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Abstract: The protein 4.1 and membrane palmitoylated protein (MPP) families were originally found
as components in the erythrocyte membrane skeletal protein complex, which helps maintain the
stability of erythrocyte membranes by linking intramembranous proteins and meshwork structures
composed of actin and spectrin under the membranes. Recently, it has been recognized that cells and
tissues ubiquitously use this membrane skeletal system. Various intramembranous proteins, including
adhesion molecules, ion channels, and receptors, have been shown to interact with the 4.1 and MPP
families, regulating cellular and tissue dynamics by binding to intracellular signal transduction
proteins. In this review, we focus on our previous studies regarding genetically modified animal
models, especially on 4.1G, MPP6, and MPP2, to describe their functional roles in the peripheral
nervous system, the central nervous system, the testis, and bone formation. As the membrane
skeletal proteins are located at sites that receive signals from outside the cell and transduce signals
inside the cell, it is necessary to elucidate their molecular interrelationships, which may broaden the
understanding of cell and tissue functions.

Keywords: membrane skeleton; protein 4.1G; membrane palmitoylated protein; nervous system;
bone formation; testis

1. Protein 4.1 Family
1.1. Protein 4.1 in the Membrane Skeleton

Originally, membrane skeletal networks were found as a two-dimensional lattice structure
beneath erythrocyte membranes, as schematically shown in Figure 1. Protein 4.1R–membrane
palmitoylated protein 1 (MPP1)–glycophorin C is a basic molecular complex, in addition to
ankyrin-band 3, attaching the actin–spectrin meshwork structures to form erythrocyte mem-
brane skeletons, which support the erythrocyte membrane and provide stability, especially
under blood flow [1]. Protein 4.1R (red cell) has 4.1–ezrin–radixin–moesin (FERM) and
spectrin–actin binding (SAB) domains, and there are three other family members, namely
4.1B (brain), 4.1G (general), and 4.1N (nerve) [2,3]. In this review, we summarize recent
studies on protein 4.1G in the peripheral nervous system (PNS) and bone development.
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Figure 1. Schematic representation of an erythrocyte membrane skeleton. The spectrin–actin net-
work structure is connected by protein 4.1R-membrane palmitoylated protein 1 (MPP1) and ankyrin 
to the intramembranous proteins glycophorin C (GPC) and band 3, respectively. The concept was 
obtained from previous research [4]. 

1.2. Protein 4.1G in PNS 
Protein 4.1G was identified as FK506-binding protein 13 (FKBP13) [5]. We found its 

localization at two specific regions in Schwann cells that form myelin in the PNS: Schmidt–
Lanterman incisures (SLIs) and paranodes [6]. Protein 4.1G assists in organizing inter-
nodes in the PNS [7], and is essential for the molecular targeting of MPP6 [8] and cell-
adhesion molecule 4 (CADM4) [7] in SLIs. Thus, 4.1G–MPP6–CADM4, an analogous mo-
lecular complex to the erythrocyte membranes, exists in the PNS, likely functioning to 
resist external mechanical forces in SLIs [9]. 4.1G-deficient (-/-) mice showed motor im-
pairment, especially with advancing age, and measurement of motor nerve velocity and 
the ultrastructure of myelin in the sciatic nerves demonstrated abnormalities under 4.1G-
/- [10,11]. Considering that impairment of motor function with the tail-suspension test 
became worse after overwork treatment [11], careful attention is required in the rehabili-
tation of Charcot–Marie–Tooth (CMT) disease patients, which has been a controversial 
matter [12,13]. The SLI is thought to have function as a suspension structure against me-
chanical extension, similar to a spring [14], and in the case of 4.1G deficiency, the cell 
membrane may be destroyed.  

CADM4 is probably related to the myelin abnormality under 4.1G-/- because the lo-
calization of CADM4 in SLIs disappears in 4.1G-/- nerves [15]. Furthermore, CADM4-/- 
nerves exhibited similar structural changes to those observed in human CMT disease 
[15,16]. CADM4 depletion and subsequent disruption may be related to erbB2 because 
they interact with each other [17,18]. Recent reports have shown that CADM1 has a role 
in maintaining cell–cell interspaces to promote the proper function of gap junction pro-
teins [19,20]. Other than CADM4, several proteins, such as AP3 complex, tubulin, heat 
shock cognate 71 kD protein, and 14-3-3 protein, have been found that relate to 4.1G, from 
immunoprecipitation studies in the retina [21,22]. Because various proteins are associated 
with 4.1 families [2,23], it is necessary to further elucidate the binding proteins and func-
tions for 4.1G in the PNS. 

Additionally, it remains unclear how actin–spectrin components are connected to the 
4.1G–MPP6–CADM4 complex in the PNS, considering that actin abundantly forms fila-
ments in SLIs [24]. Notably, the SAB domain is spliced in the retina [22], and another actin-
binding peptide sequence was found in 4.1R near the common SAB domain in epithelial 
cells [25]. Thus, the relationship between 4.1G and the actin filaments in SLIs has not been 
clarified. 

1.3. Protein 4.1G in Bone Formation 
Bone structure is controlled by the balance between bone formation by osteoblasts 

and bone resorption by osteoclasts. Osteoblasts are differentiated from mesenchymal stem 
cells and preosteoblasts (osteoblast differentiation). Many factors, including hedgehog, 

Figure 1. Schematic representation of an erythrocyte membrane skeleton. The spectrin–actin network
structure is connected by protein 4.1R-membrane palmitoylated protein 1 (MPP1) and ankyrin to the
intramembranous proteins glycophorin C (GPC) and band 3, respectively. The concept was obtained
from previous research [4].

1.2. Protein 4.1G in PNS

Protein 4.1G was identified as FK506-binding protein 13 (FKBP13) [5]. We found its localiza-
tion at two specific regions in Schwann cells that form myelin in the PNS: Schmidt–Lanterman
incisures (SLIs) and paranodes [6]. Protein 4.1G assists in organizing internodes in the
PNS [7], and is essential for the molecular targeting of MPP6 [8] and cell-adhesion molecule
4 (CADM4) [7] in SLIs. Thus, 4.1G–MPP6–CADM4, an analogous molecular complex to the
erythrocyte membranes, exists in the PNS, likely functioning to resist external mechanical
forces in SLIs [9]. 4.1G-deficient (-/-) mice showed motor impairment, especially with
advancing age, and measurement of motor nerve velocity and the ultrastructure of myelin
in the sciatic nerves demonstrated abnormalities under 4.1G-/- [10,11]. Considering that
impairment of motor function with the tail-suspension test became worse after overwork
treatment [11], careful attention is required in the rehabilitation of Charcot–Marie–Tooth
(CMT) disease patients, which has been a controversial matter [12,13]. The SLI is thought
to have function as a suspension structure against mechanical extension, similar to a
spring [14], and in the case of 4.1G deficiency, the cell membrane may be destroyed.

CADM4 is probably related to the myelin abnormality under 4.1G-/- because the local-
ization of CADM4 in SLIs disappears in 4.1G-/- nerves [15]. Furthermore, CADM4-/- nerves
exhibited similar structural changes to those observed in human CMT disease [15,16].
CADM4 depletion and subsequent disruption may be related to erbB2 because they interact
with each other [17,18]. Recent reports have shown that CADM1 has a role in maintaining
cell–cell interspaces to promote the proper function of gap junction proteins [19,20]. Other
than CADM4, several proteins, such as AP3 complex, tubulin, heat shock cognate 71 kD
protein, and 14-3-3 protein, have been found that relate to 4.1G, from immunoprecipitation
studies in the retina [21,22]. Because various proteins are associated with 4.1 families [2,23],
it is necessary to further elucidate the binding proteins and functions for 4.1G in the PNS.

Additionally, it remains unclear how actin–spectrin components are connected to
the 4.1G–MPP6–CADM4 complex in the PNS, considering that actin abundantly forms
filaments in SLIs [24]. Notably, the SAB domain is spliced in the retina [22], and another
actin-binding peptide sequence was found in 4.1R near the common SAB domain in
epithelial cells [25]. Thus, the relationship between 4.1G and the actin filaments in SLIs has
not been clarified.

1.3. Protein 4.1G in Bone Formation

Bone structure is controlled by the balance between bone formation by osteoblasts
and bone resorption by osteoclasts. Osteoblasts are differentiated from mesenchymal stem
cells and preosteoblasts (osteoblast differentiation). Many factors, including hedgehog,
parathyroid hormone (PTH), and Wnt, affect osteoblast differentiation [26]. Moreover, 4.1G
regulates hedgehog-mediated bone formation and PTH receptor (PTHR) signaling [27–30].
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The primary cilium is a hair-like immotile sensory organelle that possesses selec-
tively distributed membrane receptors, such as G-protein-coupled receptors (GPCRs) and
growth factor receptors, and ion channels on its surrounding membrane (ciliary mem-
brane) [31]. The cilium is formed in various cell types during the G0 phase of the cell cycle.
A hedgehog receptor (i.e., smoothened) is one of the typical ciliary GPCRs expressed in the
stem/progenitor cells of various organs (e.g., blood vessels, bone, brain, breast, esophagus,
gallbladder, heart, intestine, liver, lung, pancreas, and stomach) [32–35]. Smoothened
participates in the proliferation and differentiation of the cells to control organogenesis and
tissue homeostasis.

Preosteoblasts form primary cilia on their surface. Deletion of the ciliary components,
such as intraflagellar transport 80 (IFT80), IFT140, and kinesin 3a (Kif3a), disrupts pre-
osteoblast ciliogenesis, ciliary hedgehog signaling, and femur or tibia formation [36–38].
Knockout of IFT20 in the cranial neural crest (CNC) disrupts ciliogenesis in CNC-derived
osteogenic cells and leads to malformation of craniofacial bones [39]. These studies demon-
strate the importance of primary cilia in bone formation. However, 4.1G is not recognized as
a ciliary component, although it promotes ciliogenesis in preosteoblasts, as observed in the
4.1G-downregulated MC3T3-E1 preosteoblast cell line and 4.1G knockout preosteoblasts on
trabecular bone in mouse new bone tibia [30]. In 4.1G-suppressed MC3T3-E1 cells, ciliary
hedgehog signaling and subsequent osteoblast differentiation were attenuated, revealing a
novel regulatory mechanism of bone formation by 4.1G.

Teriparatide, PTH-(1-34), is the first anabolic agent approved by the U.S. Food and
Drug Administration for the treatment of osteoporosis [40]. Intermittent treatment with
teriparatide facilitates osteoblast differentiation and suppresses osteoblast apoptosis [41,42].
Teriparatide activates PTHR, which is a GPCR. It strongly activates adenylyl cyclase (AC),
produces cyclic AMP (cAMP) through Gs protein, and increases intracellular Ca2+ through
Gq protein. In addition, 4.1G has been identified as an interacting protein of the carboxy
(C)-terminus of PTHR [27]. Overexpression of 4.1G increases the amount of PTHR on
the cell surface and PTHR-mediated intracellular Ca2+ elevation, suggesting that 4.1G
augments the PTHR/Gq pathway by stabilizing the plasma membrane distribution of
PTHR [27]. In contrast, PTHR/Gs-mediated cAMP production decreases with 4.1G over-
expression and increases with 4.1G downregulation [28,29]. Mechanistically, 4.1G binds
to the N-terminus of AC type 6 and attenuates its activity [29]. These studies suggest that
4.1G alters the signal balance of PTHR, with a high 4.1G expression, Gq > Gs, and with a
low 4.1G expression, Gq < Gs. It is necessary to investigate whether the regulation of the
PTHR signaling balance by 4.1G is one of the mechanisms in the intermittent treatment
of teriparatide. Moreover, the ciliary distribution of PTHR and its role in bone formation
have been identified; PTH-related protein treatment and shear stress stimuli promote
translocation of PTHR to primary cilia, and the ciliary PTHR mediates cell survival and
osteogenic gene expression in osteoblastic and osteoclastic cells [43–45]. The role of 4.1G in
ciliary PTHR signaling remains unclarified.

2. MPP Family
2.1. MPP in Membrane Skeleton

In erythrocytes, the 4.1R–MPP1 (a.k.a. p55)–glycophorin C (GPC) molecular complex
stabilizes erythrocyte membranes [46]. MPP1 belongs to the membrane-associated guany-
late kinase homolog (MAGUK) family, which is characterized by the presence of the post-
synaptic density protein 95 (PSD95)/Drosophila disc large tumor suppressor (Dlg)/zonula
occludens 1 (ZO1) [PDZ] domain, Src-homology 3 (SH3) domain, and catalytic inactive
guanylate kinase-like (GUK) domain [47]. The PDZ and SH3 domains can interact with
lipids and proteins. The SH3 domain also has intramolecular and intermolecular interac-
tions with the GUK domain. The GUK domain is thought to have low enzymatic activity,
although the binding site for ATP and GMP in MPPs is intact. Except for MPP1, there are
two L27 (Lin2- and Lin7-) domains, in which MPPs are capable of interacting with each
other. Additionally, MPPs have a HOOK/D5 domain that binds to protein 4.1 members,
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and there are seven family members [48]. MPP1 binds to two distinct sites within the FERM
domain of the 4.1 family, and the alternatively spliced exon 5 in 4.1R is necessary for the
membrane targeting of 4.1R in epithelial cells [49]. In addition to the protein–protein interac-
tion, palmitoylation helps transport MPP family proteins to cell membranes, and enzymes
known as zinc finger DHHC-domain-containing palmitoyl acyl transferase (zDHHC/PATs)
have roles in palmitoylation [50]. In this review, we summarize recent studies on MPP6
and MPP2 in the PNS, CNS, and testis.

2.2. MPP6 in PNS

As mentioned previously, 4.1G-/- mice showed that protein 4.1G is essential for the
molecular targeting of MPP6 and CADM4 in SLIs in the PNS, as shown in Figure 2a [7–9].
We evaluated what would happen if MPP6 itself was deleted [51]. MPP6 deficiency also
resulted in the hypermyelination of peripheral nerve fibers, although the phenotypes, such
as structural changes and impairment of motor function, were weak compared with 4.1G
deficiency.
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Figure 2. Schematic representation of the relationships among membrane skeletal proteins (4.1, MPP,
and CADM) in the PNS (a), CNS (b), and testis (c). Note the different interdependences among those
proteins in different organs, revealed by the genetic depletion of the proteins. The picture is partially
modified from a previous paper [51].

The reason for hypermyelination without MPP6 was unclear. One of the MAGUK
proteins, Dlg1 (SAP97), regulates membrane homeostasis in Schwann cells by interacting
with kinesin 13B, Sec8, and myotubularin-related protein 2 (Mtmr2) for vesicle transport
and membrane tethering [52]. The binding of the phosphatase and tensin homolog deleted
on chromosome 10 (PTEN) to the specific PDZ domain of Dlg1 inhibits axonal stimulation
of myelination [53], and this Dlg1–PTEN complex is thought to limit myelin thickness to
prevent overmyelination in the PNS [54]. Conditional inactivation of Dlg1 in Schwann cells
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caused a transient increase in myelin thickness during development, suggesting that Dlg1
is a transient regulator of myelination [55]. Deletion of the Dlg1–PTEN complex increases
Akt phosphorylation and subsequent hypermyelination in peripheral nerves [56–59]. Addi-
tionally, disruption of PTEN in Schwann cells results in hyperactivation of the endogenous
phosphoinositide 3-kinase (PI3K) pathway, focal hypermyelination, myelin outfoldings,
and tomacula [60]. Dlg1 interacts with Mtmr2 [61] in phosphatidylinositol (PI) lipid
metabolism [62]. These signals probably regulate the interaction between the actin cy-
toskeleton and plasma membrane interplay in a phosphoinositide cascade [63]. In addition,
increased phosphatidylinositol (3,4,5)-triphosphate (PIP3) causes membrane wrapping and
myelination [64]. In MPP1-deficient neutrophils, PIP3 forms punctate aggregations, which
result in abnormal pseudopods [65]. Thus, our findings suggest that MPP6-deficient nerves
may be related to the PTEN/Akt signal pathway.

The Src family of signal transduction proteins are also potentially related to the MPP
family, because they interact with each other [66,67]. Additionally, as there are various PDZ-
containing proteins in the PNS, such as MAGUK proteins (e.g., Dlg1 and MPP6), multi-PDZ
domain protein 1 (MUPP1), pals-associated tight junction protein (PATJ), claudins, zonula
occludens 1 (ZO1), and Par3 [68], but the extent to which they are interdependent or have
mutual redundancy remains unclear.

2.3. MPPs and Lin7
2.3.1. Lin7 in PNS (Figure 2a)

Mammalian Lin7 (a.k.a. Veli/Mals) that contains L27 and PDZ domains was originally
identified in a protein complex with the potential to couple synaptic vesicle exocytosis
to cell adhesion in rat brains, and there are three family members [69]. Localization of
Lin7 was found in SLIs, and MPP6 mainly transported Lin7 to SLIs in the mouse PNS [51].
Interactions between the Lin7 and MAGUK families have been reported in various tis-
sues, including MPP4 recruitment of PSD95 and Lin7c (Veli3) in mouse photoreceptor
synapses [70], MPP7 formation in a tripartite complex with Lin7 and Dlg1 in MDCK culture
cells, which regulates the stability and localization of Dlg1 to cell junctions [71], and MPP4
and MPP5 association with Lin7c at distinct intercellular junctions of the mouse neurosen-
sory retina [72]. The L27 domain is a scaffold for the supramolecular assembly of proteins
in the Lin7 and MAGUK families [73–75]. Originally, both Pals family proteins, MPP5
(Pals1) and MPP6 (Pals2), were identified as proteins associated with Lin7 [76]. Although
MPP5 was also reported in the PNS [77,78], our finding indicates that Lin7 transport in the
PNS is mostly dependent on MPP6.

2.3.2. Lin7 in the CNS (Figure 2b)

In the cerebellum, high-resolution microscopic examination by Airy-confocal laser
scanning microscopy revealed that the ring pattern in synaptic membrane staining and
dot/spot areas inside synapses exhibited by Lin7 staining inversely correlated between
MPP2+/+ and MPP2-/- synapses [79]. In MPP2-/- dendrites in cerebellar granular cells
(GrCs), the Lin7-stained dot/spot areas did not overlap with the microtubule-associated
protein 2 (MAP2)-stained dendritic shaft, indicating that MPP2 deficiency does not di-
rectly impair microtubule-based transport. In contrast, CADM1 exhibited a ring pattern
in MPP2-/- synaptic membranes, and the number of Lin7-immunostained dot/spot ar-
eas localized inside the small CADM1-immunostained small rings was higher in MPP2-/-
synapses than in MPP2+/+ ones. These results indicate MPP2 transports Lin7 from the
dendritic shaft to postsynaptic membranes in synapses. Additionally, Lin7 was originally
coimmunoprecipitated with CASK and Mint1, which bind to the vesicular trafficking pro-
tein Munc18-1 and are considered to play a role in the exocytosis of synaptic vesicles in
presynaptic regions [69], whereas our findings demonstrated that Lin7 was abundantly
localized at postsynaptic sites with MPP2 in GrCs in the cerebellum.
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2.3.3. Lin7 in Testis (Figure 2c)

By immunohistochemistry (IHC), Lin7a and Lin7c were localized in germ cells, and
Lin7c had especially strong staining in spermatogonia and early spermatocytes, charac-
terized by staging of seminiferous tubules [80]. Lin7 staining became weaker in MPP6-/-
testis according to both IHC and Western blotting, indicating a function of MPP6 in Lin7
transport in germ cells despite the unchanged histology of seminiferous tubules in MPP6-
deficient mice compared with that of wild-type mice. In cultured spermatogonial stem cells
maintained with glial-cell-line-derived neurotrophic factor, Lin7 was remarkably localized
along cell membranes, especially at cell–cell junctions. Thus, Lin7 protein is localized in
germ cells in relation to MPP6, which is a useful marker for spermatogenesis.

2.3.4. Proteins Interact with Lin7

Because MPP and protein 4.1 families are strongly related to Lin7 families, we listed
the proteins associated with Lin7 from previous studies (Table 1) and categorized them
into five groups. The first group is MAGUK family proteins and their relating proteins
at cell–cell attaching sites, as described above in Section 2.3.1. The second group is the
catenin–cadherin complex, an adhesion molecule. Aquaporin (AQP) 1 interacts with the
Lin7–β-catenin complex in human melanoma and endothelial cell lines [81]. β-catenin and
N-cadherin also interact with Lin7 in the rat brain [82], and the small GTPase Rho effector
rhotekin interacts with the Lin7b–β-catenin complex in rat brain neurons [83]. In the third
group, signal transduction proteins, such as the insulin receptor-substrate protein of 53 kD
(IRSp53), are transported to tight junctions by Lin7 in cultured MDCK cells [84]. Signal
transduction protein was detected at synapses in the rat cerebellum [85], and N-methyl-D-
aspartate (NMDA) receptors increased in the IRSp53-knockout mouse hippocampus [86].
In the fourth group, synaptic proteins, such as GluN2B, bind to Lin7, and their complexes
are carried by kinesin superfamily (KIF) 17 on microtubules in hippocampal neurons [87].
Interactions between the complex and PSD95 were also revealed in rat hippocampal
postsynaptic regions [88].

In the fifth group, Lin7 interacts with several growth factor receptors. LET23 epider-
mal growth factor (EGF) receptor in Caenorhabditis elegans larval development [89] and
Grindelwald tumor necrosis factor (TNF) receptor in Drosophila [90] are interesting exam-
ples, because they are related to the integration of cell signaling. Further examination of
the Lin7 interaction with such receptors is necessary.

Concerning Lin7 knockout mice, although mice lacking Lin7a or Lin7c were viable
and fertile, double knockout of mice for Lin7a and Lin7c was lethal before sexual matura-
tion, suggesting that the functions of Lin7a and Lin7c likely compensated each other [91].
Additionally, Lin7a- and Lin7b-deficient mice are fertile and Lin7c was upregulated in
mouse brain [92], indicating redundancy among Lin7 family members. Considering Lin7
in humans, disruption of cerebral cortex development by Lin7a depletion [93] and involve-
ment in autism spectrum disorders by genetic alteration of Lin7b [94] has been reported.
Therefore, target-cell-specific conditional disruption of Lin7 family proteins is required to
elucidate the function of the Lin7 family.

Table 1. Associated proteins to Lin7 families.

Protein Name Category Tissues and Cells Method Related Proteins Functional
Consideration References

AQP1 2

Human melanoma
WM115 and

endothelial HMEC1
cell lines

IP, KD β-catenin
AQP1-KD affects
Lin7/β-catenin

expression
[81]

BLT2
(Leukotriene B4

receptor)
5 MDCK cell line PD, KD CASK (Lin2)

Mint (Lin10)

Transportation from
the Golgi apparatus to
the plasma membrane

[95]
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Table 1. Cont.

Protein Name Category Tissues and Cells Method Related Proteins Functional
Consideration References

BGT-1 (GABA
transporter) 4

Recombinant Lin-7
and BGT-1 (PDZ

target motif)
BC

Localization of
transporter to

plasma membranes
[82]

CASK (Lin2) 1

Recombinant CASK,
Velis proteins, rat

brain
Mouse brain

IHC, YTH, IP Mint (Lin10)

Synaptic plasma
membranes, synaptic
vesicle exocytosis to

cell adhesion

[69]

CASK 1 Mouse brain BC, PD Mint (Lin10)
KIF17

NR2B sorting vesicle
carried by

KIF17–Lin10 complex
[87]

Crumbs
(Drosophila) 1

Drosophila eye
under Lin7
mutation

IHC, PD Stardust-PATJ
Light-dependent
degeneration of
photoreceptors

[96]

β-catenin 2

Recombinant
β-catenin and

Lin7a, MDCK cell
line and rat brain

lysate

BC, IP E-cadherin Cadherin–β-catenin
adhesion complex [82]

GluN2B (NMDA
receptor) 4

Rat cerebral cortex,
transfected NR2B or

MALS
IP, PD PSD95 MALS2 directly binds

to NR2B [88]

Grindelwald
(Drosophila; TNF

receptor)
5 Transfection of

mutated Lin7 IHC Stardust-PATJ-
Crumbs

Transport of TNF
(tumor necrosis factor)

receptor
[90]

IRSp53 3 Rat brain, MDCK
cell line YTH, IP SAP102

Formation or
maintenance of the
adhesion structure

of epithelium

[97]

LET-23 (C. elegans;
EGF receptor) 5 Transfection of

mutated Lin-7 IHC, YTH CASK (Lin2) Vulval induction [98]

LET-23 5 Transfection of
mutated Lin-7 IHC Lin2-Lin10

complex

Transport of LET-23
from the Golgi

apparatus to the cell
membrane

[89]

Mint (Lin10) 1 Rat homolog of the
C. elegans Lin10 Cloning, IHC CASK (Lin2)

Distributed in the
membrane fraction in

rat brain

[99]

MPP4 1

Porcine retinal
membranes

Transfection of
bovine MPP4 L27C
or L27N + C domain

IP,
PD MPP5

Veli3 and MPP4 most
intense staining in

photoreceptor
terminals of the outer
plexiform layer (OPL)

[72]

MPP5 (Pals1) 1 Cloning of Lin-7
binding partners PD MPP6

CASK (Lin2)
Localize to the lateral

membrane [76]

MPP6 (VAM1,
Pals2) 1 Cloning of Lin7

binding partners Cloning, PD MPP5
CASK (Lin2)

Localize to the lateral
membrane [76]

MPP6 1
Transfection of

human Veli1 binds
to VAM1

PD
MPP6 does not bind

to 4.1R [100]

MPP7 1 Transfected human
MPP7 L27C domain PD Dlg1

Enhanced localization
of Dlg1 to

cell junction
[71]

Rhotekin 2 COS7 cells and rat
brain YTH PIST Trafficking of protein

in synapses [101]

Stardust
(Drosophila; Pals1) 1 Transfection of

mutated Lin7 IHC Crumbs

Transport of
Grindelwalt

(homologous to
TNFR)

[90]

Category: Lin7-associating proteins are categorized into five groups as described in the text. BC: biochemical bind-
ing assay, IHC: immunohistochemistry, IP: immunoprecipitation, PD: pull down, YTH: yeast two-hybrid system.

2.4. MPPs and CADMs

CADMs are Ca2+-independent adhesion molecules, and they have binding properties
to both protein 4.1 and MPPs [102]. In the PNS, deficiency of the MPP6–Lin7 complex
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had little effect on CADM4, and cadherin and tight-junction proteins were retained [51].
However, scaffolding for CADM4 in SLI is mostly dependent on protein 4.1G, as shown in
Figure 2a [15,16,51]. In testes, the expression and localization of CADM1 were retained in
4.1G/4.1B double-/- and MPP6-/- mice, as shown in Figure 2c [8,10,80].

In the CNS, scaffolding for CADMs is more complicated, because many MAGUKs are
associated with CADM1 [103,104]. Although the PDZ domain of MPP2 was reported to
directly interact with the C-terminus of CADM1 in rat hippocampal neurons [105], and
nearly 80% of MPP2 dots overlapped with CADM1 areas by IHC and cerebellar lysate of
MPP2 included CADM1 by immunoprecipitation study in our recent study in cerebellum,
MPP2-/- synapses did not show reduction of CADM1 in cerebellar GrCs, as shown in
Figure 2b [79]. Considering that CADM1-/- mice exhibited small cerebella with a decreased
number of synapses compared with wild-type mice [106], the redundancy of MAGUK and
4.1 families to locate CADM family proteins has not been clarified.

2.5. MPP and Neurotransmitters

MPP2 specifically localizes to the cerebellar granular layer, particularly to dendritic
terminals in GrCs facing the mossy fiber (MF) terminus at the cerebellar glomerulus,
as schematically summarized with MPP2-interactive proteins in Figure 3a [79], because
the MF–GrC synapses are the first place to transduce excitatory electrical signals into
cerebellum [107]. MAGUK family proteins, such as PSD95 (Dlg4, SAP90), SAP102 (Dlg3),
and Chapsyn-110 (Dlg2, PSD93), localize to both the molecular and granular layers [108]. To
clarify the specific localization of MPP2, localizations of various MAGUKs are demonstrated
in Figure 3b–k. Note that the gene loci of MPP2 (in mouse chromosome 11) and Dlg2 (in
mouse chromosome 7) are different.
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Figure 3. (a): Schematic representation of MPP2-relating proteins in the cerebellar glomerulus.
Note that MPP2 interacts with various adhesion molecules, such as CADM1 and M-cadherin, as
well as signal transduction proteins such as CASK and Lin7. GAD: glutamic acid decarboxylase,
VGLUT1: vesicular glutamate transporter 1. The picture is partially modified from a previous
paper [79]. (b–k): Localization of MAGUKs (MPP2 (a,f), DLG2 (b,g), PSD95 (c,h), CASK (d,i), and
SAP97 (Dlg1) (e,j)) in the cerebellar cortex in MPP2+/+ (a–e) and MPP-/- (f–j) mice. Note that MPP2
is mainly observed in the granular layer (GL). ML: molecular layer, PCL: Purkinje cell layer.
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MAGUKs are known to associate with excitatory NMDA and α-amino-3-hydroxy-
5-methyl-4-isoxazole-propionic acid (AMPA) glutamate neurotransmitters [109,110]. At
MF–GrC synapses, NMDA receptors such as GluN1 and GluN2A/C were detected [111] as
well as adherens junctions consisting of GrC dendrites [112]. Additionally, transmembrane
AMPA receptor regulatory proteins (TARPs) γ2/γ7 were detected in the postsynaptic
regions of MF–GrC synapses with AMPA receptors GluA2/GluA4 [113]. GrC-specific
GluA4-knockout mice showed a delay in eyeblink conditioning, but not locomotor co-
ordination [114]. Motor dysfunction with a simple walking test has not been detected
in MPP2-/- mice [79], and further examination for the neurological examination under
conditioning is necessary.

In addition to excitatory neurotransmitters, a recent study demonstrated that MPP2
interacts with inhibitory γ-amino butyric acid (GABA) neurotransmitters without the
involvement of gephyrin in rat hippocampal neurons [115]. In the cerebellar glomerulus,
GABAergic neurotransmission is mediated between Golgi cells and GrCs, and two types of
GABAergic inhibition have been proposed: phasic and tonic inhibition [116]. For phasic
inhibition (transient inhibition), GABAAR consists of α1, α6, β2/3, and γ2 subunits in
synaptic regions, and, for tonic inhibition (sustained inhibition), GABAAR consists of α1, α6,
β2/3, and δ2 subunits in extrasynaptic regions [116]. GABAARs in synaptic regions interact
with neuroligin 2, GABAAR regulatory Lhfpl, gephyrin [117], and synaptic scaffolding
molecule (S-SCAM)/membrane associated guanylate kinase 2 (MAGI2) [118].

Figure 4 shows double-immunostaining and Airyscan-confocal laser scanning mi-
croscopy observations, demonstrating comparative localizations of MPP2 to α1, gephyrin,
and α6. Gephyrin is a scaffold protein in the synaptic region, and α6 is a GABAAR in the
extrasynaptic region. α1 (Figure 4a,c,f,h,k,m) and α6 (Figure 4l,m) staining were observed
as dot/line patterns, whereas MPP2 (Figure 4b,c) and gephyrin (Figure 4g,h) staining were
recognized as dot patterns in CG. Approximately 44% of the α1-stained areas (n = 94)
overlapped with the MPP2-stained dots (Figure 4e), indicating a relationship between α1
and MPP2. Additionally, ~43% of the gephyrin-stained dots (n = 65) overlapped with
α1-stained areas (Figure 4j), and ~27% of the α1-stained areas (n = 74) overlapped with
α6-stained areas (Figure 4o). Thus, the overlap of the α1/MPP2 areas with the gephyrin and
α6 areas indicate that α1/MPP2 localize in synaptic and extrasynaptic regions, respectively.

As MPP2 was reported to interact with several GABAAR subunits [115] and various
subunits are present in the cerebellum [119], it is necessary to consider the interdependence
of the GABAAR subunits. In the thalamus of the α4-knockout mouse, δ was decreased,
whereas α1 and γ2 were increased in extrasynaptic regions, suggesting compensation
among GABAAR subunits [120]. In addition, in the α1-knockout mouse, increases in the
α3, α4, and α6 subunits, reductions in the β2/3 and γ2 subunits, and maintenance of the
α5 and δ subunits were reported [121]. Further studies on the balance of these GABAAR
subunits under MPP deficiency are necessary.

Several membrane skeletal proteins have been reported to interact with GABAAR. A giant
ankyrin-G controls endocytosis of GABAAR by interacting with GABAAR-associated protein
(GABARAP) in the mouse-cultured hippocampus [122]. GABAARα5 interacts with a mem-
brane skeletal ezrin–radixin–moesin family protein, radixin, in mouse hippocampus [123].
GABAAR also interacts with neuroligin1 and CASK in inhibitory neuromuscular junc-
tions in C. elegans [124]. MPP2 may be dependent on these membrane skeletal proteins to
locate GABAAR.
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2.6. MPP Families in Synapses

MAGUK proteins become oligomers because of PDZ–SH3–GUK tandem domains,
function as a molecular complex in cell membranes specifically at cell–cell adhesion areas,
and occur in various tissues and organs [125,126]. Particularly, there are many MAGUK
family proteins in synapses, which function in postsynaptic density formation and signal
transduction, and their impairment is related to some mental diseases [110,127–130]. A
recent genome-wide association study (GWAS) also demonstrated the relationship be-
tween MPP6 and various psychiatric disorders: the MPP6 gene was included in 64 genome
loci for bipolar disorders compared among European ancestry [131], in 109 genome loci
associated with at least two psychiatric disorders including anorexia nervosa, attention-
deficit/hyperactivity disorder, major depression, obsessive–compulsive disorder, schizophre-
nia, and Tourette syndrome [132], and in 108 genome loci for schizophrenia patients [133].
MPP6 was also included in 57 hard sweep genes after the initial movement of the evolution-
arily recent dispersal of anatomically modern humans out of Africa, among genes related
to biological processes, including ciliopathies, metabolic syndrome, and neurodegenerative
disorders. [134]. In addition, a GWAS for sleep disorders demonstrated novel genome-wide
loci on human chromosome 7 between NPY and MPP6, and disruption of an ortholog of
MPP6 in Drosophila melanogaster was identified in sleep center neurons relating to decreased
sleep duration [135]. In these respects, it is necessary to evaluate neurological psychological
impairments in genetically modified MPP-deficient mice, which may be related to human
diseases that are caused by mutation in MPP genes.

3. Conclusions

The 4.1 and MPP families are not only membrane skeletal components but are also
widely distributed in various organs to transport intramembranous and signal transduction
proteins. Especially, 4.1G has an obvious function in myelin formation in the PNS. There
may be some interdependence and redundancy among the 4.1 and MPP families, as
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well as related proteins in other organs such as the CNS and testis, which brings about
future challenges to examining cross-breeds of several genetically modified model mice.
Considering that the molecular evolution of vertebrate behaviors may be related to the
diversity of MAGUK proteins including MPPs [136], further evaluation of a wide range of
molecular complexes, by proteomic and transcriptome analyses combined with genetically
modified animal models, may broaden the understanding of normal morphological and
physiological functions as well as physical and mental impairment.
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