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Abstract: Ultraviolet-B (UV-B) radiation is a significant environmental factor influencing the growth
and development of plants. MYBs play an essential role in the processes of plant responses to
abiotic stresses. In the last few years, the development of transcriptome and acetylated proteome
technologies have resulted in further and more reliable data for understanding the UV-B response
mechanism in plants. In this research, the transcriptome and acetylated proteome were used to
analyze Rhododendron chrysanthum Pall. (R. chrysanthum) leaves under UV-B stress. In total, 2348 dif-
ferentially expressed genes (DEGs) and 685 differentially expressed acetylated proteins (DAPs) were
found. The transcriptome analysis revealed 232 MYB TFs; we analyzed the transcriptome together
with the acetylated proteome, and screened 4 MYB TFs. Among them, only RcMYB44 had a complete
MYB structural domain. To investigate the role of RcMYB44 under UV-B stress, a homology tree was
constructed between RcMYB44 and Arabidopsis MYBs, and it was determined that RcMYB44 shares
the same function with ATMYB44. We further constructed the hormone signaling pathway involved
in RcMYB44, revealing the molecular mechanism of resistance to UV-B stress in R. chrysanthum.
Finally, by comparing the transcriptome and the proteome, it was found that the expression levels of
proteins and genes were inconsistent, which is related to post-translational modifications of proteins.
In conclusion, RcMYB44 of R. chrysanthum is involved in mediating the growth hormone, salicylic
acid, jasmonic acid, and abscisic acid signaling pathways to resist UV-B stress.

Keywords: R. chrysanthum; UV-B radiation; transcriptome; acetylated proteome; hormone signal
transduction; RcMYB44

1. Introduction

Abiotic stresses encountered by a plant at every moment of its life can severely affect
its growth and development. A plant’s genes, or portions of them, cooperate with each
other to regulate growth and developmental processes and to help in defence against
adverse environments [1,2]. So, finding the vital genes or proteins participating in the
plant’s response to abiotic stresses and inquiring into the molecular mechanisms of stress
resistance can lay a solid foundation for breeding varieties that are resistant to abiotic
stresses. Transcription factors have at least two structural domains: the DNA-binding
domain and the transcriptional activation domain. Transcription factors play a critical
role in plant growth and development by activating or repressing the physiological and
biochemical processes of transcription in response to exogenous or endogenous stimuli
when the plant is in an unfavorable environment [3]. In fact, the MYBs play an essential
role in the processes of plant responses to abiotic stresses.

Researches have reported that the MYB gene family plays an essential role in plants’
responses to abiotic stresses. In wheat, several MYBs responsive to stress have been discov-
ered, including TaMYB1, which is capable of a range of responses when wheat is subjected
to abiotic stress, and ABA, TaMYB2A, which exhibits tolerance to multiple abiotic stresses
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in transgenic Arabidopsis thaliana, and TaMYB33, which re-establishes osmotic homeostasis
and enhances salinity and drought tolerance in transgenic plants [4–6]. Arabidopsis thaliana,
as a model organism, has also been reported to have many MYBs involved in the abiotic
stress response. For example, AtMYB52 overexpression makes plants drought tolerant
and regulates cell wall biosynthesis. AtMYB33, AtMYB65, and AtMYB101, which can
replace barley (Hordeum Uggare) GAMYB, transactivate the barley α-amylase promoter and
mediate GA signaling effects during flowering. Similarly, AtMYB44, AtMYB77, AtMYB73,
and AtMYB70 have important functions in plant responses to abiotic stresses.

R. chrysanthum is distributed in the Alpine tundra zone of Changbai Mountain, where
the plant is exposed to abiotic stresses such as UV-B radiation. Its unique growing environ-
ment endows it with resistance to UV-B stress, so, R. chrysanthum is a good plant material
for the study of abiotic stresses [7,8]. UV-B (ultraviolet-B) radiation is a type of ultraviolet
radiation with wavelengths between 280 and 320 nm. Normally, UV-B radiation is mostly
absorbed by the ozone layer, and only a small amount of UV-B radiation reaches the Earth’s
surface [8]. However, today’s highly polluted atmosphere and the destruction of the ozone
layer have resulted in an excess of UV-B light reaching the Earth’s surface [9–11]. Plants, as
producers in the ecosystem, have a clear response to UV-B radiation [12]. Excessive UV-B
radiation has been shown to have severe effects on plants in terms of their morphology,
physiology, biochemistry, and cellular activity [13–16]. Therefore, we selected R. chrysan-
thum as the experimental material to explore the molecular mechanism of plant resistance
to UV-B radiation.

In a previous study, we irradiated wild-type and domesticated R. chrysanthum with
PAR, PAR + UV-A, and PAR + UV-B for 2 days. The results showed that UV-B radiation
inhibited photosynthesis in R. chrysanthum, while wild-type R. chrysanthum activated its
resistance to UV-B stress [17]. Subsequently, we investigated the response of antioxidant
enzymes to abiotic stresses using a proteomic approach, revealing their important role in the
resistance to stress [7]. A metabolomic analysis showed that the expression of flavonoids,
organic acids, amino acids, and fatty acids was up-regulated in plants under UV-B stress,
making them resistant to UV-B radiation, but transcriptome analysis showed consistent
changes in the content of genes and metabolites related to sucrose and starch metabolism,
and the opposite for amino acid metabolism [18]. This is because the mechanisms of
resistance in plants are extremely complex. They may be related to the expression of
proteins, and some proteins will undergo post-translational modification (PTM), which
will affect the expression of proteins, and then affect the expression of metabolites. It is,
therefore, extremely important to continue to unravel the mechanism of the resistance of
plants to UV-B radiation.

Lysine acetylation has been found to be an abundant and important PTM that affects
a variety of important biological processes in organisms [19–21]. Indeed, PTMs play
a vital role in several signaling pathways in plants, and they mainly harmonize protein
functions [22] by altering the activities, subcellular localization, and stability of proteins [23].
Lysine acetylation (Kac) has been extensively studied and found to exhibit a prominent
role during plant resistance to abiotic stress [24–28]. In the last few years, developments in
proteomics have provided a foundation for understanding the lysine acetylation proteome
and new directions for investigating the extent and regulatory mechanisms of the non-
histone protein Kac [29]. However, although the Kac contents of Arabidopsis thaliana [30,31],
poplar (Populus tremula × Populus alba) [32], rice (Oryza sativa) [33,34], pea (Pisum sativum
L.) [35], and wheat (Triticum Aestivum) have been intensively investigated [36], there have
been very few studies on the Kac content of R. chrysanthum.

In this work, the transcriptome and acetylated proteome are analyzed to investigate
RcMYB44, which undergoes acetylation modification under UV-B stress, and its func-
tions, and to reveal the molecular mechanism of the resistance of the RcMYB44 gene of
R. chrysanthum to UV-B stress.
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2. Materials and Methods
2.1. Plant Material

R. chrysanthum plants were kept in an artificial climate chamber. The plants were
grown under white fluorescent lamps at 50 µmol (photons) m−2 s−1. The chamber was set
to 14 h of light at 18 ◦C and 10 h of darkness at 16 ◦C, with a relative humidity of 60%.

2.2. Experimental Design

In order to investigate the molecular mechanism of UV-B resistance in R. chrysanthum,
the R. chrysanthum plants were divided into two groups of three replicates each. One group
was placed in photosynthetically active radiation (PAR) for 48 h (CG) and the other group
was placed in PAR and UV-B radiation for 48 h (BG).

2.3. PAR and UV-B Radiation Exposure

The plants were placed under artificial radiation, UV-B (280–315 nm) and PAR (400–700 nm),
replicated for each group (n = 3). In order to obtain the two radiation environments, dif-
ferent filters, with different transmissions, were used. In the PAR treatment, a 400 nm
long-pass filter (Edmund, Filter Long 2IN SQ, Barrington, NJ, USA) was placed above
the vials of the plants. In the PAR + UV-B treatments, a 295 nm long-pass filter (Edmund,
Filter Long 2IN SQ, Barrington, NJ, USA) was used. In the experiments, visible light (PAR)
was provided by warm-white fluorescent lamps (Philips, T5 × 14 W, Amsterdam, The
Netherlands). UV-B fluorescence tubes (Philips, Ultraviolet-B TL 20 W/01 RS, Amsterdam,
The Netherlands) were used as artificial UV-B radiation sources. The samples effectively
received an irradiance of 2.3 W m−2 of UV-B with a PAR of 50 µmol (photon) m−2 s−1

based on the transmission function of the long-pass filter.

2.4. Transcriptomics Analysis

The whole RNA was treated using either rRNA removal or mRNA enrichment. With
the use of magnetic beads and OligodT, mRNA with polyA tails was enhanced. To remove
rRNA, rRNA was hybridized with a DNA probe, the DNA/RNA hybrid strand was
selectively destroyed by RNaseH, the DNA probe was subsequently digested off using
DNaseI, and the resulting product was purified. The obtained RNA was fragmented
using an interrupted buffer, reverse-transcribed using a random N6 primer, and then the
synthesized double-stranded DNA was flattened and phosphorylated at the 5′ end. Finally,
a sticky end with an A protruded from the 3′ end of the double-stranded DNA. Then, a
sticky end was joined to a 3′ end. In order to generate a sticky end with a protruding “A”
at the 3′ end, and a bulge-like junction with a protruding “T” at the 3′ end, the ends of the
synthesized double-stranded DNA were flattened and phosphorylated at the 5′ end. To
create a single-stranded circular DNA library, the ligated product was amplified using PCR
using particular primers; the PCR product was heat-denatured to single-stranded DNA,
and finally, the single-stranded DNA was cyclized with a bridge primer.

2.4.1. Screening of Differentially Expressed Genes

The transcriptomics in this experiment was performed by Shenzhen Huada Gene
Technology Research Co., Ltd. (Shenzhen, China), screening for differentially expressed
genes. The p-values were calculated according to a normal distribution. The p-values were
corrected to Q-values. To increase the precision, genes with more than double difference
and Q-values ≤ 0.001 were selected as having significant differential expression.

2.4.2. KEGG Enrichment Analysis of DEGs

We used the KEGG database for the enrichment analysis of the KEGG pathway. The
R 4.0.5 software’s phyper function was used to calculate the p-values for the enrichment
studies, which were then FDR-corrected. A Q-value < 0.05 is typically regarded as signifi-
cantly enriched.
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2.5. 4D Label-Free Quantitative Acetylated Proteomic Analysis

The acetylated proteomics in this experiment was performed by Jingjie PTM Biolab
using a 4D label-free analysis. The specific experimental technique flow is shown in
Figure 1.
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2.5.1. Protein Extraction

Using a high-intensity ultrasound processor (Scientz, Ningbo, China), R. chrysanthum
were crushed and pulverized in liquid nitrogen, transferred to centrifuge tubes, then treated
three times on ice in a lysis buffer (8 M urea, 2 mM EDTA, 10 mM DTT, and 1% protease
inhibitor cocktail). The supernatant was centrifuged for three minutes at 4 ◦C after being
centrifuged at 20,000× g for ten minutes. The supernatant was centrifuged for 3 min at 4 ◦C
to separate the proteins, and it was then precipitated with 15% TCA for 4 h at −20 ◦C. After
chilling in a refrigerator, the remaining sediment was cleaned three times with acetone.
Finally, the proteins were redissolved in a buffer consisting of 8 M urea and 100 mM TEAB,
which had a pH of 8.0. The protein concentrations were estimated using a 2D quantitative
analysis kit.

2.5.2. Trypsin Digestion

TCA, at a concentration of 20% (m/v), was slowly added to the sample to precipitate
the proteins, followed by vortex mixing and incubation at 4 ◦C for 2 h. The precipitated
proteins were collected by centrifugation at 4500× g for 5 min at 4 ◦C. Subsequently,
the collected precipitated proteins were washed with pre-cooled acetone three times and
allowed to dry for 1 min. The washed and dried proteins were then redissolved in 200 mM
TEAB and dispersed using ultrasonication. For the first digestion, trypsin was added
at a 1:50 trypsin mass ratio overnight. Subsequently, the peptides were reduced with
5 mM dithiothreitol for 60 min at 37 ◦C, followed by 11 mM iodoacetamide for 45 min at
room temperature and in the dark. Finally, the peptides were desalted using a Strata X
SPE column.

2.5.3. Affinity Enrichment

Tryptic peptides were dissolved in NETN buffer (100 mM NaCl, 1 mM EDTA, 50 mM
Tris-HCl, 0.5% NP-40, pH 8.0) to dissolve Kac-modified peptides. Pre-washed antibody
beads (PTM-104, PTM Bio, Hangzhou, China) were then added and incubated with the
peptide mixture at 4 ◦C overnight with gentle shaking. The beads were then washed twice
with water and four times with NETN buffer. Use of 0.1% trifluoroacetic acid allowed the
bound peptides to be released from the beads. The eluted portions were then mixed and
dried under vacuum. The resultant peptides were desalted using C18 ZipTips (Millipore,
Burlington, ON, Canada), in accordance with the manufacturer’s instructions, for LC-
MS/MS analysis.
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2.5.4. LC-MS/MS Analysis and Database Search

Solvent A (0.1% formic acid, 2% acetonitrile in water) was used to solubilize the tryptic
peptides, which were then loaded directly onto a home-made analytical column (25 cm
length, 100 µm i.d.). In a nanoElute UHPLC system (Bruker Daltonics, Billerica, MA,
USA) running at 350 nL/min, the solvent B gradient was increased from 6% to 22% (0.1%
formic acid dissolved in acetonitrile) over 42 min, increased from 22% to 30% in 12 min,
increased to 80% in 3 min, maintained at 80%, and then held at 80% for 3 min. Prior to
mass spectrometry analysis with a timsTOF Pro (Bruker Dalton, Billerica, MA, USA), the
peptides were subjected to capillary source treatment. A 1.75 kV electrospray voltage was
used. At the TOF detector, the precursors and fragments were analyzed using MS/MS with
a scan range of 100 to 1700 m/z. Parallel accumulation serial fragmentation (PASEF) mode
was used to run the timsTOF Pro. Ten PASEF-MS/MS scans were acquired per acquisition
cycle, with the fragmentation of precursors with charge states of 0 to 5 being the preferred
range. A 24 s dynamic exclusion was set. The MaxQuant search engine (v. 1.6.6.0) was
used to process the generated MS/MS data. Up to 4 missing cleavage events were made
possible by using the cleavage protein trypsin/P. The mass tolerance for the precursor ions
was set to 20 ppm in both the first search and the main search. And the mass tolerance for
the fragment ions was set as 20 ppm. Protein N-terminal acetylation, oxidation on Met, and
acetylation on Lys were designated as variable modifications, while carbamidomethyl on
Cys was designated as a fixed modification. The FDR was adjusted to <1%.

2.6. Bioinformatics Analysis

After averaging the protein expression in the CG and BG groups separately, the ratio
of the averages of the CG and BG groups was calculated. This ratio was used for the
quantitative results. The p-values were computed from two-tailed Student’s t-tests and
log-transformed quantitative values. Values for proteins or modified peptides of p < 0.05
and a fold change (FC) > 1.5 were used to determine significant differences.

2.7. Protein Homology Modeling

In order to understand the protein structure, NCBI was used to compare homolo-
gous sequences and to model the three-dimensional structure of proteins, and for the
hydrophobic structural model and salt bridge model of the acetylated proteins.

2.8. Statistics and Analysis of Data

The protein data of the hormone signal transduction pathway in the CG group and
BG group were analyzed, and the significance was analyzed using the SPSS Statistics
26 software.

3. Results
3.1. Acetylated Proteome and Transcriptome Comprehensive Analysis of Functional Classification
and KEGG Enrichment in R. chrysanthum

Under the PAR and UV-B treatments, 2348 DEGs were found. Among them, 1157 DEGs
were increased and 1191 DEGs were decreased after UV-B stress (Table S1). A total of
807 proteins and 685 acetylated proteins were discovered from the leaves under the PAR
and UV-B treatments (Tables S2 and S3). Among them, 450 DEPs were increased and
357 DEPs decreased after UV-B stress. After UV-B stress, 95 acetylated proteins and 104 sites
were increased and 590 acetylated proteins and 841 sites were decreased. GO annotations
on the DEGs showed that the sets of data were classified; among them were the “catalytic
activity” term (755 DEGs) in molecular function and the “cellular process” term (486 DEGs)
in biological process (Table S4). These results suggest that the response of R. chrysanthum
to UV-B stress was related to processes such as cellular processes and catalytic activity.
Remarkably, many of the DEGs participated in several vital processes of classifications that
would affect UV-B tolerance in plants, for example, “antioxidant activity”, “transcription
regulator activity”, and “response to stimulus”. Furthermore, the GO analysis also showed
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that a range of important biological processes, cellular components, and molecular functions
differed in UV-B-stressed R. chrysanthum. Overall, these data offer valuable insights for an
understanding of the molecular mechanisms of R. chrysanthum responses to UV-B stress.
GO annotations of the DEPs and DAPs showed that the sets of data were classified. Among
them, the “cell” term (461 DEPs and 427 DAPs) in cellular component, “cellular process”
term (298 DEPs and 295 DAPs) in biological process, and “catalytic activity” term (199 DEPs
and 255 DAPs) in molecular function (Table S5). These results indicate that the response
of R. chrysanthum to UV-B stress focuses on cells, cellular processes, and catalytic activity.
Several important biological processes, molecular functions, and cellular components were
different in R. chrysanthum during UV-B exposure.

3.2. Prediction and Analysis of RcMYB44 Function under UV-B Stress

The enrichment analysis of the KEGG-based DEGs indicated that most of the KEGG
pathways were highly enriched in R. chrysanthum under UV-B stress. The most enriched
classifications were “plant hormone signal transduction” in R. chrysanthum under UV-B
stress (95 DEGs) (Figure 2a). The identification and characterization of the stress-responsive
TFs are essential to develop plants with enhanced tolerance. In our research, we found
2168 differentially expressed TFs. They comprised a variety of MYB, bHLH, NAC, and
WRKY TFs associated with UV-B, and the diversity of their transcription profiles indicated
that they play key roles in the UV-B stress response. The MYB (232 members) family had
the largest number of differentially expressed TFs. The specific up-regulated or down-
regulated TFs in R. chrysanthum may contribute positively to the UV-B tolerance. A total of
four RcMYB transcription factors were found to be modified by acetylation in response to
UV-B stress through joint analysis of the acetylated proteome and transcriptome. Of these,
only MYB44 has the full MYB structural domain. Through the proteomic analysis of the
acetylation, acetylation was found to occur in RcMYB44 (CL1734.Contig2-All) at the site 84,
and RcMYB44 was located in the nucleus (Table 1).

Table 1. Information of RcMYB acetylation modification in R. chrysanthum.

Protein Accession Position Amino Acid Gene Name Subcellular Localization

CL1734.Contig2_All 84 K MYB44 nucleus
Unigene7559_All 151 K MYB1 chloroplast

Unigene12045_All 172 K - chloroplast
Unigene11720_All 249 K ADA2 nucleus

To explore the function of RcMYB44, we compared it with the model organism Ara-
bidopsis MYB and constructed a homology evolution tree. We divided the evolutionary
tree into six groups, each labeled with a different color, with the pink group containing
RcMYB44 (Figure 2b). We analyzed this group exclusively and found that RcMYB44 shares
a common ancestor with ATMYB44, ATMYB77, ATMYB73, and ATMYB70, and RcMYB44 is
more homologous to ATMYB44, which is presumed to have the same function (Figure 2c).
According to studies reported in the literature, during adversity stress, ATMYB44 regulates
the response of Arabidopsis to adversity stress through the salicylic acid, jasmonic acid,
growth hormone, and abscisic acid signaling pathways [37–39]. To elucidate the mechanism
of action of RcMYB44 against UV-B stress we further analyzed proteins from other species
homologous to RcMYB44. A blast homology comparison using NCBI was used to find
proteins of other species with a similar homology, allowing us to further construct the
evolutionary tree, which showed that only two proteins from two species might have the
same function as RcMYB44, namely, Medicago truncatula and Syzygium grande, with the
protein from Medicago truncatula being a disease-resistant protein and that from Syzygium
grande being a hypothetical protein with an unknown function (Figure 2d).



Genes 2023, 14, 2022 7 of 16

Genes 2023, 13, x FOR PEER REVIEW 7 of 16 
 

 

used to find proteins of other species with a similar homology, allowing us to further con-
struct the evolutionary tree, which showed that only two proteins from two species might 
have the same function as RcMYB44, namely, Medicago truncatula and Syzygium grande, 
with the protein from Medicago truncatula being a disease-resistant protein and that from 
Syzygium grande being a hypothetical protein with an unknown function (Figure 2d). 

 

Figure 2. Cont.



Genes 2023, 14, 2022 8 of 16Genes 2023, 13, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 2. Functional prediction of RcMYB44. (a) KEGG-enriched pathways of DEGs in R. chrysan-
thum under UV-B radiation. The x-axis indicates the proportion of genes, and the y-axis indicates 
the pathway name. The color of the dots is related to the q-value; the size of the dots is proportional 
to the number of genes. (b) Construction of homologous evolutionary tree between RcMYB44 and 
Arabidopsis MYB. (c) Sequence comparison with proteins from the same group as RcMYB44. (d) 
Functional analysis of RcMYB44 homologous similar proteins in different species. 

3.3. Proteomics Reveals the Function of RcMYB44 in R. chrysanthum under UV-B Stress 
To investigate the process of RcMYB44 acting in the hormone signaling pathway, we 

constructed the relevant pathway in R. chrysanthum. Based on the construction of a previ-
ous homologous evolutionary tree, we suggest that the R. chrysanthum RcMYB44 is in-
volved in plant resistance to UV-B stress, mainly through growth hormone, abscisic acid, 
jasmonic acid, and salicylic acid pathway signaling (Figure 3). The proteomic analysis 
showed that RcMYB44 expression increased under UV-B stress. During growth hormone 
signaling, the expression of the growth hormone AUX/IAA protein was down-regulated, 
while CH3 and SAUR proteins were up-regulated through the interaction of RcMYB44 
with ARF. In the abscisic acid signaling pathway, the expression of the negative regulator 
PP2C was up-regulated, and SnRK2 was activated and up-regulated to positively regulate 
ABF, which in turn affected the opening and closing of stomata to resist UV-B stress. In 
contrast, RcMYB44 can participate in the jasmonate signaling pathway in response to UV-
B stress. In the salicylic acid signaling pathway, RcMYB44 mediates the expression of PR-
1 to regulate plant resistance (Figure 3a). The expression of proteins of plant hormone 
signaling pathways, ABF, PP2C, TGA, PR-1, SnRK2, COI1, IAA, CH3, and SUAR, were 
studied in UV-B-stressed and PAR leaves. Under UV-B radiation, CH3, SAUR, PP2C, 
SnRK2, ABF, and PR-1 expression was enhanced in the UV-B-tolerant plants, and TGA, 
IAA, and COI1 expression decreased in the UV-B-tolerant plants (Figure 3b). PP2C ex-
pression was up-regulated by 19%, PR-1 1.08-fold, SnRK2 by 19.5%, SUAR by 4.1%, CH3 
by 28.7%, TGA by 20.4%, and COI1 by 3.1%. Among them, the expression of ABF was 
detected only after UV-B treatment, suggesting that the ABA pathway plays an important 
role in the resistance of R. chrysanthum to UV-B stress. 

Figure 2. Functional prediction of RcMYB44. (a) KEGG-enriched pathways of DEGs in R. chrysanthum
under UV-B radiation. The x-axis indicates the proportion of genes, and the y-axis indicates the
pathway name. The color of the dots is related to the q-value; the size of the dots is proportional
to the number of genes. (b) Construction of homologous evolutionary tree between RcMYB44
and Arabidopsis MYB. (c) Sequence comparison with proteins from the same group as RcMYB44.
(d) Functional analysis of RcMYB44 homologous similar proteins in different species.

3.3. Proteomics Reveals the Function of RcMYB44 in R. chrysanthum under UV-B Stress

To investigate the process of RcMYB44 acting in the hormone signaling pathway,
we constructed the relevant pathway in R. chrysanthum. Based on the construction of a
previous homologous evolutionary tree, we suggest that the R. chrysanthum RcMYB44 is
involved in plant resistance to UV-B stress, mainly through growth hormone, abscisic acid,
jasmonic acid, and salicylic acid pathway signaling (Figure 3). The proteomic analysis
showed that RcMYB44 expression increased under UV-B stress. During growth hormone
signaling, the expression of the growth hormone AUX/IAA protein was down-regulated,
while CH3 and SAUR proteins were up-regulated through the interaction of RcMYB44
with ARF. In the abscisic acid signaling pathway, the expression of the negative regulator
PP2C was up-regulated, and SnRK2 was activated and up-regulated to positively regulate
ABF, which in turn affected the opening and closing of stomata to resist UV-B stress. In
contrast, RcMYB44 can participate in the jasmonate signaling pathway in response to UV-B
stress. In the salicylic acid signaling pathway, RcMYB44 mediates the expression of PR-1 to
regulate plant resistance (Figure 3a). The expression of proteins of plant hormone signaling
pathways, ABF, PP2C, TGA, PR-1, SnRK2, COI1, IAA, CH3, and SUAR, were studied in
UV-B-stressed and PAR leaves. Under UV-B radiation, CH3, SAUR, PP2C, SnRK2, ABF,
and PR-1 expression was enhanced in the UV-B-tolerant plants, and TGA, IAA, and COI1
expression decreased in the UV-B-tolerant plants (Figure 3b). PP2C expression was up-
regulated by 19%, PR-1 1.08-fold, SnRK2 by 19.5%, SUAR by 4.1%, CH3 by 28.7%, TGA
by 20.4%, and COI1 by 3.1%. Among them, the expression of ABF was detected only after
UV-B treatment, suggesting that the ABA pathway plays an important role in the resistance
of R. chrysanthum to UV-B stress.
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Figure 3. Protein expression (a,b) showing differential expression of RcMYB44 involved in hormone
signaling pathway proteins in response to UV-B treatment for 48 h in R. chrysanthum. (a) Analysis
of proteins in hormone pathways involved in RcMYB44. Green indicates down-regulation of pro-
tein expression, red indicates up-regulation of protein expression. (b) Protein expression showing
differential expression of proteins in hormone pathways. Small letters a and b indicate significant
differences (p < 0.05).
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3.4. Transcriptome Validation of RcMYB44 Function in R. chrysanthum under UV-B Stress

Transcriptomics was used to verify the expression of genes involved in the hormone
transduction pathway. A total of 24 genes were annotated in the plant hormone signal
transduction pathways (Figure 4). In the IAA, ABA, SA, and JA signaling pathways, 9, 3, 1,
and 11 genes were found, respectively. In IAA, the expression of seven genes decreased
under the 48 h UV-B treatment (Figure 4a) and the expression of two genes increased. This
is in general agreement with the proteomic results. The expression of two genes (PP2C and
SnRK2) in the ABA signaling pathway (Figure 4b) increased under the 48 h UV-B treatment,
but the expression of one gene (PP2C) decreased. Induced by the UV-B treatment, the
genes’ expressions in the SA signal transduction pathway (Figure 4c) changed in PR-1; the
expressions of PR-1 increased in the 48 h UV-B treatment. In JA, the expression of nine
genes decreased under the 48 h UV-B treatment (Figure 4d) and the expression of two genes
increased. These results show that the ABA and SA signaling pathways were enhanced by
the UV-B treatment, which is opposite to the case of the JA signaling pathway, and the IAA
signaling pathway varied both up and down; together they constitute a system of resistance
to UV-B stress in R. chrysanthum. The results show that the proteome and transcriptome
are basically consistent, and some inconsistencies may be related to post-translational
modifications of proteins.
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Figure 4. Transcriptome analysis of genes in hormone pathways involved in RcMYB44. (a) Auxin
signal transduction pathway; (b) abscisic acid signal (ABA) transduction pathway; (c) salicylic acid
(SA) signal transduction pathway; (d) jasmonic acid (JA) signal transduction pathway.

3.5. Three-Dimensional Structure Construction and Noncovalent Interaction Analysis of
RcMYB44 from R. chrysanthum

Based on the above information, we constructed the three-dimensional structure
of RcMYB44 and labeled the acetylated site (Figure 5a). Proteins fold into their natu-
ral structures driven by a variety of non-covalent interactions; thus, to understand pro-
tein characterization and function at the molecular level, interactions must be described.
The visualization of these structures using ProteinTools determined that RcMYB44 con-
tained three hydrophobic clusters, with the largest hydrophobic cluster area being 770.62

(Figure 5b, Table 2). The analysis of the hydrophobic clusters showed that cluster 0 had a
total area of 110.42, this cluster contained one residue, an area of 55.22 per residue, and two
interactions between residues. Cluster 1 had a total area of 589.52, this cluster contained
six residues, an area of 45.32 per residue, and 13 interactions between residues. Cluster 2
had a total area of 770.62, this cluster contained seven residues, an area of 45.32 per residue,
and 17 interactions between residues. The salt-bridge networks in the proteins were found
and the charge separation parameters calculated. Analysis of the results showed that there
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are eight salt bridges in RcMYB44 (Figure 5c). By calculation, it was found that the FCR
(fraction of charged residues) was 0.34, and the K (kappa value) was 0.17.
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Table 2. Information about hydrophobic cluster of RcMYB44.

Cluster ID Area No. Contacts Contacts/Residue Area/Residue

0 110.4 2 1.0 55.2
1 589.5 13 1.9 45.3
2 770.6 17 2.4 45.3

4. Discussion

As a result of the degradation of the stratospheric ozone layer, the quantity of UV-B
radiation that reaches both the Earth and plant surfaces has increased [40]. Therefore, we
need to better understand the molecular mechanisms of plant resistance to UV-B radiation.
However, to date only minor attention has been paid to the integration of transcriptomic
and acetylated proteomic data to analyze how plants respond to UV-B. In our research, we
obtained MYB TFs that underwent acetylation modifications through a combined acetylated
proteome and transcriptome analysis. By constructing a homologous evolutionary tree,
we believe that RcMYB44 has the same function as the homologous ATMYB44. RcMYB44
can resist UV-B stress by mediating the growth hormone, abscisic acid, jasmonic acid, and
salicylic acid signaling pathways. We also constructed the hydrophobic and salt-bridge
structures of RcMYB44, which is an important and unique part of this study.

On the basis of the data of the transcriptome and acetylated proteome obtained,
the mRNA and proteins of R. chrysanthum leaves were significantly different from those
exposed to UV-B. In total, 2348 DEGs and 807 DEPs were identified. In R. chrysanthum,
there are great differences between the DEGs and DEPs. This is also supported by many
earlier transcriptomic studies with similar factors [41,42]. For example, 1210 DEGs have
been found in loquat under cold stress, but only 300 DEPs [42]. There were two major
causes for the low correlation between the transcriptome and the proteome. On the one
hand, even though similar plant material and stress treatments were utilized, the two kinds
of omics analyses were not carried out simultaneously, which had a certain impact on the
relationship. Furthermore, post-transcriptional modification and turnover of the proteins
also affected the levels of proteins.

Histone acetylation has defined mechanisms of action in all kinds of biological pro-
cesses [43,44]. However, the mechanisms of action of non-histone acetylation modifications
are less well known. It was reported that acetylation modification of key enzymes in
primary metabolism plays an important role in the release of poplar (Populus tremula ×
Populus alba) buds from dormancy [32]. Elevated acetylation levels of PuMYB110a in pear
promoted anthocyanin accumulation in the fruit [45]. Increasing the level of acetylation
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of the PuWRKY31 promoter in pear fruit is a mechanism for increasing the sugar con-
tent [46]. Based on the results of other studies, we found a large number of acetylation
sites in proteins of R. chrysanthum, strongly and convincingly suggesting the significance
of Kac modification for UV-B resistance in plants [47]. In addition, in R. chrysanthum, we
note that several classes of transcription factors undergo lysine acetylation modifications
(Table 1); the expression of these TFs was significantly altered under UV-B stress, and we
hypothesize that acetylation modifications may regulate the activity of these transcription
factors. This study is the first to report on the acetylation modification of transcription
factors in R. chrysanthum.

In plants, the MYB TF family is a large family with diverse and intricate functions [48].
It has been reported that MYB transcription factors regulate plant responses to stress. For
example, GmMYB81 induces plant seed germination under abiotic stresses, for example,
drought stress, low temperature stress, and salt stress [49]. Under UV-B irradiation, the
UV-B photoreceptor UVR8 of Arabidopsis interacts with different MYB transcription factors
to control cotyledon unfolding and lateral root growth in the cotyledons and roots of the
plant, respectively [50]. The promoter of AtMYB4 may be involved in the regulation of its
Arabidopsis expression under UV-B light [51]. The overexpression of AaMYB1 in Artemisia
annua resulted in increased flavonoid biosynthesis to resist UV-B stress [52]. In this work,
RcMYB44 could participate in the growth hormone, abscisic acid, jasmonic acid, and
salicylic acid signaling pathways to improve UV-B resistance in R. chrysanthum (Figure 3).
Under the condition of UV-B radiation, our research identified 232 MYB family members
in R. chrysanthum. RcMYB44 undergoes acetylation modification and its expression is
up-regulated, and homology analysis showed that RcMYB44 has high homology with
ATMYB44 in Arabidopsis. Therefore, we believe that RcMYB44 has the same function as the
homologous Arabidopsis ATMYB44; it is tolerant to adversity stresses during plant growth.
Consequently, it will be necessary and meaningful to investigate how RcMYB44 enhances
plant resistance to UV-B stress through intrinsic mechanisms.

We believe that UV-B causes damage to plants, but plants resist UV-B stress by reg-
ulating their own molecular mechanisms. In R. chrysanthum, RcMYB44 can mediate four
pathways to resist UV-B stress, namely, interacting with ARF to regulate the expression of
growth hormone genes; acting on the ABA signaling pathway to regulate the opening and
closing of the stomata to resist UV-B stress; and acting on the jasmonic acid and salicylic
acid signaling pathways to resist UV-B stress (Figure 6). These will be the focus of our
future research.



Genes 2023, 14, 2022 13 of 16Genes 2023, 13, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 6. RcMYB44 is involved in hormone signaling pathways in R. chrysanthum under UV-B stress. 
R. chrysanthum RcMYB44 resists UV-B stress by participating in growth hormone, abscisic acid 
(ABA), jasmonic acid (JA) and salicylic acid (SA) signaling pathways. 

5. Conclusions 
In conclusion, a total of four acetylated MYB transcription factors were identified in 

this study by combining the transcriptome and acetylated proteome analysis. Only 
RcMYB44 has a complete MYB domain. To investigate the function of RcMYB44, we con-
structed a homologous evolutionary tree between RcMYB44 and Arabidopsis MYBs and 
identified a functionally similar homologous protein ATMYB44. The function of RcMYB44 
can be obtained through the function of ATMYB44. RcMYB44 undergoes acetylation mod-
ification and its expression level is up-regulated. In the process of auxin signal transduc-
tion, RcMYB44 interacts with ARF to regulate the expression of downstream auxin genes. 
In the process of abscisic acid signal transduction, RcMYB44 acts on this pathway, regu-
lating stomata to resist UV-B radiation. In the signal transduction pathway of salicylic 
acid, RcMYB44 mediates the expression of PR-1 to regulate plant resistance. Based on the 
function of ATMYB44, it can be concluded that the RcMYB44 in R. chrysanthum mediates 
the resistance to UV-B stress in the growth hormone, abscisic acid, jasmonic acid, and sal-
icylic acid signaling pathways. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1. 

Author Contributions: Methodology, M.L.; software, M.L. and X.L.; writing—original draft prepa-
ration, M.L. and X.L.; writing—review and editing, K.C., H.X., and L.Y.; visualization, M.L. and X.L.; 
supervision, K.C., L.Y., and X.Z.; project administration, H.X. and X.Z. All authors have read and 
agreed to the published version of the manuscript. 

Funding: This work was mainly supported by Jilin province science and technology development 
plan project mission statement (YD ZJ202301ZYTS517). 

Figure 6. RcMYB44 is involved in hormone signaling pathways in R. chrysanthum under UV-B stress.
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5. Conclusions

In conclusion, a total of four acetylated MYB transcription factors were identified in this
study by combining the transcriptome and acetylated proteome analysis. Only RcMYB44
has a complete MYB domain. To investigate the function of RcMYB44, we constructed a
homologous evolutionary tree between RcMYB44 and Arabidopsis MYBs and identified
a functionally similar homologous protein ATMYB44. The function of RcMYB44 can be
obtained through the function of ATMYB44. RcMYB44 undergoes acetylation modification
and its expression level is up-regulated. In the process of auxin signal transduction,
RcMYB44 interacts with ARF to regulate the expression of downstream auxin genes. In
the process of abscisic acid signal transduction, RcMYB44 acts on this pathway, regulating
stomata to resist UV-B radiation. In the signal transduction pathway of salicylic acid,
RcMYB44 mediates the expression of PR-1 to regulate plant resistance. Based on the
function of ATMYB44, it can be concluded that the RcMYB44 in R. chrysanthum mediates the
resistance to UV-B stress in the growth hormone, abscisic acid, jasmonic acid, and salicylic
acid signaling pathways.
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