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Abstract: Background: Whether the positive associations of gastric cancer (GC) with autoimmune
diseases are causal has always been controversial. This study aims to estimate the causal relationship
between GC and 12 autoimmune diseases by means of Mendelian randomization (MR) analysis.
Methods: After rigorous evaluation, potential candidate single nucleotide polymorphisms (SNPs)
for GC and 12 autoimmune diseases were extracted from genome-wide association study (GWAS)
datasets. We performed the MR analyses using the inverse variance weighted (IVW) method as
the primary approach to the analysis. Three sensitivity analysis methods were added to assess the
robustness of the results. In addition, heterogeneity was measured using Cochran’s Q-value, and
horizontal pleiotropy was assessed using MR-Egger regression and leave-one-out analysis. Results:
The IVW result, which is the main method of analysis, shows no evidence of a causal association
between GC and any autoimmune disease. The results of IVW analysis show the relationship
between rheumatoid arthritis (p = 0.1389), systemic lupus erythematosus (p = 0.1122), Crohn‘s disease
(p = 0.1509), multiple sclerosis (p = 0.3944), primary sclerosing cholangitis (p = 0.9022), primary biliary
cirrhosis (p = 0.7776), type 1 diabetes (p = 0.9595), ulcerative colitis (p = 0.5470), eczema (p = 0.3378),
asthma (p = 0.7436), celiac disease (p = 0.4032), and psoriasis (p = 0.7622) and GC susceptibility. The
same result was obtained with the weighted median and the MR-egger (p > 0.05). Conclusion: Our
study did not find a genetic causal relationship between susceptibility to these autoimmune diseases
and GC, which suggests that unmeasured confounders (e.g., inflammatory processes) or shared
genetic architecture may be responsible for the reported epidemiologic associations. Further studies
of ancestral diversity are warranted to validate such causal associations.

Keywords: Mendelian randomization; gastric cancer; autoimmune disease; inflammatory bowel
disease; causal relationship

1. Introduction

Gastric cancer (GC) is the fifth most common type of cancer and the third leading cause
of cancer death in the world [1]. Although the incidence of GC has declined in the United
States and Western Europe in recent decades, it remains a major health problem that cannot
be ignored with the significant mortality rate among malignant tumors [2–4]. Known risk
factors for the condition include infection with Helicobacter pylori, a high intake of salt, and
a diet low in fruits and vegetables [5,6]. The 5-year survival rate of patients with GC is
95–99% if it is diagnosed at an early, resectable stage and surgery is undergone in a timely
manner, while the 5-year survival rate is less than 30% if they are diagnosed at an advanced
stage [7,8]. Due to the lack of specific clinical symptoms in the early stage, GC is often
diagnosed at an advanced stage, which is associated with worse overall survival [9]. South
Korea and Japan have implemented nationwide gastric cancer screening by endoscopy
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within their National Cancer Screening Program, which has significantly improved the
survival of gastric cancer patients [10]. Increasing attention is being paid to the recognition
of high-risk patients for GC surveillance. In addition, some immune-mediated diseases
have been reported to be associated with an increased risk of GC in previous epidemiologic
studies [11].

Autoimmune diseases, which occur in multiple organs or systems throughout the
body, are characterized by the loss of self-tolerance, which results in the immune-mediated
destruction of the body’s own tissues [12]. Immune dysregulation is thought to play a
causative role in the pathogenesis of autoimmune diseases and tumors, and accumulating
evidence suggests that autoimmune disorders might be related to the malignancy [13].
An increased incidence of multiple tumors has been found in systemic sclerosis patients
with anti-RNAP antibodies, especially in breast and gastrointestinal tumors [14]. Chronic
inflammation in rheumatic diseases increases the likelihood of solid malignancies and
hematological malignancies. Prolonged inflammation caused by rheumatic diseases is
responsible for the transition to secondary malignancies [15]. It has been suggested that
gastric neoplasia occurs more in patients with autoimmune gastritis than in the general
population [16]. There are also meta-analyses that show a consistent inverse association
between pancreatic ductal adenocarcinoma and allergic disease, suggesting that the body’s
atopic disease reduces the risk of malignancy [17]. Yet, because of the inherent limitations
of observational research, including reporting biases, confounders, and inverse causation,
it is not possible for a single study’s results to be used as the sole basis for a clinical trial.
Previous studies have failed to clarify the relationship between autoimmune diseases and
malignant tumors. The observed association between autoimmunity and gastric cancer
remains incidental and requires further validation.

Mendelian randomization (MR) analysis, an emerging statistical method, estimates the
causal relationship between exposure and outcome by using genetic variants such as single
nucleotide polymorphisms (SNPs) as instrumental variables (IVs) [18]. To reliably predict
exposure, MR identifies potential genetic variants as IVs based on the random assortment
of genetic variants during meiosis, which is based on the econometric theory for IV analysis.
As a result of these characteristics, the effects of confounding and reverse causation can be
minimized and the biases typically found in observational studies can be controlled for with
MR analysis [19,20]; it has been widely used to investigate associations between exposures
and outcomes with excellent precision. It is unclear whether autoimmune diseases have
independent effects on GC. In this study, MR analysis was used to investigate genetic causal
effects between gastric cancer and 12 autoimmune diseases.

2. Methods
2.1. Study Design

Figure 1 depicts the flow diagram of the MR study between GC and 12 autoimmune
diseases. Three criteria must be met in order to accurately infer the potential causal associa-
tion between GC and autoimmune disease through the MR approach [21,22]: (1) genetic
variants should be significantly related to the exposure; (2) when extracted as instrumental
variables for exposure, genetic variants are not related to other confounders; (3) genetic
variants have an effect on the outcome of a disease solely through their effect on the ex-
posure to it. There was no need for additional ethical approval because we were using
publicly available summary statistics from genome-wide association studies (GWAS).

2.2. Study Cohorts and GWAS

We performed a systematic analysis with GWAS summary-level data obtained from
different large-scale cohorts to infer causal relationships between GC and autoimmune dis-
eases [23]. GWAS summary statistics on GC (GWAS ID: finn-b-C3_STOMACH_EXALLC),
including 633 GC cases and 174,006 controls of European ancestry, were downloaded
at https://www.finngen.fi/en/access_results (accessed on 10 June 2023) [24]. The sum-
mary statistics of the GWASs for 12 autoimmune diseases (Table 1) were downloaded
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from the GWAS catalog website (https://gwas.mrcieu.ac.uk/ (accessed on 10 June 2023)).
Autoimmune disorders in this study include rheumatoid arthritis (RA), systemic lupus
erythematosus (SLE), multiple sclerosis (MS), ulcerative colitis (UC), Crohn‘s disease (CD),
celiac disease (CeD), asthma, eczema, type 1 diabetes (T1D), primary sclerosing cholangitis
(PSC), and psoriasis (PsO). In these studies, all of the cohorts of cases and controls were
of European ancestry, and there is also no significant overlap between the populations of
the GWAS. The initial studies provide detailed information on enrollment procedures and
diagnostic criteria. More detailed information for the cohorts of cases and controls can be
found in Table 1.
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Figure 1. Flowchart of the MR study between GC and 12 autoimmune diseases.

2.3. IV Selection

We used the R package TwoSampleMR to select genetic instruments from each of
the 12 autoimmune disease GWASs [25]. A rigorous quality control process was used to
select eligible instrumental variables for each autoimmune disease. We used independent
genetic variants that were significantly associated with each exposure (p < 5 × 10−8) for each
instrument and used a clustering procedure with R2 < 0.001 and cluster distance = 10,000 kb

https://gwas.mrcieu.ac.uk/
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to avoid linkage disequilibrium (LD) [26]. Then, we excluded all ambiguous or palindromic
SNPs that had a nonconcordant allele (for example, A/G versus A/C) or ambiguous strand
(for example, A/T or G/C). To detect the underlying weak instrumental variable bias, we
also calculated the proportion of variance explained (R2) and the F statistic for all SNPs. A
mean F-statistic > 10 indicates suitable instrumental variables [27,28].

Table 1. Characteristics of the GC and autoimmune disease GWAS cohorts.

Disease Study Journal Cases Controls Sample
Size Datasets in the GWAS

RA Ha E et al. Ann Rheum Dis. 14,361 43,923 58,284 ebi-a-GCST90013534
SLE Bentham J et al. Nat. Genet. 5201 9066 14,267 ebi-a-GCST003156
CD Liu JZ et al. Nat. Genet. 17,897 33,977 51,874 ieu-a-12
MS Beecham AH et al. Nat. Genet. 14,498 24,091 38,589 ieu-a-1025
PSC Ji et al. Nat. Genet. 4796 19,955 24,751 ieu-a-1112
PBC Liu JZ et al. Nat. Genet. 2861 8514 11,375 ebi-a-GCST005581
T1D Forgetta V et al. Diabetes. 9266 15,574 24,840 ebi-a-GCST010681
UC Liu JZ et al. Nat. Genet. 13,768 33,977 47,745 ieu-a-970

Eczema Ferreira MA et al. Nat. Genet. 180,129 180,709 360,838 ebi-a-GCST005038
Asthma Valette K et al. Commun Biol. 56,167 352,255 408,442 ebi-a-GCST90014325

CeD Trynka et al. Nat. Genet. 12,041 12,228 24,269 ieu-a-1058
PsO Tsoi LC et al. Nat. Genet. 10,588 22,806 33,394 ebi-a-GCST005527

RA—rheumatoid arthritis, SLE—systemic lupus erythematosus, CD—Crohn’s disease, MS—multiple sclerosis,
PSC—primary sclerosing cholangitis, PBC—primary biliary cirrhosis, T1D—type 1 diabetes, UC—ulcerative
colitis, CeD—celiac disease, PsO—psoriasis.

2.4. Statistical Analysis

In this study, we estimated the causal associations between 12 autoimmune diseases
and GC separately using different MR methods by combining summary statistics (β co-
efficients and standard errors) [18]. We applied three MR analysis methods based on
different assumptions, including inverse-variance-weighting (IVW), MR-Egger regression,
and weighted mean (WM) [29,30]. If the horizontal pleiotropy is balanced, then the IVW
method will provide an unbiased estimate [25]. The multiplicative random effects IVW
method, which assumes that all SNPs are valid instruments but provides the most accurate
estimates, was used for the primary MR analyses [31]. In addition, an online web tool
(https://sb452.shinyapps.io/power/ (accessed on 10 June 2023)) was applied to calculate
the statistical power of each IV. The odd ratios (ORs) are described as an increase in the
level of the risk factor per standard deviation (SD) [32].

2.5. Robust Analysis

To detect potential horizontal pleiotropic effects and to examine the consistency of the
associations, several sensitivity analysis methods were performed, including weighted me-
dian, MR-Egger, and MR pleiotropy residual sum and outlier (MR-PRESSO) analyses [18].
It is well-known that selecting IV SNPs from the exposure GWAS results in the winner’s
curse [33]. To reduce the bias of Mendelian randomization analyses when performed, we
used sensitivity and multiplicity analyses. The winner’s curse is a relevant consideration in
the selection of IVs from the exposure GWAS, but it should not materially bias the estimate
or the overall conclusion [34]. Directional horizontal pleiotropy in the causal estimates
may be indicated by the intercept term in the MR-Egger regression. Cochran’s Q test
was used to test for heterogeneity in the causal estimates between exposure and outcome,
and we applied both the estimates for causality of the IVW method with fixed effects and
the MR-Egger regression to recognize heterogeneity. Heterogeneity was quantified using
Cochran’s Q statistic and a p value < 0.05 was considered significant heterogeneity [35,36].
Multipotency was further analyzed using the R package MR-PRESSO to reduce bias (based
on the IVW results) and to remove any outliers. For the tool to perform the MR-PRESSO
outlier test, at least 50% of the genetic variance must be valid according to the InSIDE
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hypothesis. [36]. In addition, a leave-one-out analysis was performed to determine the
stability of the results to identify potentially heterogeneous SNPs [37].

R tool (version 4.3.0) was used for all statistical analyses in this study. The MR
analyses were carried out using the R packages TwosampleMR (version 0.5.6), MR-PRESSO
(version 1.0), and qvalue.

3. Results

The causal relationship from MR analysis between GC and autoimmune diseases is
graphically summarized in Table 2. In the primary IVW MR analysis, we did not find a
significant causal association between 12 autoimmune disorders and the risk of GC, nor
did the other methods, including MR-Egger regression and penalized weighted median
(all p > 0.05). The results of IVW analysis show the relationship between RA (p = 0.1389,
95% CI = 0.9781–1.1719, OR = 1.0706), SLE (p = 0.1122, 95% CI = 0.9875–1.1273, OR = 1.0551),
CD (p = 0.1509, 95% CI = 0.9761–1.1695, OR = 1.0685), MS (p = 0.3944, 95% CI = 0.9353–1.1849,
OR = 1.0527), PSC (p = 0.9022, 95% CI = 0.9043–1.1209, OR = 1.0068), PBC (p = 0.7776, 95%
CI = 0.9124–1.1304, OR = 1.0156), T1D (p = 0.9595, 95% CI = 0.9399–1.0675, OR = 1.0016), UC
(p = 0.5470, 95% CI = 0.9209–1.1682, OR = 1.0372), eczema (p = 0.3378, 95% CI = 0.6227–1.1765,
OR = 0.8559), asthma (p = 0.7436, 95% CI = 0.8142–1.3337, OR = 1.0420), CeD (p = 0.4032, 95%
CI = 0.8242–1.0808, OR = 0.9438), and PsO (p = 0.7622, 95% CI = 0.9724–1.0207, OR = 0.9963)
and GC susceptibility. F-statistics for PBC and PsO could not be calculated due to missing
data from some GWASs. In addition, F-statistic > 62 for all of the instruments, which is
above the standard cut-off (>10) and indicates that the instrument has sufficient power.

For each IV, a sensitivity analysis is performed to detect the presence of horizontal
pleiotropy. IVs for PBC were found to be significantly heterogeneous (IVW: Cochran’s
Q = 0.027). SNPs with heterogeneity were found using MR-PRESSO analysis with R. Then,
four SNPs (rs7775055, rs79513546, rs8067378, and rs911263) with heterogeneity were ex-
tracted using MR-PRESSO analysis, the SNPs were removed for outliers, and the MR anal-
ysis was performed again. The MR-Egger regression intercept was insignificant (Figure 2).
Sensitivity analyses were consistent with no evidence of bias due to genetic pleiotropy.
Visual inspection of funnel plots (Figure 3) and leave-one-out plots (Figure 4) did not reveal
any obvious directional pleiotropy. Due to the lack of effective SNPs for GC in reverse MR
studies, reverse MR analysis was not performed. SNPs for the 12 autoimmune diseases in-
cluded in the study can be found in the Supplemental File (manuscript-supplementary.zip).

Table 2. Results of MR analyses between autoimmune disease liability and GC risk.

Exposure Nsnp r2 F
Inverse Variance Weighted Weighted Median MR Egger

OR CI P OR CI P OR CI P

RA 85 0.00187 109.9294 1.0706 0.9781–1.1719 0.1389 1.0819 0.9537–1.2275 0.2211 1.0351 0.9012–1.1891 0.6262

SLE 42 0.00669 76.7697 1.0551 0.9875–1.1273 0.1122 1.0613 0.9672–1.1645 0.2087 1.1121 0.9636–1.2835 0.1540

CD 120 0.00173 90.0585 1.0685 0.9761–1.1695 0.1509 1.1072 0.9611–1.2755 0.1584 0.9974 0.7812–1.2733 0.9831

MS 49 0.0018 69.8125 1.0527 0.9353–1.1849 0.3944 1.1582 0.9547–1.4051 0.1362 1.0764 0.8495–1.3640 0.5450

PSC 18 0.00757 116.2914 1.0068 0.9043–1.1209 0.9022 1.0858 0.9378–1.2572 0.2706 1.0228 0.8451–1.2379 0.8198

PBC 18 NA NA 1.0156 0.9124–1.1304 0.7776 1.0589 0.9107–1.2311 0.4568 0.9965 0.6733–1.4750 0.9863

T1D 37 0.00456 116.1002 1.0016 0.9399–1.0675 0.9595 1.0421 0.9544–1.1379 0.358 0.9962 0.9047–1.0970 0.9387

UC 85 0.00194 93.2096 1.0372 0.9209–1.1682 0.5470 1.0121 0.8508–1.2040 0.8920 1.1502 0.8587–1.5408 0.3507

Eczema 70 0.000174 62.6772 0.8559 0.6227–1.1765 0.3378 0.9736 0.6202–1.5284 0.9074 0.8697 0.3507–2.1569 0.7641

Asthma 76 0.000168 68.5165 1.0420 0.8142–1.3337 0.7436 1.0629 0.7531–1.5000 0.7286 0.7672 0.4107–1.4339 0.4086

CeD 15 0.0114 285.7935 0.9438 0.8242–1.0808 0.4032 0.9509 0.8416–1.0744 0.419 0.9224 0.7495–1.135 0.4591

PsO 50 NA NA 0.9963 0.9724–1.0207 0.7622 0.9941 0.9604–1.0291 0.7388 0.9846 0.9554–1.0147 0.3178

ORs express each exposure’s liability impact on GC risk. RA—rheumatoid arthritis, SLE—systemic lupus
erythematosus, CD—Crohn‘s disease, MS—multiple sclerosis, PSC—primary sclerosing cholangitis, T1D—type 1
diabetes, UC—ulcerative colitis, CeD—celiac disease, PsO—psoriasis.
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4. Discussion

To the best of our knowledge, this is the first study that has used MR analysis and large-
scale GWAS data sets to demonstrate a causal relationship between GC and autoimmune
diseases. Our results suggest that there is no apparent genetic causal relationship between
autoimmune diseases and the chance of GC, which means that there is a lack of genetic
association with correlating traits. This finding is consistent across multiple GWAS data
sources and has been confirmed in sensitivity analyses.

Recent studies have shown that several autoimmune diseases can cause a slight in-
crease in the risk of developing multiple cancers [38,39]. In addition, a negative association
between gastric cancer and some autoimmune diseases has also been observed [40]. Au-
toimmune diseases may directly or indirectly contribute to gastric cancer through several
pathways. The role of chronic inflammation or immunosuppressive drugs in the devel-
opment of gastric cancer should be considered, as our study confirmed that there is no
genetic link between autoimmune diseases and gastric cancer. The effective Helicobacter
pylori eradication strategies have greatly reduced the incidence of gastric cancer compared
to the previous period. Perhaps rational immune management will be a new direction for
the reduction of the incidence of gastric cancer or the improvement of the survival rate of
gastric cancer.

In contrast to our findings, a study that included 30 different immune system dis-
eases [38] found that type 1 diabetes, systemic lupus erythematosus, and primary biliary
cirrhosis significantly increased the risk of GC. However, the result is likely to be biased
because data on some exposure factors were missing and there was no evidence of trim
and fill correction for missing information. In a study of 4.5 million U.S. male veterans [41],
a history of autoimmune disease with localized effects on the digestive tract generally
increased the risk of cancer in the organs affected by the autoimmune disorders, such
as pernicious anemia and stomach cancer, which does not contradict our results. The
relationship between other digestive organs and autoimmune diseases with local effects in
the digestive tract needs further investigation.
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SLE, RA, and MS are characterized by chronic, systemic, and exaggerated immune
activation and inflammation affecting nearly every tissue in the body. Chronic inflammation
caused by autoimmune diseases has long been implicated in carcinogenesis, but no genetic
causality between these disorders and GC was found in this study. In a large retrospective
study, Zhou Z et al. found that RA generally increased the incidence of solid tumors,
with no significant association with GC. Most of the tumors developed nine years after
the diagnosis of RA, suggesting that the potential carcinogenic effect of long-term use of
antirheumatic drugs or NSAIDs deserves attention. Patients with SLE and MS also have a
significantly increased risk of cancer, especially cancer of the female reproductive organs
and solid cancers, with no significant association with GC [42].

Inflammatory bowel disease plays a significant role in the development and progres-
sion of gastrointestinal tumors, and the association between the risk of colorectal cancer
and inflammatory bowel disease is well established [43]. However, in our study, we have
not been able to find a genetic cause-and-effect relationship between inflammatory bowel
disease and GC. Wan et al. confirmed that IBD is significantly associated with an elevated
risk of digestive tract tumors. After stratification by cancer location, IBD primarily elevated
the chance of colorectal cancer, but not stomach cancer. In addition, Crohn’s disease (CD)
significantly increases the risk of small bowel and colorectal cancer, whereas ulcerative
colitis (UC) only increases the risk of colorectal cancer [44,45]. Interestingly, the ATG16L1
T300A variant, a major CD susceptibility allele, has been shown to be associated with the
development of gastric cancer susceptibility [45], and is also associated with increased
overall survival and tumor apoptosis as well as inhibition of EGFR and PPAR pathways in
gastric cancer [46].

Patients with PSC have been reported to have a higher incidence of cancer than the
general population, but the reason for the increased cancer risk is unclear and may be
related to chronic liver and intestinal inflammation [47]. In a matched cohort study of
1432 patients with confirmed PSC and 14,437 controls with a mean follow-up of 15.9 years,
Båve et al. found that patients with PSC had a higher risk of hepatobiliary and pancreatic
cancer than the general population, while the risk of gastric cancer was not increased [48].
Celiac disease is defined as an autoimmune disease in which the small intestine is the
primary target, and is thought to be one of the causes of several malignancies. Some large
cohort studies have reported that CeD does not increase the risk of stomach cancer [49,50].

We found that genetically predicted eczema and asthma were not causally related
to GC risk. However, the link between asthma and cancer has been mixed in previous
studies. Two independent longitudinal cohort studies involving 480,637 participants
suggest that the development of asthma increases the risk of secondary cancer overall, and
this association remained after a stratified study based on age and sex status [51]. There
is also evidence that asthma may only be a risk factor for lung cancer, but not for other
types of invasive cancer [52]. Interesting to note is that an epidemiologic study found an
inverse association between GC and allergic disease. El-Zein M et al. found that allergic
diseases caused by an overactive immune system may lead to more effective elimination
of abnormal cells, reducing the risk of cancer [40]. A cross-sectional study showed that
Helicobacter pylori infection was inversely associated with asthma in people aged <40 years
(OR = 0.503; 95% CI = 0.280–0.904, p = 0.021) [53]. The reason may be that Helicobacter
pylori infection prevents allergic asthma by inducing regulatory T cells [54,55]. Allergic
diseases are also negatively correlated with other malignancies such as lung cancer and
cutaneous cancer [56,57]. In addition, there is also some evidence that allergic conditions
may be a risk factor for some types of hematologic malignancies [58]. Further research is
needed to determine the exact mechanisms underlying allergic disease in the development
of GC.

Our research has several major strengths, the most important of which is the MR
design, which allows causal inference free from confounding and reverse causality [18].
Secondly, to ensure the generalizability of causal associations, we included multiple inde-
pendent large cohorts for MR analyses and subsequent meta-analyses to ensure a sufficient
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sample size of the outcome. In addition, we used a variety of supplementary analyses, such
as sensitivity analyses for heterogeneity, pleiotropy, and funnel plots, to test the robustness
of the assumptions for the instrumental variables. Thus, our results should be reliable.

Nevertheless, we still have a number of limitations, and therefore the results should
be treated cautiously. Firstly, the participants in the study were of European descent, so
further research is needed to determine whether the findings apply to other populations.
Second, the results may be biased because there is an additional complicating factor in
using Finnish genetic data for the results: The Finnish population is one of the most
diverse from the European population. Furthermore, there are also limitations to using
summary GWAS statistics. It is well-known that selecting IV SNPs from the exposure
GWAS results in the winner’s curse. Although sensitivity and multiplicity analyses have
been performed to assess the validity of Mendelian randomization studies, this does not
completely eliminate the bias it may introduce. Finally, although we have taken steps
to eliminate the possibility of confounding, we cannot completely rule out the possible
influence of horizontal pleiotropy on our results.

5. Conclusions

Our MR results suggest that there is no genetic causal relationship between gastric
cancer and 12 autoimmune diseases, which means that there is a lack of genetic association
with correlating traits. However, this does not exclude the possibility that they are related
to unmeasured confounders (e.g., inflammatory processes) other than genetic. To further
dissect the complex relationship between GC and autoimmune disease, more population-
based and experimental studies are warranted.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14101844/s1, Supplemental File: SNPs for the 12 autoimmune
diseases included in the study.
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