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Abstract: This study aimed to identify causal variants associated with important carcass traits such as
weight and meat quality in Hanwoo cattle. We analyzed missense mutations extracted from imputed
sequence data (ARS-UCD1.2) and performed an exon-specific association test on the carcass traits of
16,970 commercial Hanwoo. We found 33, 2, 1, and 3 significant SNPs associated with carcass weight
(CW), backfat thickness (BFT), eye muscle area (EMA), and marbling score (MS), respectively. In CW
and EMA, the most significant missense SNP was identified at 19,524,263 on BTA14 and involved
the PRKDC. A missense SNP in the ZFAND2B, located at 107,160,304 on BTA2 was identified as
being involved in BFT. For MS, missense SNP in the ACVR2B gene, located at 11,849,704 in BTA22
was identified as the most significant marker. The contribution of the most significant missense
SNPs to genetic variance was confirmed to be 8.47%, 2.08%, 1.73%, and 1.19% in CW, BFT, EMA,
and MS, respectively. We generated favorable and unfavorable haplotype combinations based
on the significant SNPs for CW. Significant differences in GEBV (Genomic Estimated Breeding
Values) were observed between groups with each favorable and unfavorable haplotype combination.
In particular, the missense SNPs in PRKDC, MRPL9, and ANKFN1 appear to significantly affect
the protein’s function and structure, making them strong candidates as causal mutations. These
missense SNPs have the potential to serve as valuable markers for improving carcass traits in Hanwoo
commercial farms.

Keywords: carcass traits; exon-specific association study; missense variant; protein structure
prediction

1. Introduction

Hanwoo cattle, endemic to the Republic of Korea, has been residing on the Korean
Peninsula for over 2000 years. The refinement of Hanwoo is achieved by intensive selec-
tion focusing on economic traits, such as meat quantity and quality [1]. Following the
human genome project, advances in whole-genome sequencing of livestock have led to
the development of SNP arrays, which are further expedited by genome-wide panels of
SNPs to enable genomic prediction in livestock. The number of genetic variations (SNPs,
insertions, deletions, and structural variations) available for genomic prediction and the
number of whole-genome sequenced individuals is increasing [2]. The 1000 Genomes
Project consortium reported 38 million SNPs with 1.4 million short insertions and deletions
in humans [3]. The 1000 Bull Genomes Project identified 28.3 million variants including
insertions, deletions, and SNPs in Bos taurus [4].
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Genome-wide association studies (GWAS) have become an essential tool for identify-
ing genetic markers associated with complex quantitative traits in animal genetics. These
studies have successfully identified a large number of trait-associated single nucleotide
polymorphisms (SNPs) [5–7]; however, the polygenic structures are very difficult to char-
acterize. The missing heritability problem is a significant challenge in GWAS studies, as
the genetic variation for polygenic traits has a minor effect, accounting for only a small
fraction of heritability [8,9]. In addition, complex traits are affected by genetic interactions
and environments, and numerous SNPs affect target traits due to a high level of linkage
disequilibrium (LD) between genomic variations, making it difficult to specify the exact
cause of a genetic variation [10].

In order to overcome the challenges of identifying genetic variants associated with
complex traits in GWAS, many studies have used biological information to annotate classes
of mutations and search for trait-associated mutations in specific regions. In human
studies, protein-coding and conserved annotations have been used to identify trait-related
variants [11–13]. We here focused on missense (non-synonymous) variants that are highly
associated with trait-associated SNPs [14,15] because they can impair protein stability or
cause structural changes that lead to functional alterations [16]. It has been shown that the
effects of amino acid allelic variants on protein structure and function can be predicted
by analysis of multiple sequence alignments [17,18]. Multiple sequence alignments of
homologous sequences identify which positions have been conserved over evolutionary
time, and these positions are inferred to be important for function [19]. At CASP14 in
2020, AlphaFold2 (AF2) demonstrated that high-precision protein structure prediction
with high accuracy on an unprecedented scale is not only possible but has already been
achieved [20,21]. In 2021, DeepMind and EMBL-EBI developed the AlphaFold protein
structure database, a data resource that presents protein structure prediction results and
makes them easily accessible to the community, making a huge impact on the life sciences
field [22,23].

In fact, SNP prioritization approaches using missense SNPs have been developed to
predict disease associated bio-markers [24]. In the context of livestock breeding programs,
missense variants in the protein-coding region account for a significant proportion of the
genetic variance in dairy and beef cattle [2]. This makes the exon region a promising target
for identifying genetic variants associated with complex traits in livestock [25]. In this
study, we aim to identify causal mutations that affect carcass traits in Hanwoo cattle by
conducting an association analysis that takes into account the functional aspects of SNPs,
particularly missense variants. In addition, this study is intended to help understand the
effect of the missense mutation on the protein structure.

2. Materials and Methods
2.1. Animals, SNP Genotyping, and Quality Control

This study used 16,970 commercial Hanwoo with an average age of 30.2 ± 1.9 months
that were born between 2006 and 2016. These animals were slaughtered at a commercial
abattoir between 2013 and 2019, producing phenotypic data (carcass traits). The genomic
DNA was derived from longissimus thoracis muscle samples using a DNeasy Blood and
Tissue Kit (Qiagen, Valencia, CA, USA), and its concentration and purity were assessed
using a NanoDrop 1000 (Thermo Fisher Scientific, Wilmington, DE, USA). DNA samples
were genotyped using the Bovine SNP50 BeadChips (Illumina Inc., San Diego, CA, USA).
Quality control was performed using PLINK1.9 software [26] based on the following
SNP exclusion criteria: call rate < 0.90; minor allele frequency < 0.01; and p-value for
Hardy–Weinberg equilibrium test <10−4.

2.2. Imputation, Lift-Over, and Annotation

Imputation was conducted in a two-step process using minimac3 [27]. Initially, the
50 K genotype of 16,970 Hanwoo was uplifted to a high-density level using the Illumina
Bovine HD BeadChip (777K) from 1295 Hanwoo samples. Subsequently, it was further
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imputed to the sequence level utilizing whole genome sequence data from 203 Hanwoo.
SNPs with square correlation (r2) < 0.6 were excluded in the imputation steps, and SNPs
on the autosomes were selected from the analysis. The imputed sequence-level data was
annotated using the SnpEff program [28]. Genomic coordinates were converted from UMD
3.1.1 to ARS-UCD1.2.

2.3. Variance Component Estimation of Genome Regions

We estimated the variance explained by genome regions via restricted maximum
likelihood (REML) analysis using GCTA software [29]. The statistical model was

y = Xβ+ g + e (1)

where y is a vector of the carcass traits, X is an incidence matrix, β is a vector of fixed effects,
g is a vector of genetic effects of genome regions with var(g) = Agσ

2
G, and Ag is the genomic

relationship matrix (GRM) for all genome regions. The proportion of variance explained by
genome regions was defined as h2

G = σ2
G/σ2

P.

2.4. Exon-Specific Association Test (ESAS)

The genome region-specific genomic data was obtained by extracting only non-
synonymous (missense) variants from the imputed sequence-level data. The phenotypic
data were pre-adjusted for fixed effects, including birth year, season of birth, growing re-
gions, and age at slaughter, utilizing a linear mixed model in R software 3.3.1 (R Foundation
for Statistical Computing, Vienna, Austria). The adjusted phenotypes and SNP information
were subsequently submitted for GWAS using a mixed linear model. It can be written as:

y = a + bx + g + e (2)

y: phenotype; a: the mean term; b: additive effect (fixed effect) of the candidate SNP; x:
SNP genotype indicator variable coded as 0, 1, or 2, which are the number of minor alleles
of the genotype; g: polygenic effect (random effect); e: residual.

The significance test in the exon-specific association test was performed using the Bon-
ferroni correction method (0.05/number of SNPs). The percentage of genetic contribution
(%Vg) accounted for by each SNP was calculated using the formula

%Vg= 100 × 2pqβ2

σ2
A

(3)

The explanation power of a candidate SNP in phenotypic variance (total variance) can
be calculated as follows [30]:

β2Var(X)
Var(Y)

=
β2Var(X)

β2Var(X) + σ2
(4)

β: effect size of genetic variant (X); β2Var(X): variance explained by the genetic variant
X; Var(Y): phenotypic variance; σ2: variance explained by other genetic variants. It can be
estimated as:

2β̂2M(1−M)

2β̂2M(1−M) + (se(β̂))22NM(1−M)
=

2pqβ̂2

Var(Y)
(5)

β̂: effect size estimate; M: minor allele frequency; N: sample size; se(β̂): standard error
of effect size for the genetic variant X; q: major allele frequency.

2.5. Favorable and Unfavorable Haplotypes

The haplotype phase was inferred from the significant SNPs of each chromosome for
carcass weight using PHASE v2.1.1 [31,32], using 100 iterations, two thinning intervals per
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iteration, and 10 burn-in iterations. By employing the effects and allelic information of
significant SNPs associated with body weight, we delineated favorable and unfavorable
homozygous haplotypes (HH) within the reconstructed haplotypes of each chromosome.

2.6. Genomic Prediction

The GEBVs of all genotyped individuals were predicted with the genomic best linear
unbiased prediction (GBLUP) model using the BLUPF90 programs [33]. GEBVs were
calculated based on the following equation:

y = 1µ+ Zγ+ g + e (6)

where y is the vector of the observed phenotype; 1 is a vector with N ones; µ is the
intercept; Z is the incidence matrix for the fixed effects; γ is the vector of fixed effects, which
included birth year, birth month, slaughter year, slaughter month, slaughter place, and
age as covariates for traits; g is vector of the additive genetic effects for individuals with
var(gi) = Giσ

2
a; and e is the vector of residual effects. G is the genomic relationship matrix

calculated as:

G =
MM′

2∑ pj(1 − pj

) (7)

where M is a matrix of centered genotypes and pj is the allele frequency for marker j [34].

2.7. Prediction of Damaging Causal Mutations and Structure

We used PolyPhen-2 v2 [17] to predict the impact of the candidate causal genetic
mutation (missense mutation) on the protein structure and function. Furthermore, for those
mutations with significant impact, we utilized AlphaFold2 [35] to predict the 3D protein
structure based on the presence or absence of the mutation.

3. Results
3.1. Genome Partitioning of Genetic Variation

In this study, we obtained 693,496 SNPs (90%) out of 777K SNPs and 25,676,502 SNPs
(100%) of whole-genome sequence data. Applying the R-square criterion, imputed sequence-
level data consisting of 10,443,247 SNPs were generated, and the majority of mutations
were found in intron regions at 53.16%, followed by intergenic regions at 37.09%. Exons
accounted for only 0.83% of the entire genome, a relatively small proportion (Figure 1A).

In terms of heritability by genome region, the intergenic region had the highest values
for carcass weight (CW), backfat thickness (BFT), and eye muscle area (EMA) at 0.22, 0.16,
and 0.14, respectively, while the highest value for marbling score (MS) was observed in the
intron region at 0.18. Exon regions had lower heritability values of 0.06, 0.03, 0.03, and 0.01
for CW, BFT, EMA, and MS, respectively (Figure 1B).

Currently, the common chips universally used in Hanwoo are Illumina BovineSNP50
v2, Illumina BovineSNP50 v3, and the customized Hanwoo 50K chip. The number of SNPs
incorporated in each chip is 54,609 for Illumina v2, 53,218 for Illumina v3, and 53,866 for the
Hanwoo custom chip (Figure 1C). As a result of checking whether 28,144 missense variants
in the exon region were inherent in these, 135 missense SNPs out of 28,144 were found in
common, and 27,996 missense SNPs were not included in the currently produced chip.
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Figure 1. Comprehensive information on missense variants in the Hanwoo genome. (A) Functional
effects of mutations on the sequence-level data. (B) The heritability of variants by genome region.
(C) Missense mutations in Illumina Bovine SNP50 BeadChips (BovineSNP50 v2, BovineSNP50 v3)
and the customized Hanwoo 50K chip.

3.2. Identification of Candidate Causal Variants

Based on the quantile–quantile (QQ) plot for each carcass trait, the genomic inflation
factor (lambda value) was observed to range from 0.82 to 0.94 (Figure S1). Only the missense
variants that passed the quality control criteria were used for the exon-specific association
test, and the results are presented in Figure 2. The results showed 33, 2, 1, and 3 significant
SNPs associated with CW, BFT, EMA, and MS, respectively. Information on significant
SNPs for each trait is shown in Table 1, and more details are shown in Table S1. The most
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significant SNP for CW was the marker rs449968016 located at position 19,524,263 bp in
chromosome BTA14, within the protein kinase, DNA-activated, catalytic subunit (PRKDC)
gene. The analysis revealed a significant association between the EMA and the same SNP
(rs449968016). The most significant marker (rs109446852) for BFT was identified at position
107,160,304 bp in chromosome BTA2, within an exon of the zinc finger AN1-type containing
the 2B (ZFAND2B) gene. Moreover, the most significant marker (rs799031002) for MS
was located in the activin A receptor type 2B (ACVR2B) gene at position 11,849,704 bp on
chromosome BTA22. Regarding CW, significant SNPs were identified in each of chromo-
somes BTA6 (rs797342426), BTA14 (rs471616366), and BTA14 (rs380389290). These SNPs
correspond to hypothetical genes that have not yet been identified in cattle.

Table 1. The candidate SNPs and genes associated with carcass traits in Hanwoo cattle.

Trait Chr:Pos Allele RefSNPID Gene SNPeffect SE p-Value

CW 4:4857791 A/G rs210475204 COBL 6.507 1.09 2.195 × 10−9

4:9502576 C/T rs445255852 LRRD1 6.653 1.24 7.130 × 10−8

4:9875221 G/A rs379759182 RBM48 4.342 0.89 9.806 × 10−7

4:7208133 C/T rs516634298 ABCA13 3.780 0.79 1.666 × 10−6

6:37403795 T/C rs109696064 LCORL 13.712 1.49 3.011× 10−20

6:37343379 G/T rs109570900 NCAPG 11.838 1.43 9.919× 10−17

6:36630884 T/C rs383697460 PKD2 15.613 2.83 3.458 × 10−8

6:58146321 G/A rs797342426 Hypothetical 14.673 2.68 4.520 × 10−8

6:36880429 C/T rs716537943 IBSP 7.977 1.52 1.490 × 10−7

6:36028197 G/A rs383620650 FAM13A 8.228 1.59 2.346 × 10−7

6:37237698 T/C rs210785796 FAM184B −4.537 0.88 2.626 × 10−7

14:19524263 T/C rs449968016 PRKDC 16.417 1.27 4.337× 10−38

14:30393332 C/A rs109953090 DNAJC5B 10.964 1.10 2.686× 10−23

14:30518533 T/C rs381116984 CRH 10.866 1.10 5.889× 10−23

14:33878123 A/G rs464130691 NCOA2 10.022 1.34 8.765× 10−14

14:16328530 A/G rs471616366 Hypothetical 10.655 1.47 4.335× 10−13

14:16641005 C/T rs211636635 TBC1D31 10.450 1.47 1.045× 10−12

14:16698021 G/T rs208131933 TBC1D31 10.450 1.47 1.045× 10−12

14:19984551 A/G rs109071668 PPDPFL 4.505 0.69 7.512× 10−11

14:9051405 A/T rs209264955 HHLA1 5.423 0.84 8.386× 10−11

14:19372860 T/C rs210839501 SPIDR 3.949 0.66 2.213 × 10−9

14:21195722 G/T rs380004533 ST18 −4.275 0.75 9.922 × 10−9

14:26475692 A/G rs381829093 CHD7 −4.136 0.73 1.314 × 10−8

14:31303419 G/A rs109820067 CSPP1 −3.879 0.70 2.738 × 10−8

14:43787543 A/G rs380389290 Hypothetical 5.905 1.07 3.557 × 10−8

14:9111310 T/C rs209285140 OC90 4.037 0.73 3.609 × 10−8

14:9111217 A/G rs210209375 OC90 4.036 0.73 3.659 × 10−8

14:16590597 T/C rs207540257 FAM83A 6.487 1.18 3.713 × 10−8

14:16590776 T/C rs380808409 FAM83A 6.487 1.18 3.713 × 10−8

14:9111232 G/A rs207841625 OC90 3.968 0.72 4.009 × 10−8

14:16609068 T/A rs210725961 FAM83A 6.441 1.18 4.470 × 10−8

14:24756697 T/C rs136157938 SDCBP −3.559 0.66 5.573 × 10−8

14:30837447 C/T rs109134892 MYBL1 −3.230 0.67 1.567 × 10−6

BFT 2:107160304 G/T rs109446852 ZFAND2B 0.799 0.11 1.840× 10−12

2:107114443 A/G rs383795443 SLC23A3 0.768 0.12 2.549× 10−11

EMA 14:19524263 T/C rs449968016 PRKDC 1.644 0.30 4.617 × 10−8

MS 3:19028381 G/A rs210416891 MRPL9 0.251 0.05 1.408 × 10−6

19:7310638 G/C rs799291287 ANKFN1 −0.234 0.05 9.683 × 10−7

22:11849704 G/C rs799031002 ACVR2B 0.298 0.05 1.567 × 10−8
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3.3. Explanatory Power of Candidate SNPs

To estimate the effect of missense variants, we analyzed the extent to which each SNP
contributes to the genetic variation and phenotypic variance. The results are shown in
Table S2. For CW, 28,093 SNPs (99.82%) out of a total of 28,144 missense mutations did
not explain 1% of the genetic variance, and only 51 SNPs (0.18%) were found to explain
1.03~8.47%. Additionally, 28,130 SNPs (99.95%) explained less than 0.01% of the phenotypic
variance, and only 14 SNPs were found to contribute 0.01~0.03% phenotypic variance. BFT
showed that only 7 SNPs (0.02%) explained 1.03~2.07% of the genetic variance, and only
1 SNP explained more than 0.01% of the phenotypic variance. In the EMA, only 3 SNPs
(0.01%) explained 1.01 to 1.73% of the genetic variance, and none explained more than
0.01% of the phenotypic variance. In MS, only 2 (0.01%) SNPs explained 1.10 to 1.19%
genetic variance, and no SNPs were identified that explained phenotypic variance greater
than 0.01%. The contributions to genetic and phenotypic variance of the most significant
SNPs for carcass traits on each chromosome are presented in Table 2.

Table 2. Contributions of the most significant SNP of each chromosome (BTA) for carcass traits.

Trait CHROM RefSNPID Gene %V(g) %V(p)

CW BTA4 rs210475204 COBL 1.634 0.005
BTA6 rs109696064 LCORL 4.495 0.014

BTA14 rs449968016 PRKDC 8.470 0.026

BFT BTA2 rs109446852 ZFAND2B 2.075 0.006

EMA BTA14 rs449968016 PRKDC 1.728 0.005

MS BTA3 rs210416891 MRPL9 1.104 0.004
BTA19 rs799291287 ANKFN1 0.566 0.002
BTA22 rs799031002 ACVR2B 1.187 0.004
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The SNP with the highest explained genetic and phenotypic variation for CW was
rs449968016, with explanatory power of 8.470% and 0.026%, respectively. This result was
consistent with the most significant SNP identified in the exon-specific association test.
Notably, this marker was the only one present in the Hanwoo custom chip of all SNPs that
appeared significant for carcass traits. For BFT, one SNP (rs109446852) explained the highest
genetic variance at 2.075% and phenotypic variance at 0.006%, consistent with the most
significant SNP identified in this study. In EMA, the SNP rs449968016 equivalent to carcass
weight explained the highest genetic variation at 1.728% and was found to contribute
0.005% to phenotypic variance. For MS, the SNP rs799031002, the most significant in the
exon-specific GWAS, was found to explain the highest genetic variation at 1.187% and
accounted for 0.004% of the phenotypic variance.

3.4. Favorable and Unfavorable Homozygous Haplotypes

Haplotype estimation for each chromosome using the 33 SNPs significantly present
in carcass weight identified 16, 24, and 1103 haplotypes in BTA4, BTA6, and BTA14, re-
spectively. Favorable homozygous haplotypes and unfavorable homozygous haplotypes
were selected based on the effects of significant SNPs on carcass weight. In the BTA4
region of all individuals, 78 individuals had a favorable homozygous haplotype (AACCCC-
GG), and 5518 individuals had an unfavorable homozygous haplotype (GGTTTTAA).
For the BTA6 region, there were no individuals with a favorable homozygous haplotype
(GGTTCCCCGGTTGG), while 916 individuals had an unfavorable homozygous haplo-
type (AACCTTTTTTTCCAA). Similarly, in the BTA14 region, there were no individuals
with a favorable homozygous haplotype (AAAAGGTTAATTTTTTCCGGTTTTTAATTC-
CGGCCTTTTAAAAAA), and only 18 individuals had an unfavorable homozygous hap-
lotype (TTGGAACCGGCCCCAATTTTCCCCGGGGGTTAAAACCCCGGGGGG). Since
no individuals with favorable homozygous haplotypes in BTA6 and BTA14 were identi-
fied, to pinpoint the optimal beneficial haplotype combination, if at least five individuals
appeared that were as similar as possible to the favorable homozygous haplotype, the
corresponding haplotype was selected as a favorable haplotype. It was confirmed that
there were 25 animals in BTA6 and 6 individuals in BTA14. In order to distinguish additive
genetic differences between individuals, with respect to carcass weight, with estimated
combinations of favorable and unfavorable haplotypes, the genomic breeding values of
individuals with favorable and unfavorable haplotypes for chromosomes BTA4, BTA6, and
BTA14 from the distribution of genetic breeding values of 16,970 Hanwoo were determined.
The genetic differences between groups with favorable and unfavorable allele combinations
were analyzed for statistical significance using independent t-tests, and the results are
presented in Figure 3.

In BTA4, the average GEBV and standard deviation for individuals with favorable and
unfavorable homozygous haplotypes were 24.62 ± 23.68 and −0.77 ± 26.67, respectively,
and a significant difference between the two groups was confirmed. For the BTA6, individ-
uals with favorable and unfavorable haplotype combinations showed an average GEBV
and standard deviation of 47.07 ± 33.39 and −2.98 ± 25.26, respectively, with a significant
difference observed between the two groups. Similarly, in BTA14, the average GEBV and
standard deviation for those with favorable and unfavorable haplotype combinations were
41.46 ± 27.33 and 0.63 ± 20.29, respectively, presenting a significant difference between
the groups.

3.5. Effects of Causal Variants on Protein Structure

PolyPhen-2 predicts the effects of amino acid substitutions on proteins by considering
their sequence, phylogenetic, and structural information. We predicted the impact on
proteins when mutations targeted the missense SNPs most significantly associated with the
carcass traits and a substantially influenced genetic and phenotypic variance. The results
are presented in Table 3.
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Table 3. Effects of the most significant SNPs of each chromosome on protein structure in carcass traits.

Trait Protein HGVS Predicted
Classification 1

Damaging
Score 2 Sensitivity Specificity

CW COBL p.Arg660Gln No damage 0.007 0.96 0.75
LCORL p.Glu485Lys Unknown Unknown Unknown Unknown
PRKDC p.Ala895Thr Probably damaging 0.988 0.73 0.96

BFT ZFAND2B p.Leu117Arg No damage 0.000 1.00 0.00

EMA PRKDC p.Ala895Thr Probably damaging 0.988 0.73 0.96

MS MRPL9 p.Thr226Ala Probably damaging 0.998 0.27 0.99
ANKFN1 p.Leu174Val Probably damaging 0.961 0.78 0.95
ACVR2B p.Thr395Ser Possibly damaging 0.734 0.85 0.92

1 Divided by the variant effect prediction score: No damage (benign), possibly damaging, and probably damaging.
Probably damaging indicates that the variant is likely to affect protein function. 2 The probably damaging score
ranges from 0.0 (tolerated) to 1.0 (deleterious). 0 to 0.15—variants with scores in this range are predicted to be no
damage. 0.15 to 1.0—variants with scores in this range are possibly damaging. 0.85 to 1.0—variants with scores in
this range are more confidently predicted to be damaging.

The protein kinase, DNA-activated, catalytic subunit (PRKDC) missense variant
(c.2683G>A; p.Ala895Thr) exhibited a damaging score of 0.988, indicating that it is deleteri-
ous and has a significant impact on the protein’s function and structure. Additionally, the
missense variant (c.676A>G; p.Thr226Ala) of mitochondrial ribosomal protein L9 (MRPL9)
and missense variant (c.520C>G; p.Leu174Val) of the ankyrin repeat and fibronectin type
III domain containing 1 (ANKFN1) showed damaging scores of 0.988 and 0.961, respec-
tively, confirming that they have a detrimental impact on the protein. In contrast to
previous results, the cordon-bleu WH2 repeat protein (COBL) missense variant (c.1979G>A;
Arg660Gln) and the zinc finger AN1-type containing the 2B (ZFAND2B) missense vari-
ant (c.350T>G; Leu117Arg) are tolerated, indicating they do not affect protein function
or structure. The impact on protein function due to the amino acid substitution of a
ligand-dependent nuclear receptor corepressor like (LCORL) missense variant (c.1453G>A;
p.Glu485Lys) has not been estimated as there is no reported research data on it.
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We predicted the 3D structure of the PRKDC, MRPL9, and ANKFN1 proteins, which
are anticipated to impact the function or structure of the protein (Figure 4). The multiple
sequence alignment (MSA), predicted local distance difference test (pLDDT) score per posi-
tion, and predicted aligned error (PAE) score for each protein are shown in Figures S2–S4.
As a result of comparing the wild-type and mutant protein structures of each protein, it
was observed that the protein had a different 3D structure, implying that changes in amino
acids due to missense variants influence the protein.
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repeat and fibronectin type III domain containing 1 (ANKFN1) protein. (A) 3D protein structures
of wild-type (left) and mutant-type (right) PRKDC protein using 1400 amino acids including the
target sequence (p.Ala895Thr); (B) MRPL9 protein structure with wild-type (left) and mutant-type
(right) (p.Thr226Ala); (C) ANKFN1 protein structure with wild-type (left) and mutant-type (right)
(p.Leu174Val).

4. Discussion

The effects of each SNP on the carcass traits of Hanwoo are minimal and exhibit
a polygenic structure (Figures 1 and 2). It implies a high degree of missing heritability,
indicating that searching for causal variants is challenging due to their genetic complexity.
This study focused on the functional effects of SNPs in an attempt to understand the genetic
mechanisms underlying complex traits and prioritized the exploration of genetic markers
that alter protein structures due to single changes in DNA sequences.

Upon examining previous research on QTL regions for Hanwoo carcass traits, the
major QTLs for CW were identified on chromosomes 4, 6, and 14; EMA on chromosome 14;
BFT on chromosome 2; and MS content on chromosomes 3, 19, and 22. These observations
align with the findings of our study [7,36,37]. Interestingly, out of the 33 significant missense
mutations we identified for CW, the same SNPs (rs449968016, rs109953090, rs381116984)
appeared in the PRKDC, DnaJ heat shock protein family (Hsp40) member C5 β (DNAJC5B)
and corticotropin-releasing hormone (CRH) genes located on BTA14 [38]. Furthermore, the
same missense mutation (rs449968016) in PRKDC was detected in EMA, consistent with
our study.

For CW, the cordon-bleu WH2 repeat protein (COBL), most significantly manifested on
chromosome 4, and is a member of the G/F-actin binding protein family acting as an actin
nucleator with WH2 domains [39,40]. COBL plays a pivotal role in axis patterning during
developmental processes. Utilizing repeated WH2 domains, it interacts with actin, under-
taking G-actin sequestration, actin filament nucleation, filament severing, and barbed-end
dynamics regulation. All of these are essential for modulating cellular morphogenesis by
controlling cytoskeletal dynamics [41,42]. The significant missense mutation (rs210475204)
discovered in the gene indicated no major impact on protein function or structure due
to the single amino acid sequence change. This implies that the COBL protein might be
influenced by the combined actions of other SNPs.

In agreement with previous studies—where specific NCAPG-LCORL loci that are
significantly associated with feed intake for weight gain and feed intake in beef cattle [43],
and body skeleton size in the Japanese Black steer and F2 bulls of a Charolais x German
Holstein cross [44]—we also found an SNP c.1326T>G within the NCAPG (non-SMC
condensin I complex, subunit G) gene associated with carcass traits. Additionally, it has
been demonstrated that the LCORL region is related to growth traits in European and
African Bos taurus [45], and the expression of LCORL has been confirmed to be associated
with feed intake in bovine muscle tissue [46]. Similarly, in our study, the missense mutation
in LCORL (c.1453G>A; p.Glu485Lys) appeared to influence approximately 4.5% of the
genetic variance, representing the most substantial influence on BTA6. Unfortunately, we
could not determine the impact of this specific missense mutation on the protein’s structural
alteration due to the amino acid substitution.

The PRKDC gene is essential for embryonic development, interferon tau expression,
and trophoblast development rate and has been reported to be involved in early bovine
embryo development [47]. This gene encodes the catalytic subunit of the DNA-dependent
protein kinase (DNA-PKcs), which is a member of the phosphatidylinositol 3-kinase-
related kinase (PIKK) protein kinase family and a serine/threonine protein kinase [48].
Earlier studies [49] reported that DNA-PK phosphorylates threonines 5 and 7 of HSP90a
reduces the chaperone function of clients crucial for mitochondrial biogenesis and energy
metabolism, such as AMP-activated protein kinase (AMPK). When DNA-PK activity is
reduced, AMPK activity increases. This observed weight gain in middle-aged mice suggests
that a similar mechanism may operate in the end product, carcass weight. The PRKDC
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missense variant (p.Ala895Thr) undergoes a side-chain transition from hydrophobic to
hydrophilic (uncharged) amino acids, changing the amino acid’s chemical properties. This
shift, due to a single amino acid variation (SAV), results in a protein structure distinct from
the norm (Figure 4A), indicating the possibility that this mutation might be a causal variant.

The ZFAND2B gene encodes a protein containing an AN1-type zinc finger and a
ubiquitin interaction motif and regulates the insulin-like growth factor receptor signaling
pathway [50]. The significant missense mutation (rs109446852) that accounts for about
2% of genetic variance results in a single amino acid substitution that does not affect
protein function or structure. The impact may be attributed to other mutations with various
functional effects, excluding this one.

In BTA3, the MRPL9 missense variant (p.Thr226Ala) most significantly associated
with marbling exhibited a change in protein structure due to its transition from hydrophilic
(uncharged) to hydrophobic amino acids. This alteration implies that it might have different
roles in interactions with other proteins and various biochemical reactions. The Mitochon-
drial Ribosomal Protein L9 (MRPL9) gene is a critical component of its gene product in cell
proliferation and protein biosynthesis [51].

For BTA19, the most significant ANKFN1 missense variant (p.Leu174Val) related to
MS involves an amino acid change, but both residues fall under hydrophobic amino acids;
even though their chemical properties are similar, they were found to have distinct protein
structures. The ANKFN1 gene has been implicated in determining human height [52,53].
However, there have been no reported functional studies on this gene in cattle, and it may
potentially be an important candidate gene for marbling.

Activin-type II receptor B (ACVR2B) is a gene linked to myostatin and plays a role in
its signaling and control. In cattle, genetic mutations in myostatin lead to prominent effects
on skeletal muscle, manifesting as a dual muscle characteristic in certain breeds [54].

5. Conclusions

This study used a functional GWAS approach focused on the missense variants causing
amino acid sequence changes to identify markers associated with carcass traits in Hanwoo
cattle. Our results suggest that missense variants may impact carcass trait performance
by altering amino acids, even though most candidate markers had little contribution to
genetic variance. The haplotype combination of significant SNPs identified in this study can
be used as a valuable marker for genome prediction in Korean cattle breeding programs.
Significantly, the missense mutations in PRDKC, MRPL9, and ANKFN1 account for a
significant portion of the genetic and phenotypic variance in CW and MS, with the change
in the single amino acid sequence having a critical impact on the protein’s function and
structure, suggesting a high probability of these mutations being causal variants. These
findings can provide insights into understanding the genetic factors influencing the carcass
traits of Hanwoo cattle, and further functional research is necessary to fully comprehend
the genetic mechanisms behind these findings.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/genes14101839/s1, Figure S1: QQ plot of exon-specific association
studies on carcass traits; Figure S2: Multiple sequence alignment (MSA) on carcass traits; Figure S3:
Predicted local distance difference test (pLDDT) score per position for 5 models; Figure S4: Predicted
aligned error (PAE) score for five predicted models; Table S1: annotated information of significant
missense SNPs for carcass traits in Hanwoo cattle; Table S2: contribution of missense mutations to
genetic and phenotypic variation in Hanwoo cattle.
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