Lower WBC counts
appeared to lower the amplification of the target fragment. “Normal count level”, “Low count
level” and “Very low count level” refer to WBC counts of 4100, 700 and 300/µL, respectively. PCR
experiments using the DBS samples with artificial blood were repeated five times. SD, standard
deviation; WBC, white blood cell; * p < 0.01.

4. Discussion
4.1. Use of Residual DBS Specimens after Testing

In the present study, we used residual DBS samples from an earlier pilot study of
newborn screening for SMN1-deleted SMA. Our findings indicate that molecular genetic
testing using residual DBS samples is possible; this technique will be used in a future
prospective cohort study to clarify the relationship between homozygous SMN2 deletion
and motor neuron diseases.

A prospective cohort study starting from the neonatal period is likely to be very
expensive and difficult to perform. In addition, many complex issues of privacy, security,
and technological coordination will need to be resolved. However, the testing of residual
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DBS—if combined with information in public health registries—may be able to provide an
integrated picture of the health of entire populations, starting from birth [22].

4.2. Establishment of the Real-Time PCR Screening Method
4.2.1. Comparison between Intercalating Dye and Fluorescent Probe Methods

There are two main methodologies employed for analysis using real-time PCR: in-
tercalating dye and fluorescent probe methods. In the intercalating dye method, it is
comparatively easy to find proper PCR conditions because the only factor to consider is the
sequences of primers that anneal to the gene of interest. In addition, the intercalating dye is
not expensive. The weakness of the intercalating dye method is that it cannot test multiple
genes at the same time.

On the contrary, in the fluorescent probe method, multiple genes are tested at the same
time. However, it is difficult to find the proper conditions under which many primers and
fluorescent probes work well in one tube. In addition, fluorescent probes are expensive.
The more probes there are, the more it costs.

In this study, we adopted the intercalating dye method with EvaGreen®, because the
target gene was only SMN2. However, determining the proper annealing temperature
required trial and error, as shown in the Results section.

4.2.2. PCR-RFLP Analysis Demonstrating a High Frequency of Homozygous
SMN2 Deletion

We performed PCR-RFLP analysis to detect DBS samples with homozygous SMN2
deletion; this method of separating SMN1 and SMN2 was developed by van der Steege
et al. [20].

Compared with real-time PCR, which is commonly used for genetic newborn screen-
ing, PCR-RFLP is laborious; the procedure involves the enzymatic digestion of PCR prod-
ucts, the preparation of agarose gels, and electrophoresis. However, this method is very
robust and produces stable results because a sufficient quantity of PCR product can be
obtained regardless of the quality and quantity of DNA from the original DBS samples,
and the product can be completely digested with sufficient time. In addition, the amplified
products can be checked according to the band size. This method can therefore be used to
confirm the results obtained using real-time PCR [19]. In the current study, we determined
true-positive and -negative results based on the PCR-RFLP analysis.

Our PCR-RFLP analysis revealed a frequency of homozygous SMN2 deletion of ~1 in
20 in Japan (~5%, 16 of 300 samples). Compared with the reported frequency of homozy-
gous SMN1 deletion in Japan (1 in 20,000–25,000 [23]), the frequency of homozygous SMN2
deletion appears much higher. Our findings are similar to those of the first report of SMN2
by Lefebvre et al., in which ~5% of normal, asymptomatic individuals were reported to
lack both copies of SMN2 [2].

4.2.3. False-Negative Results Caused by Lower Annealing Temperatures

Real-time PCR is preferable to PCR-RFLP when handling a large number of samples.
However, RT-PCR draws an amplification curve without considering the effects of nonspe-
cific amplification products. Specific amplification is therefore very important for obtaining
accurate results. In the present study, to identify the optimal PCR conditions for detecting
samples with homozygous SMN2 deletion, we first tested different annealing temperatures
(56 ◦C, 58 ◦C, 60 ◦C, and 62 ◦C).

When an annealing temperature of 56–60 ◦C was used, we failed to detect many
samples with homozygous SMN2 deletion (Table 2). These samples were thus recognized
as false-negative samples. We also identified a false-positive case that appeared to have no
SMN2 fragments. However, when an annealing temperature of 62 ◦C was used, we were
able to detect 15 of the 16 samples with homozygous SMN2 deletion, which means that
the detection sensitivity of homozygous SMN2 deletion was much improved under this
condition (Table 2). Nonetheless, even with an annealing temperature of 62 ◦C, we failed
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to detect one sample with homozygous SMN2 deletion; this sample was recognized as a
false-negative sample. In addition, with an annealing temperature of 62 ◦C, we identified
three false-positive cases that apparently carried homozygous SMN2 deletions (Table 2).

Together, these findings suggest that even if allele-specific primers are used in the
analysis, a low annealing temperature negates the allele specificity of the primers, thus
producing false-negative results. To maintain the stringency of allele-specific primers, a
relatively high annealing temperature is therefore necessary. However, it is important
to note that higher annealing temperatures may increase the number of false-positive
results, likely because they suppress the amplification of SMN2 fragments in DBS samples.
Furthermore, a relatively high annealing temperature was unable to completely prevent
the occurrence of false-negative findings in our study. Further investigation is therefore
necessary to identify the causes of incorrect results in DBS samples.

4.2.4. False-Positive Results Caused by Improper DBS Preparation

We next investigated the possible perturbation factors of DBS samples that may lead
to incorrect results. The inhibitory effects of heparin on PCR amplification efficiency have
been reported elsewhere [23]. In the present study, we assumed that hemoglobin and the
DNA concentration may be perturbation factors; hematocrit values and WBCs count were
used as their respective markers.

In the current study, we performed PCR analysis without DNA extraction and pu-
rification (i.e., direct PCR analysis). Although blood compounds, including hemoglobin,
are known to inhibit PCR [24], recent studies using PCR enhancer cocktails and inhibition-
resistant polymerases have enabled direct PCR [25], which is often used to save time and
reduce costs in routine analysis [24].

According to the manufacturer’s information, the DNA polymerase used in our study
(KOD FX Neo) gives successful results during PCR amplification with blood samples. How-
ever, our data clearly showed that DBSs with higher hematocrit values resulted in higher Ct
values than those with lower hematocrit values. This may be because hemoglobin caused
the quenching of fluorescence from the double-stranded DNA-binding dye (i.e., intercalat-
ing dye) EvaGreen® [26]. This finding suggests that DBS samples with higher hemoglobin
concentrations may lead to a failure to detect copies of SMN2 (i.e., false-positive results).

Our data also revealed that DBSs with lower WBC counts resulted in higher Ct
values than those with higher WBC counts. This may be because smaller amounts of
DNA were contained in DBSs with lower WBC counts. This finding suggests that DBS
samples with lower WBC counts may also lead to a failure to detect copies of SMN2 (i.e.,
false-positive results).

Improper DBS sample preparation that leads to a high hemoglobin concentration or
low WBC count should be avoided, in any case. However, we have often encountered DBS
samples that are not appropriate for testing. When blood is caked, clotted, or layered onto
the filter paper, it suggests that the DBS sample has a high hemoglobin concentration. When
blood is of insufficient quantity for testing, it suggests the DBS sample has a low WBC count.
It should therefore be noted that all of these conditions may cause false-positive results.

4.3. Prediction of Possible SMA-NBS Pitfalls

For the early diagnosis of SMA, an SMA-NBS program, which analyzes DBS samples
using real-time PCR, has been implemented worldwide [27]. The current SMA-NBS is used
to detect the homozygous deletion of SMN1, which is found in 95% of SMA patients [2].

A careful review of previous studies on SMA screening using DBSs revealed that a
frequently used technique to detect SMN1 deletion involves real-time PCR technology
with a fluorescent hybridizing probe; the fluorescent probe binds to an SMN1-specific
sequence [28,29] or to a common sequence between SMN1 and SMN2 [30]. In contrast, our
laboratory has reported several SMA screening systems that use real-time PCR technology
with no fluorescent hybridizing probe; we instead use intercalating dye [19,31].
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We speculate that the technical issues of real-time PCR have not been fully investigated
in each testing center, as mentioned in the Introduction section. Retesting is usually not
performed if SMN1 is determined to be present, meaning that false-negative cases may
be missed. In our previous pilot study of SMA-NBS, we conducted a follow-up survey to
check for missing false-negative cases, although no positive cases were found [19].

The lessons learned from the present study can be applied to SMA-NBS. Our data
revealed that, depending on the PCR conditions, false-negative and -positive results may
occur. Furthermore, depending on the conditions of the DBS samples, false-positive
results may occur. Given that each SMA-NBS testing center has different equipment,
it is necessary to explore the optimal PCR conditions for each center. In addition, the
preparation of DBS specimens is critical; the training of hospital staff who handle newborns
is therefore essential.

4.4. Limitations

Our genetic testing with a real-time PCR method using DBSs is just a screening of
the disease. Genetic testing using DBSs sometimes may produce inconclusive results.
Therefore, in the real clinical spots, it is necessary for us to refer the individuals who had
inconclusive DBS samples to expert doctors for the exact diagnosis.

5. Conclusions

We determined that the frequency of homozygous SMN2 deletion was ~1 in 20 in
Japan. We also established a real-time PCR-based screening method using residual DBSs
to detect homozygous SMN2 deletion in infants; this method may be applied to a future
prospective cohort study to clarify the relationship between homozygous SMN2 deletion
and motor neuron diseases. In our real-time PCR experiments, both PCR (low annealing
temperatures) and blood (high hematocrit values and low WBC counts) conditions were
associated with incorrect results (false negatives and positives). Together, these findings
not only help to elucidate the role of SMN2, but also aid in our understanding of the pitfalls
of current SMA-NBS programs that detect homozygous SMN1 deletions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14122159/s1, Table S1: Experimental conditions for PCR-
RFLP; Table S2: Experimental conditions for real-time PCR. Table S3: Characteristics of blood from
the healthy control; Table S4: Characteristics of artificial blood samples. Figure S1: Sequencing
analysis of amplified PCR products from DBS with SMN2 deletion. PCR product from DBS with
SMN2 deletion showed the presence of an SMN1-specific nucleotide; Figure S2: An SMN1-specific
nucleotide identified in false-negative PCR products. SMN2-specific primers can amplify SMN1
sequences by mis-annealing of the primers to SMN1 sequence under some conditions including low
annealing temperature.
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