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Abstract: A genomic study was conducted to identify the effects of urbanization and environmental
contaminants with heavy metals on selection footprints in dairy cattle populations reared in the
megacity of Bengaluru, South India. Dairy cattle reared along the rural–urban interface of Bengaluru
with/without access to roughage from public lakeshores were selected. The genotyped animals were
subjected to the cross-population–extended haplotype homozygosity (XP-EHH) methodology to infer
selection sweeps caused by urbanization (rural, mixed, and urban) and environmental contamination
with cadmium and lead. We postulated that social-ecological challenges contribute to mechanisms
of natural selection. A number of selection sweeps were identified when comparing the genomes
of cattle located in rural, mixed, or urban regions. The largest effects were identified on BTA21,
displaying pronounced peaks for selection sweeps for all three urbanization levels (urban_vs_rural,
urban_vs_mixed and rural_vs_mixed). Selection sweeps are located in chromosomal segments in
close proximity to the genes lrand rab interactor 3 (RIN3), solute carrier family 24 member 4 (SLC24A4),
tetraspanin 3 (TSPAN3), and proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1).
Functional enrichment analyses of the selection sweeps for all three comparisons revealed a number of
gene ontology (GO) and KEGG terms, which were associated with reproduction, metabolism, and cell
signaling-related functional mechanisms. Likewise, a number of the chromosomal segments under
selection were observed when creating cattle groups according to cadmium and lead contaminations.
Stronger and more intense positive selection sweeps were observed for the cadmium contaminated
group, i.e., signals of selection on BTA 16 and BTA19 in close proximity to genes regulating the
somatotropic axis (growth factor receptor bound protein 2 (GRB2) and cell ion exchange (chloride
voltage-gated channel 6 (CLCN6)). A few novel, so far uncharacterized genes, mostly with effects
on immune physiology, were identified. The lead contaminated group revealed sweeps which were
annotated with genes involved in carcass traits (TNNC2, SLC12A5, and GABRA4), milk yield (HTR1D,
SLCO3A1, TEK, and OPCML), reproduction (GABRA4), hypoxia/stress response (OPRD1 and KDR),
cell adhesion (PCDHGC3), inflammatory response (ADORA2A), and immune defense mechanism
(ALCAM). Thus, the findings from this study provide a deeper insight into the genomic regions under
selection under the effects of urbanization and environmental contamination.

Keywords: adaptation; dairy cattle; environmental contaminants; selection signature; urbanization

1. Introduction

Dairy farming plays a major role in satisfying the global demand for high-quality
animal protein, especially in developing countries [1]. Most dairy development programs
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focus on increasing animal productivity via crossbreeding local cattle with high yielding
exotic breeds [2]. Though this breeding practice contributes to increased milk production,
an unfavorable side effect may be the decline of local cattle breeds that are better adapted
to the local environment [2]. Hence, from a breeding perspective, the question arises
whether such challenging environmental constraints contribute to natural selection, induc-
ing alterations on the cattle genome. Such effects refer to selection signatures. Selection,
natural and artificial, leaves patterns on the genome leading to changes in allele frequencies
among populations [3]. Such patterns are termed as “signatures of selection” or “selection
footprints”, and can be assessed using varied statistical tests [4]. Genome-wide mapping
of selection sweeps in cattle can be broadly categorized into three groups: (a) exploiting
high-frequency of derived alleles by Fay and Wu’s H Test [5]; (b) assessing population
differentiation using diverse methods that consider differences in allele frequency; and
(c) tests for long haplotypes applying either EHH [6], iHS [7], or Rsb [8]. The tests based on
long haplotypes depict the more recent effects of natural or artificial selection [9].

Urbanization is known as a vital driver of agricultural transition, especially in the
Global South, having an impact on the homogeneity of agricultural practices and on inten-
sification or extensification [10]. A few studies evaluated dairy production systems along
the rural–urban gradient and phenotypically assessed the effects of urbanization on pro-
duction, health, and adaptation [10–12]. A crucial factor influencing the dairy production
system and closely linked to urbanization are environmental contaminants. Urbanization,
along with rapid industrial development, implies an accumulation of xenobiotics, espe-
cially heavy metals, in the environment [13]. Environmental contamination has a direct
deleterious impact on human and animal health, but also indirectly affects human health
via animal-based food consumption. Heavy metals like arsenic (As), nickle (Ni), copper
(Cu), chromium (Cr), cadmium (Cd), and lead (Pb) are potentially toxic bio-accumulative
compounds in dairy production systems [14]. The toxic heavy metals released from in-
dustrial waste contaminate the soil, underground water, lakes, and other types of water
bodies [14,15]. However, varying levels of heavy metals have been found in the grass
growing near these water bodies. Based on an investigation led by [16], it was found that
fodder grown near ten major water bodies of urban and peri-urban Bengaluru was con-
taminated with heavy metals. The concentrations of As, Cd, chromium (Cr), and Pb were
reported to be 2.54 ± 1.71 (mean ± standard deviation) mg/kg DM, 0.72 ± 1.79 mg/kg DM,
11.02 ± 15.71 mg/kg DM, and 3.99 ± 5.47 mg/kg DM, respectively. Traces of heavy metals
were also reported in four major water bodies of peri-urban Bengaluru by Varalakshmi
and Ganeshamurthy [17]. Since fodder was grown on the lakeshores and farmers used this
fodder for their animals, the animals could be exposed to heavy metals [16,18,19].

Strong socio-ecological effects such as urbanization and contamination levels might
impact animal welfare and animal behavior, causing a production decline that stimulates
human intervention towards (counteracting) artificial selection and breeding. Hence,
multiple socio-ecological stressors may affect phenotypic and genetic animal traits, not
only in a tropical production system context. So far, several studies aimed at understanding
physiological (and selection) mechanisms in response to climate change [20]. However,
there is a lack of studies evaluating the genetic effects of environmental stressors. Exposure
to such diverse stressors might enhance selection towards improved adaptation, indicated
through footprints of selection. Nevertheless, developing a relevant research design and
identifying a suitable research environment are challenging. To start with, it is imperative
to group the animal population to assess the impact of urbanization by, for example,
considering the survey stratification index (SSI) developed by Hoffmann et al. [21]. For the
assessment of the impact of environmental contamination, it is imperative to determine
the concentration of heavy metals in the animals. Considering the practical constraints
and ethical concerns in the current study, heavy metal concentration was estimated from
hair samples. A multitude of guidelines defines permissible levels for heavy metals in soil,
water, fodder, and animal products [22–26]. However, there are no documented thresholds
to categorize cadmium and lead concentrations in the hair samples of dairy cows.
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The objective of this study was to assess the footprints of selection in dairy cattle
reared in the rising megacity of Bengaluru, India, with regard to the effects of urbanization
and environmental contamination with the heavy metals Cd and Pb. The chromoso-
mal segments for selective sweeps were annotated with potential candidate genes and
physiological pathways representing selection pressures in the context of adaptation and
immune response.

2. Materials and Methods
2.1. Study Location, Sample Collection, and Analysis

The study was conducted in Bengaluru, the capital city of the South Indian state of
Karnataka. This region experiences a tropical savanna climate characterized by distinct
humid and dry seasons. For the initial phase of the study, a total of 68 farms located along
the rural–urban interface of Bengaluru were selected. This interface was represented by
two transect lines, a northern and a southern one, which were defined as common space
for interdisciplinary research [21]. The rural–urban interface was further distinguished
based on the SSI developed by Hoffmann et al. [21] as “urban” (SSI < 0.3), “mixed” (SSI:
0.3–0.5), and “rural” (SSI > 0.5). The dataset comprised of 123, 64, and 53 dairy cows reared
in urban, mixed, and rural farms. The selected cows consisted of Holstein Friesian, Jersey,
and crossbred cattle (an admixed population of crosses between Holstein Friesian and
Jersey with local cattle breeds). The major dietary component of all dairy cows consisted of
green forage. The animals were additionally fed with concentrates and with crop residues.
Hence, the components of the feeding ration were the same in all herds, but the quality
of the green fodder differed, especially due to heavy metal contaminations for the farms
with access to public lakeshores. In addition to the criterion of grouping the animals with
regard to urbanization (SSI), farm selection considered the access to roughage from public
lakeshores for creating cow groups according to the heavy metal contamination of their
feed. Hair samples were collected once from the tail of 240 dairy cows reared in the selected
farms and stored at room temperature, in clean collection bags, until DNA extraction and
heavy metal analyses.

2.2. Heavy Metal Analysis of Hair Samples

Hair samples were collected from the tail of the cow using shears (5 g). Subsequently,
the hair samples were transported to the NIANP Animal Nutrition Division laboratory
for washing. Immediately after collection, hair samples were washed with tap water until
visually clean, and then rinsed with distilled water and then acetone (cleaning agent).
Finally, the samples were again thoroughly rinsed with distilled water to attain a high level
of purity. Following the cleaning process, the samples were dried in an oven (60 ◦C, 3 h),
and subsequently cut into pieces of 1 cm length and stored at room temperature for heavy
metal analysis [27].

For the digestion of hairs, the samples underwent microwave- (Anton Paar, Graz,
Austria) assisted digestion. Approximately 0.2 g of chopped (1 cm) sample material
was placed in a marked polytetrafluoroethylene tube. A volume of 6 mL conc. HNO3
(Supra 69%, Roth, Germany) was added, and the vessel was placed in the microwave
digester. Then, the digester was pre-heated (100 ◦C for 10 min, holding time 5 min), heated
(180 ◦C for 10 min, holding time 5 min), digested (190 ◦C for 5 min, holding time 15 min),
and cooled (55 ◦C for 23 min). After acid digestion, 0.5 mL of HCl (Supra 30%, Roth,
Germany) was added to each vessel, along with demineralized water to complete a volume
of 25 mL. Subsequently, the digested solid components of the hair samples were recovered
by filtration (Whatman paper No. 40) and stored in a polyethylene bottle for heavy metal
analysis [28]. A reagent blank sample was also prepared for each batch.

The concentrations of Cd and Pb were determined for hair via inductively coupled
plasma–optical emission spectroscopy (ICP-OES) using a Spectrogreen ICP-OES analyzer
(Spectro Analytical Instruments GmbH, Kleve, Germany). Argon was used as the plasma
gas. Calibration standards were prepared via serial dilution using a dilute HNO3 and HCl-
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matrix-based aqueous solution of 100 mg/L (ppm) (Supelco, Centipur® ICP multi-element
standard solution IV, Cat. No. 1.11355.0100, Merck, Germany). Afterwards, from this solu-
tion, different concentrations of Cd and Pb (0.005, 0.01, 0.05, 0.1, and 1.0 mg/L) were pre-
pared for the calibration to carry out the hair sample analysis. The analyzed elements were
quantified using calibration curves plotted from analytical standards. The limits of detec-
tion of the ICP-OES analyzer used in the laboratory were as follows: Cd = 0.000130 mg/L,
and Pb = 0.003022 mg/L. Technical replicates were carried out three times for all sam-
ples. The analytical method was tested by analyzing the blank samples, and no major
interferences were found in the quantitative element analysis.

2.3. Genotyping and Quality Control

The DNA was extracted from the hair samples of the 240 dairy cows using the Nucleo-
Spin Tissue Kit (Macherey-Nagel GmbH & Co. KG, Düren, Germany) following the
manufacturer’s instructions. The samples were genotyped using the Illumina Bovine 50K
SNP BeadChip V2 (96 cows) and the Illumina Bovine 62K SNP BeadChip (144 cows). Animals
with 50K genotypes were imputed to 62K using Beagle v.5.1 [29]. The PLINK [30] software
package was employed to perform the quality control of the genotype data. SNPs located
on the sex chromosomes and those with minor allele frequency lower than 0.05 were
discarded. Genotyped animals and SNPs with call rates larger than 95% were selected for
genomic analysis. The imputed dataset considered 45,054 SNPs from 213 genotyped cows.

2.4. Selection Signature Analysis

For the selection signature analysis, group creation was performed according to SSI
(rural, mixed, and urban), and according to Cd and Pb concentration in tail hair. Since
there are no reports available defining a threshold for heavy metal concentrations in hair
samples of dairy cows, the dataset was grouped based on the median values for each
heavy metal as determined in the present study (control group: <median (38 animals);
treatment group: >median (30 animals)). The grouping for each heavy metal was performed
separately, implying that the composition of the cattle groups differed for the Cd and Pb
analyses. For the identification of candidate regions under selection, the cross-population–
extended haplotype homozygosity (XP-EHH) approach [6] was applied. Selection signature
analyses comprised the following group comparisons: urban_vs_rural, urban_vs_mixed,
and rural_vs_mixed for the SSI stratification; and Cd-control_vs_ Cd-treatment as well as
Pb-control_vs_Pb-treatment for the heavy metals. Using the rehh package in R (version
3.1.2; [31,32]), the XP-EHH scores were calculated for each pairwise comparison. The
p-value for XP-EHH was inferred as a two-sided p-value expressed in -log10 scale, wherein
values lower than 0.001 (0.1 percentile) were stated to be signatures of selection in a test
population [33]. Therefore, by setting the threshold of the top 0.1 percent for both tails of
the distribution curve (lower and upper tail), the positive and negative selection signatures
were detected. The genes within a window size of 200 kb (100 kb upstream and 100 kb
downstream) from the potential regions under selection were annotated using the Bos
taurus ARSUCD1.2 genome assembly. The functional analyses of the identified genes
were accomplished using the default setting in DAVID, and assessing the significantly
enriched (p < 0.05) GO terms and KEGG pathways. Using the ‘Functional Annotation
Clustering’ report in DAVID, similar annotations were grouped together, aiming for a better
understanding of the functional pathways.

3. Results
3.1. Selection Signatures According to SSI Grouping

A number of selection sweeps were identified when comparing the genomes of cattle
located in rural, mixed, or urban regions (Figure 1).
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Figure 1. Distribution of XP-EHH values across the genome for urban_vs_rural (a), urban_vs_mixed
(b), and rural_vs_mixed (c) SSI comparison groups. The x-axis depicts the SNP position in the
genome, and the y-axis depicts the XP-EHH values. The dotted lines indicate the top 0.1 percentile
for positive and bottom 0.1 percentile for negative selection for each comparison. SNPs over these
dotted lines indicate significant selection sweeps. Colors demarcate different chromosomes and have
no particular significance.

The selection sweeps in cows reared in urban regions are represented by negative
XP-EHH values for the urban_vs_rural (Figure 1a) and urban_vs_mixed (Figure 1b) com-
parisons. The positive XP-EHH values for the urban_vs_mixed and rural_vs_mixed com-
parisons represent the selection sweeps for cows in mixed regions. Lastly, the selection
signatures for rural animals are represented by the positive XP-EHH values for the ur-
ban_vs_rural comparison and negative XP-EHH values for the rural_vs_mixed comparison.
Upon assessing the XP-EHH scores and the threshold set (top 0.1 percentile of positive
and bottom 0.1 percentile of negative values, respectively), 165, 125, and 186 genomic
regions were observed to be positively selected for the comparisons urban_vs_rural, ur-
ban_vs_mixed, and rural_vs_mixed, respectively. Likewise, 90, 85, and 187 genomic
regions were found to be negatively selected for the urban_vs_rural, urban_vs_mixed,
and rural_vs_mixed comparisons, respectively. The gene annotations revealed 119, 97,
and 198 genes to be under positive selection for the urban_vs_rural, urban_vs_mixed, and
rural_vs_mixed comparisons, respectively. Likewise, 135, 155, and 235 genes were observed
to be associated with negative selection sweeps in dairy cattle for the urban_vs_rural, ur-
ban_vs_mixed, and rural_vs_mixed comparisons, respectively. BTA21 was the chromosome
displaying the most obvious selection signals for all three comparisons. Consequently, we
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strongly focused on the gene annotations of the respective chromosomal segments. The
gene annotations for the selection sweeps on BTA21 for urban_vs_rural, urban_vs_mixed,
and rural_vs_mixed are summarized in Table 1. The most interesting genes with regard to
mechanisms of adaptation, resistance, and resilience were Ras and Rab interactor 3 (RIN3),
Solute carrier family 24 member 4 (SLC24A4), Tetraspanin 3 (TSPAN3), and Proline-serine-
threonine phosphatase interacting protein 1 (PSTPIP1).

Table 1. Overview of genes associated with selection sweeps on BTA21.

Comparison Gene Details

Urban_vs_Rural Positive (top
0.1 percentile)

• Solute carrier organic anion transporter family member 3A1 (SLCO3A1)
• Ras and Rab interactor 3 (RIN3)
• Solute carrier family 24 member 4 (SLC24A4)

Urban_vs_Rural Negative
(bottom 0.1 percentile)

• Cleavage and polyadenylation specific factor 2 (CPSF2)
• Solute carrier family 24 member 4 (SLC24A4)
• ADAM metallopeptidase with thrombospondin type 1 motif 17 (ADAMTS17)

Urban_vs_Mixed Positive (top
0.1 percentile)

• Solute carrier organic anion transporter family member 3A1 (SLCO3A1)
• Solute carrier family 24 member 4 (SLC24A4)
• Ras and Rab interactor 3 (RIN3)
• Family with sequence similarity 174 member B (FAM174B)
• Chromodomain helicase DNA binding protein 2 (CHD2)

Urban_vs_Mixed Negative
(bottom 0.1 percentile)

• DET1 partner of COP1 E3 ubiquitin ligase (DET1)
• Tetraspanin 3 (TSPAN3)
• DEAD-box helicase 24 (DDX24)
• Pseudopodium enriched atypical kinase 1 (PEAK1)
• Solute carrier family 24 member 4 (SLC24A4)
• Ankyrin repeat and SOCS box containing 2 (ASB2)
• Cleavage and polyadenylation specific factor 2 (CPSF2)
• OTU deubiquitinase, ubiquitin aldehyde binding 2 (OTUB2)
• Reticulocalbin 2 (RCN2)
• Coiled-coil domain containing 197 (CCDC197)
• Mitochondrial ribosomal protein L46 (MRPL46)
• Mitochondrial ribosomal protein S11 (MRPS11)
• Proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1)
• Family with sequence similarity 181 member A (FAM181A)

Rural_vs_Mixed Positive (top
0.1 percentile)

• Solute carrier family 24 member 4 (SLC24A4)
• Ceramide synthase 3 (CERS3)
• Ras and Rab interactor 3 (RIN3)
• Ankyrin repeat and SOCS box containing 7 (ASB7)
• Lines homolog 1 (LINS1)

Rural_vs_Mixed Negative
(bottom 0.1 percentile)

• Tetraspanin 3 (TSPAN3)
• Pre-mRNA processing factor 39 (PRPF39)
• FKBP prolyl isomerase 3 (FKBP3)
• FA complementation group M (FANCM)
• MIS18 binding protein 1 (MIS18BP1)
• Pseudopodium enriched atypical kinase 1 (PEAK1)
• Reticulocalbin 2 (RCN2)
• Proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1)
• TOG array regulator of axonemal microtubules 1 (TOGARAM1)

Clustering the genes associated with the positive and negative selection sweeps for
each comparison, 13 genes were identified to be common for the urban_vs_rural, ur-
ban_vs_mixed, and rural_vs_mixed comparisons (Figure 2; Supplementary Table S1). On
the other hand, 169, 96, and 306 genes were unique for each comparison, i.e., urban_vs_rural,
urban_vs_mixed, and rural_vs_mixed, respectively (Figure 2).
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3.2. Functional Analysis of Urbanization Effects

Supplementary Figure S1 depicts the GO terms associated with positive and nega-
tive selection sweeps for each of the group comparisons. None of the KEGG pathways
were observed to be significantly enriched when assessing the positive selection sweeps
for urban_vs_rural, urban_vs_mixed, and rural_vs_mixed comparisons. A number of
significantly enriched KEGG pathways were observed for the negative selection sweeps
for urban_vs_rural, urban_vs_mixed, and rural_vs_mixed comparisons. The functional
annotation clustering for the urban_vs_rural negative selection sweep comparison revealed
a number of KEGG pathways as depicted in Table 2, with an enrichment score of 1.67.
The KEGG pathways ovarian steroidogenesis (bta04913) and cortisol synthesis and secretion
(bta04927) were significantly enriched (enrichment score: 0.95) for the urban_vs_mixed
negative selection sweep. Likewise, cushing syndrome (bta04934), cortisol synthesis and secre-
tion (bta04927), prolactin signaling pathway (bta04917), and ovarian steroidogenesis (bta04913)
were the significantly enriched KEGG pathways for the rural_vs_mixed negative selection.

Table 2. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways obtained based on
functional annotation clustering using DAVID for the negative selection sweeps of urban_vs_rural,
urban_vs_mixed, and rural_vs_mixed group comparisons.

KEGG Term Gene Count Raw
p-Value Fold Enrichment

Urban_vs_Rural (Enrichment Score: 1.67)
bta00480: Glutathione metabolism 4 0.01 10.92
bta00982: Drug metabolism—cytochrome P450 4 0.01 10.92
bta05204: Chemical carcinogenesis—DNA adducts 4 0.01 10.41
bta00980: Metabolism of xenobiotics by cytochrome P450 4 0.01 10.10
bta01524: Platinum drug resistance 4 0.01 8.68
bta00983: Drug metabolism—other enzymes 5 9.54 × 10−4 11.13
bta05418: Fluid shear stress and atherosclerosis 5 0.01 5.83
bta05207: Chemical carcinogenesis—receptor activation 5 0.04 3.92
bta05208: Chemical carcinogenesis—reactive oxygen species 5 0.05 3.53

Urban_vs_Mixed (Enrichment Score: 0.95)
bta04913: Ovarian steroidogenesis 3 0.04 8.69
bta04927: Cortisol synthesis and secretion 3 0.05 8.17

Rural_vs_Mixed (Enrichment Score: 1.96)
bta04934: Cushing syndrome 8 0.00 4.67
bta04927: Cortisol synthesis and secretion 5 0.01 6.88
bta04917: Prolactin signaling pathway 5 0.01 5.48
bta04913: Ovarian steroidogenesis 4 0.03 5.85
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3.3. Selection Signatures According to Heavy Metal Contamination Grouping

To assess the signatures of selection in response to heavy metal contamination, the
dataset was grouped based on the median value for each heavy metal. The two heavy
metals considered in the present study, cadmium and lead, were significantly correlated
with a coefficient of 0.30 (p = 0.004). The average cadmium and lead concentrations for
the current dataset were 0.12 mg/L and 2.10 mg/L, respectively, indicating a significant
difference (p < 0.01). Furthermore, the cadmium and lead concentrations between the case
and the respective control groups differed significantly (p < 0.001). Using the XP-EHH
methodology, a number of selection sweeps were identified when creating cattle groups
according to cadmium and lead contaminations (Figure 3).
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Figure 3. Distribution of XP-EHH values across the genome for the cadmium (a) and lead (b) compar-
ison groups. The x-axis depicts the SNP position in the genome, and the y-axis depicts the XP-EHH
values. The dotted lines indicate the top 0.1 percentile for positive and bottom 0.1 percentile for
negative selection for each comparison. SNPs over these dotted lines indicate significant selection
sweeps. Colors demarcate different chromosomes and have no particular significance.
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The analysis revealed 221 and 169 genomic regions under positive selection for Cd
and Pb group comparisons, respectively. Further gene annotation of these regions revealed
207 potential candidate genes for the cadmium grouping, and 161 potential candidate genes
for the lead grouping.

The GO terms associated with both heavy metal comparisons were broadly associated
with cell signaling and functioning mechanisms (Table 3).

Table 3. Gene ontology (GO) terms obtained based on functional annotation clustering using DAVID
for cadmium and lead group comparisons.

GO Category GO Term Gene Count Raw
p-Value Fold Enrichment

Cadmium (control_vs_treatment)

Molecular Function
GO:0016887: ATPase activity 7 0.03 3.02
GO:0003777: Microtubule motor activity 3 0.04 8.84

Cellular Component GO:0005871: Kinesin complex 3 0.04 9.14
Lead (control_vs_treatment)

Biological Process
GO:0007156: Homophilic cell adhesion
via plasma membrane adhesion molecules 11 3.27 × 10−8 11.68

GO:0007155: Cell adhesion 11 1.18 × 10−4 4.69
Molecular Function GO:0005509: Calcium ion binding 12 0.00 2.82

Cellular Component GO:0005887: Integral component of
plasma membrane 19 3.53 × 10−5 3.11

ATPase activity (GO: 0016887; MF), microtubule motor activity (GO: 0003777; MF),
and kinesin complex (GO: 0005871; CC) were the significantly enriched gene ontology
terms with regard to the cadmium comparison. These terms contained the following genes:
DEAD-box helicase 24 (DDX24), RecQ like helicase 5 (RECQL5), Kinesin family member
18B (KIF18B), Midasin AAA ATPase 1 (MDN1), RNA sensor RIG-I (RIGI), Kinesin family
member 5B (KIF5B), and Kinesin family member 12 (KIF12). Similarly, the genes associated
with the GO terms for lead included troponin C2 fast skeletal type (TNNC2), opioid receptor
delta 1 (OPRD1), solute carrier family 12 member 5 (SLC12A5), γ-aminobutyric acid type
A receptor subunit alpha4 (GABRA4), 5-hydroxytryptamine receptor 1D (HTR1D), proto-
cadherin β-4-like (LOC104968820), solute carrier organic anion transporter family member
3A1 (SLCO3A1), TEK receptor tyrosine kinase (TEK), kinase insert domain receptor (KDR),
protocadherin γ subfamily C, 3 (PCDHGC3), adenosine A2a receptor (ADORA2A), opioid
binding protein/cell adhesion molecule like(OPCML), SLC24A4, and activated leukocyte
cell adhesion molecule (ALCAM). No KEGG terms were observed to be significantly en-
riched for any of the heavy metal comparisons.

4. Discussion
4.1. Selection Sweeps Due to Urbanization

The demand for animal-based food is substantially increasing in developing countries
given the rapid population growth, increased income, and increasing urbanization [34,35].
Most of the genetic research conducted in dairy cattle populations in the tropics focused
on production traits in response to farm management, reproduction, climate change, and
disease prevalence. Only a few studies focused on the challenging environmental effects
that urbanization and feed contaminants have on dairy production, by ignoring genomic
mechanisms. Some of these assessed phenotypic trait association analyses and considered
stratification according to herd productivity [11], feed efficiency [10], cattle health [11], heat
stress response [20], and milk quality [16] along the rural–urban transects of Bengaluru.
However, to the best of our knowledge, this is the first study assessing the signatures of
selection in dairy cattle reared along the rural–urban interface and exposed to environmen-
tal contamination. This study is therefore providing relevant insights into the genomic
mechanisms of adaptation that are (indirectly) fostered when dairy animals are subjected
to environmental constraints over prolonged periods of time.
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Our study revealed significant signatures of selection when comparing cattle reared in
urban, rural, and mixed regions. Strong selection signals and a high density of selection
sweeps were observed on BTA 21, especially in chromosomal segments located in close prox-
imity to genes with varied biological functions. Among these genes, SLC24A4 and CPSF2
are potential candidate genes reflecting selection due to urbanization. Significant SNPs
associated with these genes were detected for both the urban_vs_rural and urban_vs_mixed
comparisons. SLC24A4 encodes a member of potassium-dependent sodium or calcium
exchanger protein family and was associated with hair color and pigmentation-related
traits [36]. In genomic studies, specific variants of SLC24A4 were significantly associated
with milk urea concentration [37], body conformation [38], reproduction [39], and produc-
tion [40] traits in cattle. Likewise, gene CPSF2, with effects on the RNA binding activity,
was significantly associated with lipid metabolism in cattle [41]. When assessing the se-
lection sweeps and annotated genes for group comparisons including the mixed region,
SLC24A4 and RIN3 were shared genes for both the urban_vs_mixed and rural_vs_mixed
comparisons. RIN3 is a Ras interaction-interference effector protein, which plays a crucial
role in regulating bone metabolism in mice [42]. In cattle, RIN3 was associated with growth
traits [43], and reported to have a pleotropic effect on growth- and conformation-related
traits (weaning weight, fatness, and conformation) [44]. Likewise, SLC24A4 and RIN3 were
also potential candidate genes for the rural cattle population.

The functional analysis of the annotated genes revealed a diverse range of gene
ontology terms and KEGG pathways for each SSI comparison. The pathways were linked
with reproduction, metabolism, and cell signaling-associated functional mechanisms. Such
physiological mechanisms might explain the observed phenotypic differences in cattle
along the SSI in Bengaluru for productive performances and hygiene traits [11,12]. It is
interesting to note that similar pathways are enriched in urban and rural cows, when
compared to the population from the mixed region (urban_vs_mixed and rural_vs_mixed;
Table 2). Cortisol synthesis and secretion (bta04927), prolactin signaling pathway (bta04917)
and ovarian steroidogenesis (bta04913) were among these pathways. All these pathways
included genes associated with steroid and other reproductive hormones (cytochrome
P450 family 17 subfamily A member 1 (CYP17A1), glycogen synthase kinase 3 β (GSK3B),
adenylate cyclase 2 (ADCY2), and Wnt family member 9B (WNT9B)). Additionally, the
analysis suggested the potential candidate gene SHC adaptor protein 3 (SHC3), which
was associated with residual feed intake in beef cattle [45]. Furthermore, variants of
SHC3 enhanced the adaptability of thermo-tolerant cattle to maintain production and
reproduction in harsh tropical environments [46].

4.2. Selection Sweeps Due to Heavy Metal Contamination

Another consequence of rapid urbanization is the rise in heavy metal pollution through
industries [14,47]. Garment factories, electroplating, industries, and distilleries are some of
the small-scale water-polluting industries in Bengaluru [48]. These industries contaminate
groundwater and nearby water bodies with heavy metals [14,49,50]. Due to the increasing
importance of animal welfare and health, several studies addressed the challenge of heavy
metal accumulation in animals, livestock feed, and livestock products [14,51]. However,
there are scanty reports evaluating this impact from a genetic perspective [52,53].

Our analysis revealed 221 and 169 genomic regions under strong and/or recent posi-
tive selection in response to Cd and/or Pb contamination. These potential regions were
linked to 207 and 161 genes, respectively. Stronger and intense positive selection sweeps
were observed for Cd on BTA 16 and BTA19. The respective chromosomal segments harbor
genes significantly influencing the somatotropic axis (growth factor receptor-bound pro-
tein 2 (GRB2)) and cell ion exchange (chloride voltage-gated channel 6 (CLCN6)). Previous
studies associated variants of these genes with candidate regions representing selection
processes in cattle [54,55]. It was interesting to observe a few uncharacterized genes in
this region (ENSBTAG00000052901, ENSBTAG00000050070, and ENSBTAG00000030910),
which were grouped as membrane co-factor proteins and involved in immune response
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mechanisms. Effects on immunity might be a novel finding obtained from the present
study, encouraging further evaluations and validations in this regard.

The functional analyses of the annotated genes based on Cd contamination grouping
revealed significant enrichment of the GO terms ATPase activity (GO: 0016887; MF), micro-
tubule motor activity (GO: 0003777; MF), and kinesin complex (GO: 0005871; CC). Genes
associated with these terms included DDX24, RECQL5, KIF18B, MDN1, RIGI, KIF5B, and
KIF12. DDX24 belongs to the DEAD box containing RNA helicases [56]. Based on their
distribution patterns, some genes belonging to this family were associated with embryoge-
nesis, spermatogenesis, and cellular growth and division [57]. Furthermore, DDX24 was
a regulator of p53 transcriptional activity [56]. The p53 transcriptional regulator plays a
crucial role in adapting gene expression programs to maintain cellular homeostasis and
genome integrity during stress [58]. Therefore, the identification of this gene through the
current selection signature analysis provides a vital insight towards the selection of animals
with adaptation to environmental contaminants that act as a stressor. Similarly, variants of
RECQL5 are associated with fertility in dairy cows [59], while KIF18B contributes to milk
lactose alterations in dairy cows [60].

The GO analyses for annotated genes based on the selection sweeps according to Pb
contamination grouping were associated with cell adhesion and calcium ion-binding pro-
cesses. The detected genes were associated with carcass traits (TNNC2, [61]; SLC12A5, [62];
and GABRA4, [63]), milk traits (HTR1D, [64]; SLCO3A1, [65]; TEK, [66]; and OPCML, [67]),
reproduction (GABRA4, [68]), hypoxia/stress response (OPRD1, [69]; and KDR, [70]), cell
adhesion (PCDHGC3, [71]), inflammatory response (ADORA2A, [72]), and immune defense
mechanism (ALCAM, [73]). The links between selection signals due to environmental con-
tamination and signals for disease resistance and immunity suggest further studies in this
regard, namely, detailed genome comparisons that consider environmental stressors. The
challenging production context of a rapidly growing tropical megacity with a pronounced
social-ecological gradient might be the ideal “research lab” in this regard.

5. Conclusions

To our knowledge, this was a first study aiming at the identification of the genomic
selection footprints of dairy cows in response to urbanization and environmental con-
taminants. The genomic regions under selection due to urbanization are involved in
reproduction, metabolism, and cell signaling and functional mechanisms. In the context
of adaption, previously described genes including GRB2 and CLCN6 could be verified
based on the cadmium contamination grouping. Furthermore, this grouping contributed
to the detection of novel and uncharacterized genes including ENSBTAG00000052901,
ENSBTAG00000050070, and ENSBTAG00000030910, which influence the somatotropic axis,
cell ion exchange, and immune response. Selection sweeps according to lead contamination
grouping also indicated genomic regions affecting phenotypes of carcass traits, reproduc-
tion, hypoxia/stress response, cell adhesion, inflammatory response, and immune defense.
Despite the quite small sample size used, the present study demonstrates a novel approach
to infer genomic mechanisms of adaptation and genomic responses to environmental
challenges.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14112083/s1, Figure S1: Functional annotation clustering
of the gene ontology terms (BP: Biological process, CC: Cellular Component, and MF: Molecular
Functions) for the selection sweeps for urban_vs_rural (positive (a), negative (b)), urban_vs_mixed
(positive (c), negative (d)), and rural_vs_mixed (positive (e), negative (f)) comparisons; Table S1: De-
tails of genes that were common for urban_rural, urban_mixed, and rural_mixed selection signature
comparisons.
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