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Abstract: The global rise in obesity is attributed to genetic predisposition interaction with an obe-
sogenic environment. Melanocortin 4 receptor (MC4R) rs17782313 polymorphism has been linked
to common obesity with varying influence across different populations. MC4R is a crucial player
in the leptin proopiomelanocortin pathway that regulates weight hemostasis. We aimed to study
MC4R rs17782313 and its interaction with eating behaviors on obesity predisposition in the Israeli
population. Adults’ (n = 5785, >18 y) genotype and anthropometric and demographic data were
analyzed using logistic regression models adjusting for age, sex, T1DM, and T2DM. MC4R rs17782313
significantly predisposes to elevated obesity risk under the recessive and additive models (OR = 1.38,
95% CI: 1.1–1.72, p = 0.005 and OR = 1.1, 95% CI: 1.01–1.2, p = 0.03, respectively) adjusted for con-
founders (age, sex, T1DM, and T2DM). Stratification by sex demonstrated that carrying the common
MC4R rs17782313 is significantly associated with an elevated predisposition to obesity under the
recessive model among females only (OR = 1.41, 95% CI: 1.09–1.82, p = 0.01), with an average of 0.85
BMI increment compared with wild type and one risk allele carriers. MC4R rs17782313 significantly
interacted with several eating behaviors to enhance the risk of obesity. Our findings demonstrate that
MC4R rs17782313 homozygous female carriers are significantly predisposed to obesity amplified by
eating behaviors.
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1. Introduction

Obesity is a complex and multifaceted health condition characterized by an excessive
accumulation of body fat; it is often measured using the Body Mass Index (BMI). It has
evolved into a global epidemic that grows continuously, affecting both developed and
developing nations [1]. The etiology of obesity is multifactorial, involving a combina-
tion of genetic, environmental, and behavioral factors. Genetic predisposition plays a
role, as evidenced by twin and family studies with an estimated 40–75% heritability for
obesity [2,3]. However, the rapid rise in obesity rates cannot be solely attributed to genetic
factors and suggests a significant influence of environmental and lifestyle changes [4]. The
widespread epidemic of common obesity is significantly exacerbated by an environment
conducive to weight gain; it is marked by factors such as high-calorie foods, a lack of
physical activity, environmental pollutants, rapid consumption of meals, oversized food
portions, sugar-sweetened beverages, sedentary behavior related to screen time, inadequate
sleep, and excessive consumption of simple carbohydrates and sugars [4,5]. Moreover,
the prevalence of obesity varies significantly among different age groups, sex, and eth-
nicities, indicating that the risk factors for obesity are not uniformly distributed across
populations [6]. The BMI is the prevalent, most used index for obesity classification due to
its simplicity. BMI is calculated by dividing body weight in kilograms by height in meters
squared. According to the BMI, individuals are allocated to five different categories as
follows: 18.5–24.9 kg/m2: normal range, 25.0–29.9 kg/m2: overweight, 30.0–34.9 kg/m2:
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class 1-obesity, 35.0–39.9 kg/m2: class 2-obesity, equal or greater than 40 kg/m2: class
3-obesity [7]. Obesity is a well-established risk factor for a myriad of chronic medical
and psychological conditions, including cardiovascular diseases, type 2 diabetes, certain
types of cancer, depression, and reduced quality of life [8,9]. The economic burden of
obesity is also substantial, with increased healthcare costs and lost productivity affecting
both individuals and society [10]. Beyond healthcare costs, obesity significantly impacts
workforce productivity and disability rates [11]. Eating behaviors have been increasingly
recognized as a critical factor in the development and maintenance of obesity. Behav-
iors such as emotional eating, binge eating, overeating, and night-time eating have been
shown to contribute to weight gain and obesity [12,13]. These behaviors often serve as
coping mechanisms for stress, emotional disturbances, or even boredom, leading to the
consumption of high-calorie, nutrient-poor foods [14].

Common polygenic obesity is attributed to a range of several to hundreds of genetic
polymorphisms, each with a relatively small effect, predisposing the carrier to develop
obesity, particularly with exposure to an obesogenic environment [14]. Genetic alternations
to genes involved in the central nervous system (CNS) and neuronal pathways that control
the hedonic aspects of food intake have emerged as the major drivers of elevated body
weight for both monogenic and polygenic obesity [15,16]. The interaction between genetic
predisposition and environmental factors referred to as “gene-environment interaction”,
can significantly modulate the risk of obesity [17].

The hypothalamus plays a pivotal role in integrating the regulation of food intake
by sensing circulating levels of metabolites and altering eating patterns based on the
concentrations of these molecules [17]. It is a key player in the neural leptin-melanocortin
pathway, which includes melanocortin 4 receptor (MC4R) and is involved in body weight
homeostasis and food intake, with genetic disruption resulting in extreme obesity and more
subtle polymorphic variations influencing the population distribution of body weight [18].
MC4R is a G protein-coupled receptor that belongs to the largest family of transmembrane
receptors in humans, the melanocortins, consisting of nearly 800 distinct genes and their
corresponding gene products [19]. Located in chromosome 18q21.3., MC4R is a major player
in the leptin–melanocortin pathway and has an essential role in food intake and energy
homeostasis (Figure 1). Distributed widely throughout the central nervous system, MC4R
is stimulated by the binding of α-melanocyte-stimulating hormone (α-MSH) released from
proopiomelanocortin (POMC) neurons, resulting in the exocytosis of brain anorexigenic
signals that regulate the satiety signal [20,21]. In the pathway, in brief, leptin released to
the bloodstream by adipocytes in response to over-size and nutrient over-flow crosses the
blood-brain barrier and binds to the leptin receptor on the surface of POMC neurons. Leptin
binding to its receptor results in the secretion of α-MSH, which acts on MC4R neurons
to increase energy expenditure and decrease energy intake [22]. In parallel, leptin binds
to the leptin receptor on the surface of neurons, localized in the arcuate nucleus (ARC),
resulting in Agouti-related peptide (AgRP) and neuropeptide Y (NPY) expression and the
release of MC4R inhibition [23]. Other anorexigenic chemoreceptors and hormone players
released by the gut, such as cholecystokinin (CCK) and glucagon-like peptide (GLP)-1, also
bind to their respective receptors, stimulate POMC neurons, and contribute to reducing
appetite and increased energy expenditure. Peptide YY (PYY) binds to its receptors on
NPY/AgRP neurons to inhibit NPY/AgRP signaling. Orexigenic players such as Gherlin
secreted from the stomach, also regarded as the “hunger hormone”, stimulate NPY/AgRP
neurons to promote appetite and prevent satiety signals [22,24,25]. Deleterious mutations
truncate or alter protein function in any of the genes along the leptin-melanocortin pathway,
including MC4R, often causing early onset and severe monogenic obesity [26]. More than
200 MC4R variants have been identified over the past two decades, inherited primarily
in an autosomal dominant pattern, with obesity resulting from only one affected allele
mutation [27,28]. However, MC4R variants of homozygous and mixed inheritance patterns
have also been identified in consanguineous families and linked with severe obesity [29,30].
To date, MC4R genetic variation is the most common (2–8% of common obesity) cause of
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early-onset and the most severe monogenic non-syndromic obesity known, influencing
eating behavior and hyperphagia [19,26,31]. MC4R expression is affected differently by each
mutation, and the obesity phenotype is determined by variable penetrance, expressivity,
and allelic heterogeneity that contributes to different pathogenic mechanisms. Additionally,
MC4R signaling is coupled to the three main heterotrimeric G proteins: Gs (stimuli), Gi
(inhibition), and Gq. Thus, depending on the genetic variation, both loss-of-function and
gain-of-function were identified in the population. Consequently, the obesity phenotype
resulting from MC4R mutation can range from lean to morbid obesity [32]. Most known
MC4R gene variants result in loss-of-function. However, about 15% of them result in gain-of-
function, which protects against obesity and is associated with a favorable metabolic profile;
these include, for instance, I251L and V103I [28,33]. MC4R variants that do not completely
disrupt protein function may lead to influence the individual’s polygenic susceptibility
to obesity [34,35]. Moreover, MC4R gene variation can interact with other obesity-linked
genes and thereby elevate obesity risk. For example, common variants near MC4R and
FTO seem to have additive effects on BMI [36].

The near MC4R rs17782313 single nucleotide polymorphism (SNP), located 188 kb
downstream of the MC4R gene, has been associated with BMI and weight regulation in early
life [36,37]. Notably, the rs17782313 C-allele has also been linked to BMI during childhood
and adolescence [38]. Additionally, although scarcely studied, the rs17782313-C variant has
been linked to eating behavior traits [39]. Several studies have shown that MC4R rs17782313
SNP carriers have an increased risk for obesity among different populations, though with
varying influence across different populations [40]. Moreover, the MC4R rs17782313 variant
has been implicated in metabolic pathways that influence energy balance, affecting weight
regulation [41]. MC4R rs17782313 variant has also been associated with other metabolic
processes that could indirectly contribute to obesity. For instance, this variant has been
associated with altered lipid metabolism and obesity-related cardio-metabolic traits [42,43],
which could further exacerbate obesity risk. Furthermore, the MC4R rs17782313 has been
studied with other obesity-related co-morbidities such as type 2 diabetes and cardiovascular
diseases [44]. This further emphasizes this genetic variant’s multi-faceted impact on health
outcomes and obesity-related co-morbidities. Lately, research on obesity-linked variants
from different populations carrying different genetic architectures has been investigated,
disclosing the importance of addressing genetic risk in different populations to better
calculate genetic risk. We aimed to study the association of MC4R rs177823313 with obesity
risk and eating habits in the Israeli population. Given the complex interplay of genetic and
environmental factors, as well as the role of the hypothalamus and MC4R in obesity, an
intricate approach is essential for understanding and treating this condition.
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Figure 1. Leptin melanocortin pathway. Leptin is secreted by adipose tissue and activates leptin 
receptors (LEPR) in the arcuate nucleus: proopiomelanocortin (POMC) expressing neurons are ac-
tivated accelerating α-melanocyte stimulating hormone (α-MSH), which activates the melanocortin-
4 receptor (MC4R) allocated in the paraventricular nucleus (PVN), leading to reduced food intake 
and increased energy expenditure whilst inhibiting the secretion of the MC4R inverse agonist 
agouty related protein (AgRP) by AgRP/NPY [22,24,25,45]. Created with BioRender.com. (accessed 
on 27 September 2023). 

2. Materials and Methods 
2.1. Participants 

Adults (≥ 18 years, n = 5785), out of which 69.5% were females, were included in the 
analysis. The research data source was from the Israeli registry database of Lev Hai Ge-
netics LTD–MyGenes (Registry #700068969). Anonymous genetic data were employed for 
the analysis. Ethical approval for the study was granted by Ariel University’s ethical com-
mittee (Approval #AU-HEA-RB-20220214). The study sample excluded individuals 
younger than 18 years of age, those with genetic diseases, or those with incomplete an-
thropometric data. 

2.2. Anthropometric and Genetic Data 
Self-reported metrics were used for weight and height, with height indicated in cen-

timeters and weight in kilograms. BMI was determined using the formula weight/(height)2 
(kg/m2). Participants were categorized as having obesity, with a BMI ≥ 30, or as non-obese, 
with a BMI < 30, based on established BMI thresholds. The categorization was in line with 
the World Health Organization’s international standards for defining obesity [46]. The 
selected SNP MC4R rs17782313 chosen for this study analysis was previously identified 
to have a significant association with obesity and was previously studied in regard to its 
role in eating behaviors and metabolic pathways [44,47,48]. The selection criteria for the 
SNP included a minor allele frequency (MAF) greater than 0.01 and validation in at least 
two genome-wide association study (GWAS) populations [35,36], as well as inclusion in 
the verified catalog of GWASs published [49]. The rigorous selection criteria ensured the 
reliability and validity of the genetic data used in the study. The Hardy–Weinberg equi-
librium was assessed for this SNP via a chi-square test with 1 degree of freedom and was 
found to be in Hardy–Weinberg equilibrium. 

  

Figure 1. Leptin melanocortin pathway. Leptin is secreted by adipose tissue and activates leptin
receptors (LEPR) in the arcuate nucleus: proopiomelanocortin (POMC) expressing neurons are activated
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accelerating α-melanocyte stimulating hormone (α-MSH), which activates the melanocortin-4 re-
ceptor (MC4R) allocated in the paraventricular nucleus (PVN), leading to reduced food intake and
increased energy expenditure whilst inhibiting the secretion of the MC4R inverse agonist agouty
related protein (AgRP) by AgRP/NPY [22,24,25,45]. Created with BioRender.com. (accessed on 27
September 2023).

2. Materials and Methods
2.1. Participants

Adults (≥ 18 years, n = 5785), out of which 69.5% were females, were included in the
analysis. The research data source was from the Israeli registry database of Lev Hai Genetics
LTD–MyGenes (Registry #700068969). Anonymous genetic data were employed for the
analysis. Ethical approval for the study was granted by Ariel University’s ethical committee
(Approval #AU-HEA-RB-20220214). The study sample excluded individuals younger than
18 years of age, those with genetic diseases, or those with incomplete anthropometric data.

2.2. Anthropometric and Genetic Data

Self-reported metrics were used for weight and height, with height indicated in cen-
timeters and weight in kilograms. BMI was determined using the formula weight/(height)2

(kg/m2). Participants were categorized as having obesity, with a BMI ≥ 30, or as non-obese,
with a BMI < 30, based on established BMI thresholds. The categorization was in line with
the World Health Organization’s international standards for defining obesity [46]. The
selected SNP MC4R rs17782313 chosen for this study analysis was previously identified
to have a significant association with obesity and was previously studied in regard to
its role in eating behaviors and metabolic pathways [44,47,48]. The selection criteria for
the SNP included a minor allele frequency (MAF) greater than 0.01 and validation in at
least two genome-wide association study (GWAS) populations [35,36], as well as inclusion
in the verified catalog of GWASs published [49]. The rigorous selection criteria ensured
the reliability and validity of the genetic data used in the study. The Hardy–Weinberg
equilibrium was assessed for this SNP via a chi-square test with 1 degree of freedom and
was found to be in Hardy–Weinberg equilibrium.

2.3. Eating Behaviors Variables

Eating behaviors were assessed using an online validated self-reported questionnaire.
The questionnaire was designed to capture a comprehensive range of eating habits and
preferences, including frequency and type of meals, to better understand the behavioral
aspects contributing to obesity. The questionnaire responses utilized a Likert scale to assess
eating behavior statements, allowing participants to self-assess their eating habits across a
range of behaviors. The items in the questionnaire were designed to probe various aspects
of eating behaviors, including but not limited to cravings for sugary foods, tendencies
toward emotional eating, instances of eating beyond satiety, frequency of consuming
junk food at least once a week, rapid eating patterns, late-night eating habits, avoidance
of eating at a designated dining table, eating in the absence of hunger, eating while in a
standing position, and eating while engaged in distractions such as using a phone, watching
television, or reading. For the analysis, we dichotomized each variable ranging from rarely
to always.

2.4. Statistical Analysis

A preliminary power analysis was executed with the G*Power 3.1.9.7 software to
determine the sample size for the study. Results indicated that a sample comprising
80 participants divided into two groups would be adequate to detect a relationship be-
tween SNPs and obesity, with a statistical significance level set at 0.05, an odds ratio (OR) of
2, and a power of 0.80. Descriptive statistics were presented as percentages for categorical
variables, while continuous variables were displayed as mean ± standard deviation (SD).
Differences between the two groups for continuous variables were tested using an indepen-
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dent sample t-test when data were normally distributed and a Mann–Whitney U test for
non-normally distributed data. A Chi-squared test was applied to test for differences in
categorical variables between the two groups. Logistic regression models adjusting for age,
sex, type 1 diabetes mellitus (T1DM), and type 2 diabetes mellitus (T2DM) were performed
to assess the association between MC4R rs17782313 with obesity risk. A logistic regression
model was constructed to examine the interactions between the MC4R rs17782313 risk
allele homozygous genotype in females and various eating behaviors in relation to obesity.
This model was particularly focused on the female cohort due to the observed sex-specific
associations. The model incorporated the dichotomized eating behavior variables and con-
trolled for potential confounders: age, T1DM, and T2DM. ORs and 95% CI were calculated
to quantify the strength and direction of these interactions. The statistical significance was
set at an α level of 0.05, and any p-value below this threshold was considered to indicate a
statistically significant difference between the groups under investigation. Analysis was
performed using SPSS 29.0 and R software 4.3.1.

3. Results
3.1. Participants

The general characteristics of the study participants are described in Table 1. The mean
age of the study cohort was 56.47 ± 14.48 years. Among the total cohort (n = 5785), the
majority were female, accounting for 69.5% of the sample. This sex distribution was note-
worthy and guided the focus of subsequent sex-specific analyses. Within the group with
obesity, 67.2% were female, while in the non-obese group, 72.4% were female (p < 0.001).
The mean weight of 98.34 and mean BMI of 35.29 were significantly higher in the group
with obesity compared to 73.61 and 26.44 in the non-obese group, respectively (p < 0.001).
The T2DM prevalence of 9% within the obesity group was significantly higher than the
6.3% in the non-obese group and thus was adjusted for in all analyses. T1DM did not differ
significantly between the groups (BMI ≥ 30 and BMI < 30).

Table 1. Descriptive characteristics of study participants.

All Population
n = 5785

With Obesity (BMI ≥ 30)
n = 3157

Non-Obese (BMI < 30)
n = 2628 p-Value

Sex (women, %) 4023 (69.5%) 2120 (67.2%) 1903 (72.4%) <0.001
Age (mean ± SD) 56.47 ± 14.48 56.61 ± 14.66 56.31 ± 14.26 0.22
Weight (mean ± SD) 87.1 ± 19.4 98.34 ± 17.7 73.61 ± 10.93 <0.001
Height (mean ± SD) 166.64 ± 8.85 166.69 ± 9.12 166.58 ± 8.52 0.86
BMI (mean ± SD) 31.27 ± 6.04 35.29 ± 5.05 26.44 ± 2.6 <0.001
T1DM (n, %) 100 (1.73%) 62 (1.96%) 38 (1.45%) 0.27
T2DM (n, %) 449 (7.76%) 284 (9%) 165 (6.3%) <0.001

3.2. MC4R rs17782313 and Obesity Risk

As shown in Table 2, genotype frequencies of MC4R rs17782313 SNP were 57.83%
for the reference homozygote TT, 35.49% for the heterozygote TC, and 6.68% for the
altered homozygote CC among individuals with obesity. In the non-obese group, genotype
frequencies were 59.1% for the reference homozygote TT, 35.76% for the heterozygote TC,
and 5.13% for altered homozygote CC. Accepted genetic models were tested to determine
the association of the MC4R rs17782313 SNP with obesity risk. Both the recessive and
additive models showed a significant association with BMI (OR = 1.38 95% CI 1.1–1.72,
p = 0.005 and OR = 1.1, 95% CI: 1.01–1.2, p = 0.03, respectively). Homozygous carriers
of the risk allele exhibited a mean BMI of 31.96 ± 6.2, which was significantly higher
than the wild type and one allele carriers, who had a mean BMI of 29.45 ± 6.49 (p = 0.02).
Interestingly, after further stratification by sex, the obesity risk remained significant only
among females in the recessive model (OR = 1.41, 95% CI: 1.09–1.82, p = 0.01), with an
average of 0.85-BMI increment compared to wild type and one risk allele carriers. Under
the dominant model, no significant association was observed (p = 0.16, OR = 1.08, 95% CI:



Genes 2023, 14, 1996 6 of 11

0.97–1.2). This sex-specific finding led us to focus our subsequent analyses primarily on the
female cohort where the association was robust and statistically significant.

Table 2. MC4R rs17782313 (T>C) genotype frequencies and obesity risk among the total sample and
stratified by sex.

Genotype Frequency (%) p-Value OR ± 95%(CI)

Sample Genotype Overall
Population

With Obesity
(BMI ≥ 30)

Non-Obese
(BMI < 30)

Dominant
Model

Recessive
Model

Additive
Model

All sample *
TT 3375 (58.3%) 1818 (57.6%) 1557 (59.2%) 0.16

1.08
(0.97–1.2)

0.005
1.38
(1.1–1.72)

0.03
1.1 (1.01–1.2)TC 2062 (35.6%) 1125 (35.6%) 937 (35.6%)

CC 348 (6%) 214 (6.8%) 134 (5.1%)

Females
(n = 4023)

TT 2328 (35.6%) 1211 (57.1%) 1117 (58.7%) 0.28
1.07
(0.95–1.22)

0.01
1.41
(1.09–1.82)

0.06
1.62
(1.24–2.11)

TC 1434 (35.6%) 751 (35.4%) 683 (35.9%)
CC 261 (6.5%) 158 (7.4%) 103 (5.4%)

Males
(n = 1762)

TT 1047 (59.4%) 607 (58.5%) 440 (60.6%) 0.34
1.1 (0.9–1.34)

0.28
1.28
(0.82–1.01)

0.23
1.11
(0.94–1.23)

TC 628 (35.6%) 374 (36.1%) 254 (35.0%)
CC 87 (4.9%) 56 (5.4%) 31 (4.3%)

Adjusted for age, T1DM, and T2DM; * adjusted for age, sex, T1DM, and T2DM.

3.3. Interactions of MC4R rs17782313 with Eating Behaviors on Obesity Risk

The MC4R rs17782313 homozygous genotype significantly interacted with eating
behaviors to enhance the risk of obesity. Specifically, these eating behaviors included
sweets desire (1.47, 95% CI 1.05–2.07, p = 0.03), emotional eating (OR = 3.32, 95% CI 2.08–5.3,
p < 0.001), eating to over fullness (OR = 2.32, 95% CI 1.39–3.87, p = 0.001), consuming
junk food ≥1/week (OR = 3, 95% CI 1.36–6.67, p = 0.007), fast eating (OR = 1.64, 95% CI
1.06–2.54, p = 0.027), late-night eating (OR = 2.35, 95% CI 1.44–3.82, p < 0.001), non-tableside
eating (OR = 1.72, 95% CI 1.05–2.8, p = 0.03), non-hunger-driven eating (OR = 1.76, 95% CI
1.19–2.6, p = 0.005), eating while standing (OR = 2.09, 95% CI 1–4.4, p = 0.05), and distracted
eating (OR = 1.68, 95% CI 1.2–2.36, p = 0.003) (Table 3).

Table 3. Eating behavior prevalence among MC4R rs17782313 (CC) females’ carriers stratified by
BMI and the interaction effect on obesity.

Eating Behavior BMI ≥ 30 BMI < 30 β OR ± 95% CI p-Value

Sweets desire 91 (57.6%) 56 (54.4%) 0.387 1.47 (1.05–2.07) 0.03
Emotional eater 83 (52.5%) 23 (22.3%) 1.2 3.32 (2.08–5.3) <0.001

Overfullness feeling 54 (34.2%) 21 (20.4%) 0.84 2.32 (1.39–3.87) 0.001
Junk food ≥ 1/week 26 (16.5%) 8 (7.8%) 1.1 3 (1.36–6.67) 0.007

Fast eater 57 (36.1%) 32 (31.1%) 0.495 1.64 (1.06–2.54) 0.027
Late night eater 60 (38%) 23 (22.3%) 0.853 2.35 (1.44–3.82) <0.001

Non-tableside eater 48 (65.8%) 25 (34.2%) 0.541 1.72 (1.05–2.8) 0.03
Non-hunger-driven eater 75 (47.5%) 39 (37.9%) 0.565 1.76 (1.19–2.6) 0.005

Eat while standing 23 (14.6%) 10 (9.7%) 0.736 2.09 (1–4.4) 0.05
Distracted eater 98 (62.0%) 54 (52.4%) 0.519 1.68 (1.2–2.36) 0.003

Adjusted for age, T1DM, and T2DM.

4. Discussion

Our study results demonstrate that MC4R rs17782313 homozygous carriers are as-
sociated with a significantly higher risk of obesity in Israeli females (OR = 1.38, 95% CI
1.1–1.72, p = 0.005). The association of MC4R rs17782313 with an elevated risk of obesity or
other related measures is not consistent across different populations, as the causal factors
of genetic variants vary across populations. In accordance with our study, results from
a meta-analysis showed a significant association of MC4R rs17782313 with an elevated
risk of obesity in Caucasians following the recessive model (OR = 1.52 95% CI 1.13–2.03,
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p = 0.005) [20]. In contrast, the controversial effect of MC4R rs17782313 on BMI was found
in the Indian population. In the North Indian population, the elevated risk of obesity was
elevated only for homozygous risk allele carriers compared to wild type (OR = 1.7, 95%
CI 1–2.8, p = 0.02) [50]. Whereas in the Mizo tribe from the North-East Indian population,
carrying at least one risk allele had a reduced risk for elevated BMI (OR = 0.39, 95% CI
0.2–0.76, p = 0.006). This controversy can be explained by a genetic predisposition owed
to different genetic ancestry alongside lifestyle factors. This could be also reflected by
the wide range of obesity frequency in the Indian population [51,52]. The association of
MC4R rs17782313 carriers with elevated obesity risk follows different inheritance models
in different studies’ findings. In a study of the Brazilian population, only the heterozygous
showed a significantly elevated obesity risk [53]. Studies in other populations’ cohorts have
found an elevated obesity risk following the dominant model including Manoan (OR = 1.43
95% CI 1.07–2.06, p = 0.02) [54], Arabs from the United Arab Emirates (OR = 1.35 95% CI
0.99–1.85, p = 0.054) [55], and Sri-Lankans (OR = 2.57, 95% CI 1.11–2.22, p = 0.01) [43].

Several studies have found that MC4R rs17782313 is sex-specific [56,57]. Thus, we
further stratify by sex. We found that carrying the MC4R rs17782313 is associated with
obesity risk only in females. Similar results were shown in other populations. A case-control
study, which included 336 adult Pakistani males and 270 females, found that only female’s
carriers of the rs17782313 MC4R genotype were at a significant 2.43- and 1.55-fold (95% CI:
1.19–4.96, p = 0.015, and 95% CI: 1.1–2.18, p = 0.01) risk of being overweight and having
obesity, respectively [57]. Another study in Brazil showed a significant (p = 0.038) increased
risk for obesity of the MC4R rs17782313 carriers only in females [53]. Additionally, a study
by Thea Bjørnland et al. found that the effects of obesity-promoting genes like MC4R
and their interactions with lifestyle factors are age- and sex-related [58]. Findings on an
elevated risk of obesity among females compared to males can be explained by the findings
of Horstmann et al., who demonstrated an increased ‘emotional eating’ score of the MC4R
rs17782313’s variant risk allele carriers and suggested that the MC4R rs17782313 effect
on eating behavior is mediated by central mechanisms that are sex-specific [59]. Along
these lines, MC4R rs17782313 variant carriers were also associated with higher intakes of
total energy among Caucasian females [60]. While these studies provide some evidence
for sex-specific effects, more research is needed to establish a definitive link between
MC4R rs17782313 and sex-specific obesity risk. The identification of MC4R rs17782313
as a significant risk factor for obesity, particularly among females, could pave the way
for more targeted interventions. The lack of a significant association in males (p > 0.05)
suggests that the MC4R rs17782313 SNP may not be a major determinant of obesity risk
in men within our study population. This could be due to various factors, including, but
not limited to, hormonal differences [61], lifestyle factors [62], or even the possibility of
interactions with other genetic variants. It is also worth noting that obesity in men and
women is associated with different neural mechanisms. While changes in somatosensory
regions are more prevalent in men with obesity, reward regions of the brain show greater
involvement in women [63]. These sex-specific neural responses, including those related to
taste, could potentially influence the observed sex differences in the genetic predisposition
to obesity.

Our detailed interaction analysis demonstrated significant obesity risk interactions
between MC4R rs17782313 variant homozygotes and various and wide eating behaviors
including sweets desire, emotional eating, overfullness, junk food consumption, fast eating,
late-night eating, non-hunger-driven eating, eating while standing, and distracted eating.
These interactions were a key finding of this study, shedding light on the complex interplay
between genetic and behavioral factors in obesity, and are the first, to the best of our
knowledge, that specify different and wide eating behaviors that compose a clearer eating
behaviors category related to obesity risk genetic predisposition. These findings align with
existing literature that has demonstrated the influence of this genetic variant on various
specific eating issues. For instance, the MC4R rs17782313 variant has been demonstrated
to be significantly associated with a higher prevalence of snacking as was shown in both



Genes 2023, 14, 1996 8 of 11

French children with obesity (p = 0.01) and Swiss adults with obesity (p = 0.04), as well as in
Finnish adolescents (p = 0.04). Furthermore, French adults’ carriers of the MC4R rs17782313
variant with familial obesity demonstrated significantly higher hunger scores (p = 0.02).
Similarly, French children with obesity who are also carriers of this variant demonstrated a
significantly higher prevalence of eating large amounts of food (p = 0.04) [39]. Furthermore,
our findings are consistent with a study conducted on an Iranian cohort, which also found
significant interactions between emotional eating and the MC4R rs17782313 CC genotype in
terms of BMI, further substantiating the role of emotional eating in the complex relationship
between this genetic variant and obesity [47].

It is important to acknowledge the inherent limitations of this study. Specifically, the
cross-sectional nature of this study restricts our ability to establish causal relationships
between the variables examined. This study’s advantages include the large, population-
representative cohort, which enabled us to analyze MC4R polymorphism and the eating
behaviors interactions effect associated with obesity risk. Additionally, our findings are the
first, to the best of our knowledge, that specify different and wide eating behaviors that
compose a clearer eating behaviors category related to the genetic predisposition of a risk
of obesity. This adds a new dimension to our understanding of how genetic factors and
eating behaviors interact to influence obesity risk and paves the way for further research
that could potentially lead to targeted interventions based on specific eating behaviors
influenced by genetic markers. Furthermore, as the causal factors of genetic variants vary
across populations, our findings shed light on the Israeli population, which, to the best
of our knowledge, was not investigated regarding the effect of MC4R rs17782313 and on
obesity risk. Given that genetic factors can manifest differently across diverse populations,
our study lays the groundwork for the nutritional tailored unique genetic makeup of
different populations.
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