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Abstract: Corpus luteum cysts are a serious reproductive disorder that affects the reproductive
performance of sows. In this study, transcriptome and metabolome datasets of porcine normal
and cyst luteal granulosa cells were generated to explore the molecular mechanism of luteal cyst
formation. We obtained 28.9 Gb of high—quality transcriptome data from luteum tissue samples
and identified 1048 significantly differentially expressed genes between the cyst and normal corpus
luteum samples. Most of the differentially expressed genes were involved in cancer and immune
signaling pathways. Furthermore, 22,622 information-containing positive and negative ions were
obtained through gas chromatography —mass spectrometry, and 1106 metabolites were successfully
annotated. Important differentially abundant metabolites and pathways were identified, among
which abnormal lipid and choline metabolism were involved in the formation of luteal cysts. The
relationships between granulosa cells of luteal cysts and cancer, immune-related signaling pathways,
and abnormalities of lipid and choline metabolism were elaborated, providing new entry points for
studying the pathogenesis of porcine luteal cysts.

Keywords: luteal cyst; choline; Pi3k-Akt; MAPK; ALDH

1. Introduction

The normal structure and function of ovaries are very important for the estrus cycle and
ovulation in sows. Ovarian cysts are a serious reproductive disorder in sows, and because
the clinical symptoms are mild, affected sows are easily overlooked during production,
resulting in decreased productivity [1].

The factors involved and the mechanism of luteal cyst formation are complicated [2—4].
In the normal estrous cycle of sows, the luteinizing hormone peak causes ovulation, and
the ovulating follicles form the luteum and secrete progesterone to maintain the pregnancy.
If there is no pregnancy, the corpus luteum dissolves around the sixteenth day of the estrus
cycle and the next estrus cycle begins. Disruption of the hypothalamus—pituitary—gonadal
axis and disturbance of steroid and gonadotropin receptor expression in the endocrine
signaling pathway can lead to cyst formation [5-8]. Stress, metabolic disorders, and
proliferation/apoptosis can also lead to cyst formation [9].

The pathogenesis of luteal cysts is a complicated process that has not been thoroughly
investigated, and the specific mechanism is still unclear. The protein and gene expression
patterns of follicular granulosa cells are different at different stages [10]. We speculated
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that the transcriptome and metabolome levels may be different between granulosa cells in
cystic luteum and normal luteum. This study may provide a new entry point for studying
the pathogenesis of porcine luteal cysts through transcriptome and metabolome analyses,
as well as theoretical guidance for the prevention of luteal cysts.

2. Materials and Methods
2.1. Sample Collection

Cystic corpus luteum and normal corpus luteum were obtained from large-scale
commercial pig farms in Beijing (Figure 1). Long—term non—estrus sows were tested
through B—ultrasound, identified by professionals as having corpus luteum cysts, and
slaughtered. The collected corpus luteum was placed in a 37 °C saline solution containing
penicillin—streptomycin solution and transported to the laboratory. The outer membrane
of the luteum was peeled off with sterile tooth tweezers. An appropriate amount of luteum
tissue was biopsied using eye tweezers, placed in a sterile centrifuge tube, quickly frozen
with liquid nitrogen, and transferred to a —80 °C refrigerator. Normal corpus luteum was
collected, processed, and stored in the same way.

Figure 1. Corpus luteum. Cystic corpus luteum (A) and normal corpus luteum (B). Corpus luteum
cysts ((A) yellow arrows) and normal corpus luteum ((A) green arrows); Vertical section through
corpus luteum cysts ((B) yellow arrows) and through normal corpus luteum ((B) green arrows).

2.2. RNA Extraction

RNA was extracted from the tissue samples using TRIzol reagent according to the
manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA). The RNA integrity was
assessed using 1% agarose gel assays. The RNA concentration was measured using a
Nanodrop microspectrophotometer, and the sample quality was determined using an
Agilent 2100 electrophoretogram (Agilent Technologies, Palo Alto, CA, USA).

2.3. Library Preparation and Sequencing

We used 3 uL mRNA from each sample and enriched it for poly(A) mRNAs using
oligo-dT magnetic beads (Epicentre, Madison, WI, USA). The mRNAs were disrupted
through ultrasound, and first-strand cDNA was synthesized using an M-MuLV reverse
transcriptase system (NEB# M0253L; New England Biolabs, Ipswich, MA, USA) with
six-base random primers. Second-strand cDNA was synthesized using endonuclease
(RNaseH) and a DNA polymerase I system. After purification, end repair, and ligation of
the sequencing adapters, cDNA that was approximately 200-bp long was screened for using
AMPure XP beads (Agencourt, Beckman Coulter, Brea, CA, USA). After amplification, the
c¢DNA was purified with AMPure XP beads, and PCR products were obtained to complete
the library. The library concentration and size of the inserted fragment were tested using
Qubit 2.0 (Invitrogen, USA) and an Agilent 2100 Bioanalyzer (Agilent Technologies, CA,
USA). Agarose gel electrophoresis and a nanophotometer spectrophotometer were used
to measure the RNA integrity and purity, after passing the library inspection. To obtain
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high-quality data, we removed reads that contained adapters, reads with >10% N bases
(all of them were A bases), and/or reads with Q < 20 bases, which made up >50% of
the read sequence. RNA sequencing of the resultant clean reads was performed on an
INlumina-HiSeq X sequencing platform with a read length of 150 bp.

2.4. Identification of Single Nucleotide Polymorphisms (SNPs)

After quality control, the sequencing data were compared with the pig reference
genome (Sus scrofa isolate T] Tabasco breed Duroc, GCF_000003025.6_Sscrofall.l). The
reads were mapped to chromosome coordinates, duplicate reads were removed, and reads
with mass values < 30 were filtered out. The Genome Analysis Toolkit (GATK) was used to
detect SNP loci [11]. SNPs related to differentially expressed genes (DEGs) were analyzed
to identify genes that were potentially related to the occurrence of luteal cysts.

2.5. Analysis of Differentially Expressed Genes

The DESeq?2 software [12] was used to analyze the DEGs, and |log2 (fold change) | >1
and FDR < 0.05 were used as the screening criteria. The selected DEGs were annotated using
the Gene Ontology (GO; http://geneontology.org/, accessed on 5 April 2022) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) databases (http://www.genome.jp/kegg/,
accessed on 5 April 2022).

2.6. Screening and Quantitative Fluorescence Analysis of Luteal Cyst Genes

The KEGG pathways were ranked based on q—values; low q—values indicated signifi-
cant differences between the corresponding pathways. The selected DEGs were verified
through quantitative PCR (qPCR), and the expression patterns of genes that were differen-
tially expressed between normal and cyst luteal granulosa cells were analyzed. The primer
sequences were synthesized by Shanghai Bioengineering Co., Ltd. (Shanghai, China) and
are presented in Supplementary Table S1. Quantitative amplification of the cDNA was
performed using an iScript kit (Bio—Rad Laboratories, Hercules, CA, USA). The Bio—Rad
Chrome real-time qPCR system was used to perform qPCR, and the 2-22T method was
used to calculate the relative expression level of each gene. Each group had three technical
replicates and three biological replicates.

2.7. Metabolite Identification and Differential Metabolite Analysis

Vanquish ultra-high performance liquid chromatography (UHPLC) (Thermo Fisher
Scientific, Waltham, MA, USA) and an Orbitrap Q Exactive TM HF—X mass spectrometer
(Thermo Fisher Scientific, Sunnyvale, CA, USA) were used for liquid chromatography
tandem mass spectrometry (LC—MS/MS) analysis [13]. The acquired LC-MS raw data
were processed using Compound Discover 3.1 (CD3.1, Thermo Fisher Scientific), and
retention time, mass-charge ratio, and other parameters were screened. Peak alignment
of the different samples was performed using a retention time deviation of 0.2 min and
mass deviation of 5 ppm, to increase the accuracy of the identification. Peaks were ex-
tracted according to the set mass deviation of 5 ppm, signal strength deviation of 30%,
signal-to-noise ratio of 3, minimum signal strength of 100,000, as well as ion and other
information. The peak area was quantified, and the target ion was integrated. The molec-
ular formula was predicted using molecular ion peak and fragment ion, and compared
with the mzCloud (https://www.mzcloud.org/, accessed on 5 April 2022), mzVault, and
Masslist databases [14]. Background ions were removed using blank samples, and the
quantitative results were normalized to obtain the identification and quantitative results.
The hypothesis test value (p-value) of potential differentially abundant metabolites was
obtained using Student’s t-test, and the fold change values of metabolites were calculated
by comparing the average value of each peak area.
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2.8. Analysis of Differentially Abundant Metabolite Pathways

Differentially abundant metabolite pathways were annotated through enrichment and
topological analyses. The Chemical Entities of Biological Interest (http://www.ebi.ac.uk/
chebi/init.do/, accessed on 5 April 2022), National Institute of Standards and Technol-
ogy (http:/ /www.nist.gov/index.html/, accessed on 3 April 2022), KEGG (http:/ /www.
genome.jp/kegg/, accessed on 6 April 2022), and other databases were used to identify
metabolites, explain the biological functions, and build pathways. MetaboAnalyst 5.0
(http:/ /www.metaboanalyst.ca/MetaboAnalyst/, accessed on 3 April 2022) was used
to analyze the different metabolites in the KEGG pathways. The KEGG and PubChem
databases were used to determine whether there were significant changes in the pathways
that involved cyst and normal corpus luteum genes, and to evaluate the potential effects of
metabolite concentrations on specific pathways based on the location of the metabolites in
the pathways. The aim was to identify key enzymes and rate-limiting enzymes that play
important roles in the significant differentially abundant metabolic pathways.

2.9. Combined Metabolomic and Transcriptomic Analyses

Based on the gene expression and metabolite content data, KEGG pathway maps were
annotated for differentially abundant metabolites and differentially expressed genes to
obtain common synthesis pathway information.

3. Results
3.1. Transcriptome Sequencing, Statistical Assessment of Sequence Quality, and
Expression Analysis

Transcriptome analyses were performed on normal and cystic luteal granulosa cells
to identify the genes related to the development of luteal cysts. We obtained 57,229,092,
39,761,374, and 40,244,178 raw reads from the corpus luteum samples, and 49,227,446,
46,621,552, and 57,313,272 raw reads from the corpus luteum cysts (Figure 2A). The raw
data were quality tested using FastQC [15]. For all of the samples, the Q20 values were
>95%, indicating that the sequencing data were of reliable quality with a low error rate.
After obtaining high-quality clean reads (Supplementary Table S2), HISAT2 was used to
map the sequencing data to the reference genome [16]. The comparison rate of all the
processed data was >95% (Supplementary Table S3), indicating that the sequence quality
was sufficient for subsequent gene expression analysis (Figure 2B). More than 85% of the
sequencing data mapped to the exon regions of the genes and other reads mapped to the
intron or intergenic regions, further indicating the high quality of the sequencing data.
The principal component analysis (PCA) results of the normal and cystic luteal cells are
shown in Figure 2C; PC1 was 83.7% and PC2 was 12.8%. The degree of separation between
PC1 and PC2 in the scatter plot indicated significant differences between the samples. The
distribution trend of the gene expression was consistent among the cystic and normal
corpus luteum samples, and the log10 of the Fragments Per Kilobase of the transcript per
Million mapped reads (FPKM) values were between —2 and 2 (Figure 2D). All of the raw
sequence data have been deposited in the China National Gene Bank (CNGB) Nucleotide
Sequence Archive (CNSA) (https://db.cngb.org/cnsa/, accessed on 3 April 2022) under
accession number CNP0004552.
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Figure 2. Characteristics of the sequencing data, quality control, and gene expression analysis.
(A) Preprocessing of raw reads. (B) Regions of the reference genome to which the clean reads
mapped, pink is intergenic, yellow is intron, green is exon. (C) Representative principal component
analysis (PCA). (D) Distribution of gene expression in the samples, red is control-1, pink is control—2,
blue is control -3, green is cyst—1, yellow is cyst—2, purple is cyst—3.

3.2. Identification and Functional Annotation of Differentially Expressed Genes

We identified 1048 DEGs between the normal corpus luteum and cystic corpus luteum
granulosa cells; 892 genes were significantly up—regulated, and 156 genes were significantly
down-regulated. To predict the functions of the DEGs, we used GO and KEGG enrichment.
The GO analysis showed that 558 terms were significantly enriched (p < 10~°); 527, 23, and
8 terms were under the biological process, cellular component, and molecular function
categories, respectively. The top 20 most significantly enriched GO terms are shown
in Figure 3. Many of these terms are associated with immune processes, including the
immune system process, regulation of immune system process, immune response, immune
effector process, regulation of immune system process, leukocyte activation, innate immune
response, positive regulation of immune system process, and lymphocyte activation.

The top 10 most significantly enriched GO terms were selected as the main nodes
of a directed acyclic graph (Figure 4), and the hierarchical relationship of each node was
analyzed to determine the overlap of genes in different GO categories. Analysis of the
directed acyclic graph showed that the DEGs affected the occurrence of corpus luteum
cysts mainly by activating the immune system or by regulating the biological adhesion
process. The activation of the immune system further promoted the leukocyte activation
process and activated the immune response. These two biological processes were regulated
through cell surface receptor signaling.
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Figure 3. The top 20 most significantly enriched Gene Ontology (GO) terms. GO functional annotation
of the differentially expressed genes. Distribution of the significantly enriched GO terms in the cellular
component and molecular function categories.
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The KEGG analysis showed that 79 pathways were significantly enriched. The top 20
significantly enriched pathways were classified into five main categories: cellular processes,
metabolism, environmental information processing, human diseases, and organismal
systems (Figure 5). In total, 10 of the top 20 pathways were related to diseases that
mostly involve tumor formation, including cell adhesion molecules, Th1l and Th2 cell
differentiation, the chemokine signaling pathway, the B cell receptor signaling pathway,
the tumor necrosis factor signaling pathway, the NF—kappa B signaling pathway, and the
retinol signaling pathway.

Top 20 of KEGG Enrichment
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Figure 5. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the
differentially expressed genes.

3.3. Genes Related to Luteal Cysts Identified by Transcriptome Data Analysis

Fifty of the significantly enriched KEGG pathways were selected for further analysis,
and the genes involved in these pathways were sorted according to their fold change
(Supplementary Table S4). The selected genes were mainly involved in pathways in
cancer, cell adhesion molecules, cytokine-cytokine receptor interaction, transcriptional
mis-regulation in cancers, the MAPK signaling pathway, the PI3K-Akt signaling pathway,
the cAMP signaling pathway, and neuroactive ligand-receptor interaction. Among them,
cell adhesion molecules are closely related to the GO terms that relate to the biological
adhesion process. Further analysis of the DEGs (fold change > 2) related to cell adhesion
molecules identified ICOS, CD8B, PDCD1, CD2, SIGLEC1, CD22, and CD80. These genes
play important roles in stimulating the immune response processes and are candidate
marker genes for the early detection of luteal cysts.

3.4. Metabolome Analysis and Principal Component Analysis

Metabolites in the cystic and normal corpus luteum were detected through gas
chromatography-mass spectrometry in the positive and negative ion modes to ensure
that the metabolite coverage rate was high and the detection was effective. We iden-
tified 22,622 original data peaks. After bias filtering, missing value recoding, and data
standardization, 22,622 peaks were retained (Table 1), and 1106 metabolites were annotated.
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Table 1. Metabolite detection in luteum tissues by gas chromatography-mass spectrometry.

Type All Keep Known Unknown
POS! 10,079 10,079 626 9453
NEG 2 12,543 12,543 480 12,063

Total 22,622 22,622 1106 21,516

1 POS means positive ion mode. 2 NEG means negative ion mode.

The PCA of the metabolic profiles of the differentially treated samples (Figure 6)
showed obvious quadrantal differences in the metabolic patterns on the PC1 axis. After
200 permutations of the cystic and normal corpus luteum, different random R2 and Q2
values were obtained. R2Y and Q2Y were used to evaluate the validity of the model, and or-
thogonal projections to latent structures discriminant analysis (OPLS—DA) of PC1 and PC2
were completed. The scoring charts showed that each stage was clearly divided (Figure 6),
indicating that cystic and normal corpus luteum have different metabolic patterns, and
may therefore be physiologically different.
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Figure 6. Principal component analyses of metabolic profiles were obtained using the positive ion
mode, POS (A) and negative ion mode, NEG (B) models.

3.5. KEGG Annotation of Differentially Abundant Metabolites in the Metabolome

The analysis of the differential metabolism showed that the number of down-regulated
metabolites was significantly higher than the number of up—regulated metabolites in the
cystic corpus luteum compared with the normal corpus luteum (Figure 7A,B). The genes
in the pathways that were mapped and enriched by the differentially abundant metabo-
lites were annotated with KEGG pathways (Figure 7C). The top 20 enriched pathways
were mainly related to metabolic and genetic information processing diseases. Among
them, seven significantly enriched pathways were identified, namely glycerophospholipid
metabolism, cysteine and methionine metabolism, ascorbate and aldarate metabolism,
glyoxylate and dicarboxylate metabolism, phenylalanine metabolism, glucagon signaling
pathway, and choline metabolism in cancer.

3.6. Genes Related to Luteal Cyst Occurrence Based on the Metabolome

We focused on choline metabolism in the cancer pathway based on the location of
the differentially abundant metabolites in the metabolic pathways. The cancer pathway is
associated with the PI3K-Akt and MAPK signaling pathways, which is consistent with the
results from the transcriptome analysis. These findings indicate that choline metabolism
in the luteal cyst tissues is related to regulation of the MAPK and PI3K—Akt signaling
pathways. CSF3, COL1A1, PIK3R5, COL9A2, and COL1A2 had high differential expression
levels in the PI3K-Akt signaling pathway, whereas, in the MAPK signaling pathway, the
expression of MAP4K1 and FLNC were significantly increased (by at least four times).
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Figure 7. Volcano plots of differentially abundant metabolites between cyst and normal corpus
luteum in positive ion mode, POS (A) and in negative ion mode, NEG (B) modes. Circular plot of
KEGG orthology enrichment of differentially abundant metabolites (C).

3.7. Combined Metabolomic and Transcriptomic Analysis

To better understand the interaction between granulosa cell metabolites and genes
in the formation of luteal cysts, we conducted KEGG common pathway enrichment anal-
ysis for the differentially abundant metabolites and DEGs. A total of 26 pathways with
significant differences were enriched in the KEGG pathway map, such as pathways in
cancer, metabolic pathways, ovarian steroidogenesis, sphingolipid metabolism, fatty acid
metabolism, and cAMP signaling. Pathways in cancer are at the top of the list, and we
speculate that this pathway plays a key role in the formation of luteal cysts.

3.8. Verification of the Expression of Selected Genes

We selected the DEGs related to luteal cyst occurrence and verified their expression
through RT—qPCR. The expression levels of the DEGs with specific functions were consis-
tent with the RNA sequencing data (Figure 8).

3.9. SNPs in DEGs and Their Effects on Gene Expression

We detected 433,755 SNPs, 15,206 deletions, and 31,041 insertions in the DEGs (Sup-
plementary File S1: snp. annot). These variants were located in 38 non-synonymous sites
in the DEG sequences (Supplementary File S2: non-synonymous.snp.txt), including in
five adhesion—related genes (CD22, CD8B, CD80, PDCD1, and SIGLEC1), two PI3K—Akt
pathway genes (PIK3R5, COL9A2), and FLNC in the MAPK pathway. Combining these
findings with the SNP variant results (Table 2), we identified these eight genes to be key in
luteal cysts occurrence. We consider these genes to be candidate markers for the detection
of luteal cysts because the pathways that these genes are involved in were identified as key
pathways for the formation of luteal cysts.
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Figure 8. Verification of differentially expressed genes (DEG) expression by RT—qPCR. Aldehyde
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Stimulating Factor 3 (CSF3); Sialic Acid Binding Ig Like Lectin 1 (SIGLEC1); Interleukin 1 Alpha
(IL1A); Integrin Subunit Beta 2(ITGB2); (Jun Proto—Oncogene) JUN; Pim1 Proto—Oncogene, Se
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Table 2. Number of non-synonymous variants in eight candidate marker genes.

Gene Number

FLNC 4
PDCD1
COL9A2
CD22
CDS8B
PIK3R5
CD80
SIGLEC1
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—
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4. Discussion

Most of the sequencing reads had Q20s > 95%, and the qPCR verification showed that
the sequencing results were reliable. The DEGs were annotated, with functionally enriched
GO terms and KEGG pathways, and a large number of pathways and GO terms related to
luteal cysts were identified. The predicted biological processes and pathways will help to
further the understanding of the regulatory mechanisms underlying luteal cysts.

Luteal cysts can affect normal estrus in sows [17]. In this study, many of the top 20
functionally enriched GO terms assigned to the DEGs in luteal cysts were genes involved in
immune-related biological processes, including SIGLEC1, PDCD1, ICOS, and MHCII, and
to significantly up-regulated genes enriched in cell adhesion molecule signaling pathways.
The increased expression of SIGLEC1 is closely related to tumor formation and metasta-
sis [18-20], and the increased expression of ICOS leads to poor prognosis and significantly
increased PDCD1 expression in ovarian tumors [21-23]. The increased expression of these
immune-related genes may promote the proliferation and differentiation of granulosa cells
and the formation of cysts. The increased expression of MHCII enhances the recognition
of tumors by the immune system and enhances anti-tumor immunity [24,25], thereby
promoting a good prognosis [26,27]. These results indicate that substantial inflammatory
and anti-inflammatory reactions occur in the luteal cells of cysts.

The KEGG enrichment showed that the DEGs of luteal granulosa cells are related
to tumor occurrence involving the PI3K/Akt, JAK/STAT, and MAPK signaling path-
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ways. PIK3C promotes the transmission of PI3K signaling and stimulates the formation
of tumors [28-30], while PIK3R5 is highly expressed in tumors [31,32]. FGF and FGFR
are up-regulated in various tumor tissues [33,34], and FGFR4 activates a downstream
oncogenic signaling pathway to promote cancer development [35-37]. Interleukins play
important roles in the immune response [38,39]. IL6 expression is significantly increased
in tumor cells and IL6 is used as a marker of advanced colorectal cancer [40-43]. The
expression of IL4R is also up-regulated in various tumors [44-46]. CSF1 expression is
significantly increased in hepatocellular carcinoma and is positively correlated with tumor
severity [47-50]. The expression of CSFIR in colorectal cancer tissues is significantly higher
than that in paracancerous tissues [51]. These enriched tumor-related signaling pathways
may play a key role in the regulation of luteal cyst development. Because immunity can
both inhibit and promote the occurrence of tumors [52], it has been speculated that cysts
may belong to a special state of tumor pathology. These findings indicate that exploring
changes in the microenvironment of cystic luteal cells from the perspective of immunology
and tumor occurrence can guide the analysis of luteal cyst occurrence and prognosis.

Aldehyde dehydrogenase (ALDH) oxidizes retinol, the main form of vitamin A, to
retinal, and then irreversibly oxidizes retinal to retinoic acid. This metabolic process avoids
the cytotoxicity of retinal [53]. Moreover, retinoic acid and cellular retinoic acid-binding
protein 1 (CRABP1) are involved in the regulation of gene expression, which can inhibit
tumor formation [54,55]. Significantly reduced ALDH expression decreases retinoic acid
synthesis and impairs the retinoic acid signaling pathway, leading to glioblastoma. More-
over, in Helicobacter pylori-induced gastric cancer, the expression of ALDH1 and RALDH2
in the retinol metabolic pathway are decreased [56], and the intestinal retinoic acid level in
a colorectal cancer mouse model was significantly decreased [57]. Granulosa cells are the
main cells responsible for retinol uptake and metabolism to retinoic acid in the ovary [58,59].
In this study, the retinol metabolism pathway was one of the most significantly enriched
pathways in granulosa cells of luteum cysts, and the expression of genes that encode key
enzymes in this pathway, such as retinol dehydrogenase and ALDH1A, was significantly
reduced. Therefore, we hypothesized that retinoic acid production was blocked in the
granulosa cells of the corpus luteum, which disabled the retinol metabolism pathway,
resulting in the abnormal degeneration of the corpus luteum and the formation of corpus
luteum cysts.

Abnormal lipid uptake, synthesis, and anabolism are closely related to the malig-
nant transformation of tumor cells [60,61]. Glycerophospholipids, the basic skeleton of
biofilm systems, participate in transcription, energy metabolism, and signal transduc-
tion [62]. The follicular fluid of polycystic follicle syndrome has a decreased abundance
of glycerol phospholipids [63], which affects follicular development and reduces the rate
of insemination [64,65]. Phosphatidylcholine metabolism is also abnormal in polycystic
follicle syndrome, which affects cell proliferation and differentiation [66,67]. These lipids
are closely related to follicle development and the ability of the ovaries to respond to
gonadotropins [68]. In this study, the metabolomics profiling of the luteal granulosa cells
showed that the levels of glycerophospholipids and phosphocholine were significantly re-
duced, which may inhibit the response of luteal granulosa cells to gonadotropin signals [69].
We speculate that changes in the microenvironment that affect lipid metabolism may lead
to the occurrence of luteum cysts.

5. Conclusions

The formation of luteal cysts is closely related to cancer- and immune-related signaling
pathways. Cell adhesion molecules such as CD22, CD8B, CD80, PDCD1, SIGLEC1, PIK3R5,
COL9A2, and FLNC can be used as markers for the initial identification of luteal cysts.
Abnormal lipid metabolism is also involved in the formation of luteal cysts. Our results
provide a new entry point for exploring the pathogenesis of porcine corpus luteum cysts.
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