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Abstract: The β-amylase (BAM) gene family encodes important enzymes that catalyze the conversion
of starch to maltose in various biological processes of plants and play essential roles in regulating
the growth and development of multiple plants. So far, BAMs have been extensively studied in
Arabidopsis thaliana (A. thaliana). However, the characteristics of the BAM gene family in the crucial
economic crop, cotton, have not been reported. In this study, 27 GhBAM genes in the genome of
Gossypium hirsutum L (G. hirsutum) were identified by genome-wide identification, and they were
divided into three groups according to sequence similarity and phylogenetic relationship. The gene
structure, chromosome distribution, and collinearity of all GhBAM genes identified in the genome of
G. hirsutum were analyzed. Further sequence alignment of the core domain of glucosyl hydrolase
showed that all GhBAM family genes had the glycosyl hydrolase family 14 domain. We identified
the BAM gene GhBAM7 and preliminarily investigated its function by transcriptional sequencing
analysis, qRT-PCR, and subcellular localization. These results suggested that the GhBAM7 gene may
influence fiber strength during fiber development. This systematic analysis provides new insight into
the transcriptional characteristics of BAM genes in G. hirsutum. It may lay the foundation for further
study of the function of these genes.

Keywords: β-amylase (BAM) gene family; upland cotton; genome-wide identification; fiber development;
starch metabolism

1. Introduction

Starch is the most crucial form of carbohydrate storage in plants, and plant growth and
development depend on starch metabolism [1]. Starch is temporarily stored in chloroplasts,
seeds, and other specialized starch storage organs for a long time [2,3]. Starch is degraded
by a series of enzymes (including α-amylase (AMY), β-amylase (BAM), limit dextrinase
(PUL), β-glucosidase and α-glucan phosphorylase (PHO)) to release primary chemical en-
ergy and organic matter for plant growth, development, and response to abiotic stress [4–9].
The β-amylase (BAM) family is named for the ability to catalyze the hydrolysis of starch
into maltose units by its catalytic members. It is the main starch-degrading enzyme in plant
tissues [10,11]. β-Amylases (BAMs) are essential enzymes that catalyze the conversion of
starch into maltose and play important roles in regulating plant growth, development, and
abiotic stress tolerance [12]. They are vital enzymes for transient starch degradation in
chloroplasts and important molecules for gene regulation [13–15]. β-Amylase (BAM) is
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an exoamylase that catalyzes the hydrolysis of α-1,4-linked oligosaccharides and polyglu-
cans. It is mainly responsible for the hydrolysis of stored starch and the degradation of
transitional starch, resulting in β-limit dextrin and β-maltose [11]. However, this family
also contains proteins with weak catalytic activity, additional domains, or no localization
with starch substrates. β-Maltose is exported from chloroplasts at night and is the main
product of starch decomposition in leaves [16]. BAMs are also the only enzymes that
can produce β-maltose in plants. BAM is a glycosyl hydrolase 14 family member with a
conserved glycosyl hydrolase 14 domain. It is widely distributed in various plants and
some microorganisms and is encoded by a multi-gene family [17–19].

BAM exists as a gene family in many plants. To date, genome-wide analysis has
identified nine members of the BAM gene family (GFMs) in A. thaliana [8,20], 10 in rice
varieties [21], 13 in maize varieties, 11 in Brachypodium distachyon varieties, 10 in sorghum
varieties, 10 in foxtail millet varieties [22], 16 in banana varieties [11], 10 in potato varieties,
8 in trifoliate orange varieties [23], and 17 in pear varieties [9]. Most studies on the BAM
family’s functions are carried out in A. thaliana. Maltose is the main product of starch
degradation [24]. In Arabidopsis, BAMs are the main hydrolases for starch decomposition
at night, which act on the non-reducing end of the α-1,4-linked glucan chain to produce
maltose [10]. In Arabidopsis, nine genes encode BAM-like proteins, more than any other
starch-metabolizing enzyme, and other plant genomes contain a similar number of BAM
genes [25]. The analysis of conserved intron sites of BAM genes in terrestrial plants revealed
that the family contains two subfamilies, one subfamily contains BAM1/3/9, and the other
subfamily contains BAM2/4/8 [26]. So far, their characterization in Arabidopsis has revealed
an alarming degree of sub-functionalization and neo-functionalization [27]. However,
during the evolution of vascular plants, the BAM gene family has undergone diversity,
resulting in isomers with different spacer structures and biological activities [15].

Cotton is one of the critical economic crops in the world and plays a vital role in
China’s economy. Cotton fiber is the leading financial component of cotton, and fiber
quality is an essential factor determining the economic quality of cotton [28]. Cotton
fiber is a single-cell structure formed by the differentiation and development of the outer
epidermis of cotton ovules. It is also an ideal single-cell model for cell elongation and
cell wall modification. In the process of cotton fiber development, 15 days post-anthesis
(DPA) is a crucial period, mainly for the fiber elongation stage, followed by the secondary
wall thickening stage [29,30]. The BAM gene family plays a crucial role in transient
starch metabolism [3], seed germination [31], and growth and development [32], and the
development of cotton fiber is accompanied by the synthesis and degradation of starch,
so BAM genes may play important regulatory roles. The role of the BAM gene family
in fiber development is unclear, despite its vital importance. In this study, 27 GhBAM
genes were identified in the whole genome of upland cotton. The GhBAM gene family was
analyzed for its protein physicochemical properties, chromosome location, gene structure,
conserved motifs, domain alignment, and phylogenetic evolution. In addition, the functions
and evolutionary characteristics of the GhBAM gene family were explored by promoter
element analysis and expression analysis of GhBAM family genes. The results provide a
reference for future studies of the structure and function of the GhBAM gene family, as
well as the identification and characterization of the BAM gene family in other species,
and also provide a theoretical basis for further study of the molecular mechanism of fiber
development in upland cotton.

2. Materials and Methods
2.1. Identification and Phylogenetic Analysis of the GhBAM Gene Family in G. hirsutum

The amino acid sequences of the Arabidopsis BAM gene family were downloaded
from the TAIR website (https://www.Arabidopsis.org/; accessed on 30 September 2023),
and the Arabidopsis BAM protein sequence was used as an index to perform local se-
quence alignment in the upland cotton genome (TM-1_V2.1, ZJU) [33]. The obtained
candidate sequences were submitted to the NCBI-CDD website (https://www.ncbi.Nlm.
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Nih.gov/cdd; accessed on 30 September 2023) and the HMMER website (https://www.
ebi.ac.uk/Tools/hmmer/search/hmmsearch; accessed on 30 September 2023) to verify
whether they contained the Glyco_hydro_14 (PF01373) conserved domain. In Ex PASy
(https://web.expasy.org/compute_pi; accessed on 30 September 2023), the average num-
ber of amino acids, molecular weight, isoelectric point, and hydrophilicity were obtained.
The online tool WoLF PSORT (https://wolfpsort.hgc.jp/; accessed on 30 September 2023)
was used to predict the subcellular localization of proteins encoded by GhBAM gene
family members.

2.2. Chromosome Distribution, Synteny, Ka/Ks, and Phylogenetic Analysis of the GhBAM Family

The location information of the gene on the chromosome was obtained from the
GFF3 data in the genome, and the TBtools tool was used to draw the schematic dia-
gram and analyze gene collinearity. The non-synonymous substitution (Ka) and syn-
onymous substitution (Ks) rates of the BAM gene family were calculated to analyze the
selection pressure in the evolutionary process. All sequences were aligned using the de-
fault settings of Clustal X2.1, and phylogenetic trees were constructed using the MEGA-7
(http://www.megasoftware.net/mega-7; accessed on 30 September 2023) neighbor-joining
(NJ) method, one thousand bootstrap samplings were performed, and other parameters
were default values.

2.3. Analysis of GhBAM Gene Domain and Conserved Motif

The BAM gene structure of upland cotton was analyzed online using the GSDS website
(http://gsds.Cbi.Pku.edu.cn; accessed on 30 September 2023). The MEME online tool
(http://meme-suite.org/tools/meme; accessed on 30 September 2023) was used to identify
the conserved motifs of the GhBAM gene family, setting 6–50 motif widths and up to
12 motifs. TBtools software (V 1.068) was used for visual analysis of gene structure and
conserved motifs.

2.4. Subcellular Localization and Promoter Element Analysis of GhBAM7

The GhBAM7-GFP vector was constructed. The tobacco was cultured in a greenhouse
for three–four weeks, and activated Agrobacterium containing the target gene subcellular
targeting vector was added to resistant LB liquid medium (kanamycin 50 mg/L, rifampicin
25 mg/L). The OD value was measured between 0.8 and 1.0, and the bacterial liquid was
centrifuged and resuspended. The bacterial liquid was re-suspended at room temperature
for one–three hours to prepare for infection. The third and fourth leaves from the top were
selected for infection (infection between the two veins). The plants, after injection, were
cultured in the dark for 24 h and then cultured normally for two days. The GFP fluorescence
near the injection site of the leaves was observed by fluorescence microscopy. The sequence
of about 2000 bp upstream of the start codon of the GhBAM family genes was determined
as a regulatory promoter region database. These sequences were then uploaded to the
PlantCARE website (http://bioinformatics.psb.ugent.be; accessed on 30 September 2023)
for the identification and analysis of cis elements.

2.5. GhBAM Gene Expression Analysis

Transcriptome data for ovular and fibrous tissue were also downloaded from the NCBI
Sequence Read Archive collection PRJNA490626. The cotton introgression line population
was planted in Shihezi City, Xinjiang Uygur Autonomous Region. After flowering, fiber
samples at 15 DPA, 20 DPA, and 25 DPA of extreme individuals (Xinluzhong 60 (strong fiber
strength), Xinhai 36 (weak fiber strength), and extreme materials for hybrid progeny) were
immediately frozen in liquid nitrogen and stored in an ultra-low temperature refrigerator
at −80 ◦C. The samples were sent to the gene sequencing company. Based on the Illumina
Hi Seq sequencing platform, RNA-seq technology was used to identify the differentially
expressed genes of fiber development in the two introgression lines. Real-time quantitative
(RT-qPCR) preliminary verification was performed. The expression abundance (fragments
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per kilobase per million, FPKM) value of GhBAM was obtained from the transcriptome
data. The log2 (FPKM + 1) formula calculated the degree of expression difference, and the
heat map of gene expression was drawn using the Heat Map program in TBtools software
(V 1.068).

3. Results
3.1. Identification and Sequence Retrieval of BAM Gene Family in Upland Cotton

In order to identify the BAM genes of upland cotton (G. hirsutum), BLASTP was per-
formed using the glycosyl hydrolase family 14 domain of the reported A. thaliana sequence.
BLAST comparison of the glycosyl hydrolase family 14 domains resulted in 29 sequences.
When the BLAST results were further analyzed, only 27 genes contained the expected
glycosyl hydrolase family 14 domain and were used for further analysis. The glycosyl
hydrolase family 14 domain in these proteins was located at the N-terminal. Sequences of
glycosyl hydrolase family 14 domains and isotypes of the same genes were excluded.

The Pfam database further confirmed the presence of the glycosyl hydrolase family
14 domain in 27 selected genes. The Pfam entry number of the glycosyl hydrolase family
14 domain is PF01373.2. The Pfam results showed that the glycosyl hydrolase family
14 domain comprised 402 amino acids. NCBI CDD analysis further confirmed the existence
of the glycosyl hydrolase family 14 domain and showed that all GhBAM genes contained
the glycosyl hydrolase family 14 domain. These genes were renamed GhBAM1–GhBAM27
(Table S1) according to their genomic location on the A and D subgenome chromosomes.

The relevant information of the GhBAM genes is shown in Table S1, including gene id,
gene location, direction, isoelectric point (PI), molecular weight (Mw), subcellular location,
peptide, genome, and coding sequence (CDS) sequence length (Table S1). Subcellular
localization analysis showed that GhBAM family members were mainly located in the
nucleus, cytoplasm, and chloroplast. Moreover, there were significant differences in protein
length, molecular weight (MW), and isoelectric point (pI). BAM protein in upland cotton
had an average length of 497 amino acids and ranged in length from 72 (GhBAM19) to
703 (GhBAM16) (Table S1). The isoelectric points (pIs) and molecular weights of the BAM
protein sequences in upland cotton were 4.39–9.59 and 7904.94–79,049.31 Da, respectively.
The overall mean of all BAM protein hydrophilic (GRAVY) scores was negative, indicating
that the BAM protein was hydrophilic (Table S1).

3.2. BAM Family Sequence Comparison and Phylogenetic Tree Analysis

Conserved sequence alignment was used for phylogenetic analysis. This included 27 BAM
sequences of upland cotton, 9 of A. thaliana, and 51 of Sea Island cotton (Gossypium barbadense).
The phylogenetic tree showed that 87 BAM genes were classified into three categories: I, II, and
III. The results are shown in Figure 1. Group I had the most significant number of BAM genes,
including 14 members in upland cotton, 28 in Sea Island cotton, and 4 members in Arabidopsis.
Group II had 13 members, mainly including six sequences of upland cotton and seven sequences
of Sea Island cotton. Group III had 7 sequences of upland cotton, 16 sequences of Sea Island
cotton, and 5 sequences of A. thaliana (Figure 1).

3.3. BAM Gene Structure and Conserved Motif Prediction

Exon and intron predictions can help to further understand the structural evolution
of the GhBAM gene family. Genome and CDS sequences were compared to obtain the
structures of exons and introns. The results showed that all genes in Group I had more
than three exons interrupted by four introns. GhBAM5 and GhBAM6 in Group II contained
three and two exons, respectively, interrupted by four and three introns. In Group I, the
intron length of GhBAM26 and GhBAM13 was greater than that of the remaining GhBAM
genes. The number and length of introns and exons of GhBAM3, GhBAM17, and GhBAM24
in Group III were similar, but the length of introns was different. Among all GhBAM gene
family members, Group III had longer GhBAM introns (Figure 2).
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An online MEME web server was used to analyze the conserved motifs in the GhBAM
protein family. The results showed that the more similar the type and number of patterns
within a group, the more tightly they functioned. Still, there were some differences between
members of different groups. Some patterns were mainly present in different groups
(Figure 2). Motifs 1, 2, 3, 5, 6, 8, 9, and 10 were conserved in all GhBAM proteins, with
motifs 1, 2, 3, 5, 6, 8, 9, and 10 missing only in GhBAM5 and GhBAM19. Members of
Group I (GhBAM20) contained motifs 6, 3, 8, and 2, while GhBAM18 and GhBAM25, also
belonging to Group I, contained motif 8, suggesting that some functions changed during
evolution. The members of Group II (GhBAM5, GhBAM6, and GhBAM10) were composed
of motifs 4, 3, 8, 2, 9, 5, 1, 7, and 10. Motif 6 was missing from Group II members. Among
members of Group III (GhBAM3, GhBAM11, GhBAM17, GhBAM19, and GhBAM24), motifs
6, 4, 3, 8, 2, 9, 5, and 1 appeared in GhBAM11. The consistent sequence of motifs retrieved
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from the MEME suite (Table S2) showed that of all ten identified motifs, motif 4 and motif
7 were associated with the glycosyl hydrolase family 14 domain (Figure 2). Motifs 4 and
7 were present in all GhBAM proteins, further confirming that the glycosyl hydrolase family
14 domain was present in all proteins.

3.4. Prediction of Cis-Acting Elements in the GhBAM Gene Promoter Region

Cis-acting element analysis is critical to understanding gene function and regulation
because cis-acting elements in the promoter region regulate gene expression. Various
cis-regulatory elements were found in the 2000 bp promoter region upstream of the start
codon (ATG). In the GhBAM gene family, differences existed in the 14 cis-acting elements
of the promoter (Figure 3). The functional dependencies of the elements involved in these
cis-elements included protein-binding sites, hormones, cell differentiation, and elements
involved in plant development and growth (Figure 3). There were 16 cis-elements at the
binding site of DNA-binding protein (ATBP-1), 3 root-specific cis-elements, 803 hormone-
responsive cis-elements (gibberellin, salicylic acid, abscisic acid, MeJA, and auxin), and
5 cis-elements involved in stress (trauma). There were 153 cis-elements involved in plant
growth and development (related to meristem expression, protein-binding sites, regulation
of zein metabolism, endosperm expression, regulation of specific seeds, and differentiation
of palisade mesophyll cells) (Figure 3).
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3.5. Chromosome Localization, Gene Replication, Collinearity Analysis, and Selection Pressure
Analysis

A genome-wide analysis of G. hirsutum to determine the location of the GhBAM gene
on the chromosome revealed that GhBAM genes were unevenly distributed in the A and
D subgenomes (Figure 4). Genes were named according to their order in the A and D
subgenomes. Fourteen of these genes (GhBAM1, GhBAM2, GhBAM3, GhBAM4, GhBAM5,
GhBAM6, GhBAM7, GhBAM8, GhBAM9, GhBAM10, GhBAM11, GhBAM12, GhBAM13,
GhBAM14) were located in the A subgenomic chromosome, and 13 genes (GhBAM15, Gh-
BAM16, GhBAM17, GhBAM18, GhBAM19, GhBAM20, GhBAM21, GhBAM22, GhBAM23,
GhBAM24, GhBAM25, GhBAM26, GhBAM27) were located in the D subgenomic chro-
mosome above (Figure 4). GhBAM1 was mapped to A02; GhBAM2 and GhBAM3 were
mapped to A08; GhBAM4, GhBAM5, and GhBAM6 were mapped to A09; GhBAM7 and
GhBAM8 were mapped to A10; GhBAM9-12 was mapped to A11; and so on. GhBAM13
and GhBAM14 were mapped to A12 (Figure 4). On the other hand, GhBAM15 was on
D02; GhBAM16 and GhBAM17 were on D08; GhBAM18, GhBAM19, and GhBAM20 were on
D09; GhBAM21 and GhBAM22 were on D10; GhBAM23, GhBAM24, and GhBAM25 were
on D11; and so on. GhBAM26 and GhBAM27 were on D12 (Figure 4). On some At and Dt
subgenomic chromosomes, the deletion of the GhBAM gene may have been due to gene
loss during evolution.
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Figure 4. Chromosome localization analysis of BAM gene family. (A) A. thaliana BAM gene mapping,
(B) Sea Island cotton At subgenomic BAM gene mapping, (C) Sea Island cotton Dt subgenomic
BAM gene mapping (D) Upland cotton At subgenomic BAM gene mapping, (E) Upland cotton Dt
subgenomic BAM gene mapping.

In plant evolution, replication, including tandem and segmentary replication, is
the main force driving gene expansion. The amplification mechanism of BAM genes
in G. hirsutum was determined through gene replication analysis, as shown in Figure 5 and
Table S3. All genes were segmented among the 34 para-homologous gene pairs. These
results indicated that tandem replication was essential in GhBAM gene amplification. In
order to analyze the collinearity of the BAM genes in cotton, the MCScanX technique was
used to detect the collinearity of upland cotton with tetraploid cotton varieties (G. barbadense
and A. thaliana). Collinearity analysis revealed that G. hirsutum and A. thaliana had 16 ho-
mologous gene pairs (Figure 5B), and G. hirsutum and G. barbadense had 86 homologous
gene pairs (Figure 5B).
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To estimate the correlation of repeating genes over a long evolutionary history, Ka/Ks
values in GhBAM gene homologous pairs were calculated based on different selection
pressures such as purification, neutral, and active selection. According to the Ka/Ks
analysis, the Ka/Ks values were below 1.0, indicating that these GhBAM genes underwent
strong purification selection during evolution (Table S3). When differentiation is limited by
purification selection, gene replication pairs may perform similar functions.

3.6. Transcriptome Analysis
3.6.1. Analysis of GhBAM Gene Expression in Different Tissues of Upland Cotton

Tissue-specific expression analysis of GhBAM genes in ovule and fiber tissues showed
that the expression of these genes in different tissues was different (Figure 6). GhBAM2,
GhBAM7, and GhBAM22 were mainly expressed in the ovule and fiber, with higher levels at
−3 d, 0 d, 1 d, 10 d, 15 d, and 20 d in the ovule (Figure 6). In addition, GhBAM2, GhBAM7,
and GhBAM22 were expressed at 10 d, 15 d, and 25 d during fiber development. The
remaining genes were poorly expressed in tissues at these three stages of ovule and fiber
development (Figure 6).

3.6.2. Transcriptional Expression Analysis of GhBAM Genes at 15 and 20 Days of Fiber
Development in Extreme Materials

Transcriptional expression analysis of the GhBAM genes at day 15 and day 20 of
fiber development in extreme materials showed that some genes were highly expressed
(Figure 7), indicating that the GhBAM genes may play roles in fiber development periods.
GhBAM1 had high expression at 20 d in extreme materials with low fiber length (Figure 7).
The expression levels of GhBAM7 and GhBAM22 in extreme materials with high fiber length
at 15 d and 20 d were higher than those in extreme materials with low fiber length. The
expression difference at 20 d was highly significant (Figure 7). In contrast, the expression of
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GhBAM25 at the 15 d stage was higher than that at the 20 d stage in extreme materials. The
expression of GHBAM25 in extreme materials with high fiber length was higher than in
extreme materials with low fiber length (Figure 7).
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20 fiber; T2_L: 20 days Xinhai 20 fiber).

3.7. qRT-PCR Validation of the GhBAM Gene Family in Two Extreme Materials

Information about gene function can be provided by analysis of gene expression levels.
To analyze the roles of the GhBAM genes in fiber development, from the results obtained
from the RNA-seq data analyzed in the previous section (Figures 6 and 7), the GhBAM7
gene was selected because it may be involved in fiber growth and development. The
expression levels of the GhBAM7 gene at 15 and 20 days of fiber development in four
extreme materials were analyzed by qRT-PCR. The gene-specific primers are shown in
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Table S4. The results of qRT-PCR analysis showed that the expression patterns of the
GhBAM7 gene in these four extreme materials changed at day 15 and day 20 (Figure 8). BS2
and BS18 showed high expression at 20 d, while BS24 and BS38 showed little change at
20 d. The results showed that the GhBAM7 gene was induced at 20 d of fiber development
and reached the peak expression level quickly (Figure 8). These results suggest that the
GhBAM7 gene may be involved in fiber development at 20 d.
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3.8. Subcellular Localization Analysis of GhBAM7 Protein

Combined with the differential expression pattern and tissue specificity of the BAM
gene family in cotton fiber development, we selected the GhBAM7 gene that was highly
expressed at day 15 and day 20 during fiber development for in-depth study. In order to
determine the location of the GhBAM7 protein in cells, a GFP vector for GhBAM7 protein
subcellular localization analysis was constructed. At the same time, empty GFP fusion
protein was used as the control, and the position of the fusion protein was observed by
fluorescence confocal microscopy three days after injecting tobacco leaves. The results
showed that GHBAM7-GFP was distributed in the nucleus and that the GhBAM7 protein
was located in the nucleus (Figure 9).
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4. Discussion

As an essential source of natural fiber, cotton is of great significance to the study of fiber
quality and yield [34]. Completing cotton genome sequencing enables us to further study
the fiber yield and quality mechanisms. The conversion of starch and sugar plays a vital
role in fiber formation. Biochemical and genetic analyses have shown that the functions
of BAM genes are related to plant germination, growth, development, and maturation.
Studies in Arabidopsis show that β-amylase (BAM, EC3.2.1) is the main starch-degrading



Genes 2023, 14, 2077 11 of 14

enzyme [11]. Therefore, studying the function and related roles of the GhBAM gene family
is very important.

In conclusion, except for in-depth research on the BAM gene family of Arabidopsis in
model plants, research on other plants is relatively shallow. In this study, based on the
whole genome sequencing data of upland cotton, members of the GhBAM gene family
were identified and screened, and their structure and function were analyzed in depth, pro-
viding a theoretical basis for further research on the role of the GhBAM gene family in the
growth and development of cotton. So far, 9 BAM genes in Arabidopsis have been identified,
including 10 in rice (Oryza sativa L.), 13 in maize (Zea mays L.), 11 in Brachypodium dis-
tachyon (Brachypodium distachyon (L.) P. Beauv), 10 in sorghum (Sorghum bicolor (L.) Moench),
10 in millet (Setaria italica var. germanica (Mill.) Schred), 16 in banana (Musa nana Lour.),
10 in potato (Solanum tuberosum L.), and 8 in trifoliate (Citrus trifoliata L.) [11,21,22,35,36].
Therefore, this study systematically analyzed the BAM gene family of upland cotton. BAM
genes were distributed on 21 chromosomes in upland cotton and on 12 chromosomes in
Sea Island cotton, among which several GhBAM genes were densely distributed on chro-
mosomes with high accumulation, suggesting that tandem duplication and chromosome
segment duplication may have contributed to the expansion of BAM gene family. The
results of collinearity analysis show that 34 GhBAM genes showed collinearity in upland
cotton, followed by 16 GhBAM genes showing collinearity with Arabidopsis BAM genes.
It is speculated that BAM family genes may be involved in various growth and develop-
ment processes regulated by hormone-related response elements. In order to determine
the expression characteristics of the GhBAM7 protein in cells, the gene was analyzed by
subcellular localization, and the GFP vector for GhBAM7 protein subcellular localization
analysis was constructed. GhBAM7-GFP fusion protein was injected into tobacco leaves,
and the position of the fusion protein was observed by fluorescence confocal microscopy
three days after injection, with unloaded GFP as the control. The results showed (Figure 9)
that GHBAM7-GFP was distributed in the nucleus, indicating that the GhBAM7 protein
was located in the nucleus.

Arabidopsis AtBAM4 has been shown to participate in the starch degradation pro-
cess [37]. Transcriptomic data analysis showed that GhBAM7 and GhBAM22 were more
expressed at 15 d and 20 d in fiber than other genes. Moreover, the expression levels at 15 d
and 20 d in extreme materials with high fiber lengths were higher than in extreme materials
with short fiber lengths. The GHBAM7 gene was selected, and the expression levels at 15
and 20 days of fiber development in the four extreme materials were analyzed by qRT-PCR.
The results of qRT-PCR analysis showed (Figure 8) that the expression patterns of the
GhBAM7 gene in these four extreme materials changed at day 15 and day 20. BS2 and
BS18 showed high expression at 20 d, while BS24 and BS38 showed little change at 20 d.
The results showed that the GhBAM7 gene was induced at 20 d of fiber development and
reached the peak expression level quickly (Figure 8). These results suggested that the
GhBAM7 gene may be involved in fiber development at 20 days. It is speculated that it may
play a role in starch degradation during the development of upland cotton fiber.

This study identified 27 GhBAM genes and analyzed their phylogenetic relationships,
gene structures, protein motifs, and expression patterns at different stages of cotton fiber
development. This comprehensive study adds to our understanding of how BAM genes are
involved in the development process of upland cotton fibers and will provide an essential
basis for future research using BAM for crop improvement.

5. Conclusions

BAM family genes were identified in four cotton cultivars, and their evolutionary
relationships were analyzed with a phylogenetic tree. The gene structure, phylogenetic re-
lationship, cis-acting elements, and collinearity of GhBAMs in upland cotton were analyzed,
which increases the understanding of the BAM gene family in upland cotton. The analysis
of cis-acting elements suggested that BAM genes might be involved in plant growth, devel-
opment, glucose metabolism, and hormone signal transduction. Tissue-specific analysis of
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all GhBAM family genes combined with transcriptome analysis revealed that two genes
were specifically expressed in extreme materials, and these two materials were also highly
expressed in extreme materials with long fiber lengths. Four progeny extreme materials
were selected for qRT-PCR verification, and the results showed that expression was high
in the long progeny extreme materials and low in the poor extreme materials (with a very
significant difference between them). It was concluded that the GhBAM7 gene might be
involved in the development of upland cotton fiber, which provides a theoretical basis for
studying the molecular mechanisms of BAM genes in upland cotton fiber development.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/genes14112077/s1, Table S1: Characteristics of BAM gene
family in G. hirsutum; Table S2: Multilevel consensus sequences of motifs in GhBAM; Table S3:
Analysis of Ka, Ks and Ka/Ks of BAM gene family in upland cotton; Table S4: Primers used in
GhBAM7 gene experiments.
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