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Abstract: Genetic disorders are the result of mutation in the deoxyribonucleic acid (DNA) sequence
which can be developed or inherited from parents. Such mutations may lead to fatal diseases such as
Alzheimer’s, cancer, Hemochromatosis, etc. Recently, the use of artificial intelligence-based methods
has shown superb success in the prediction and prognosis of different diseases. The potential of such
methods can be utilized to predict genetic disorders at an early stage using the genome data for
timely treatment. This study focuses on the multi-label multi-class problem and makes two major
contributions to genetic disorder prediction. A novel feature engineering approach is proposed where
the class probabilities from an extra tree (ET) and random forest (RF) are joined to make a feature set
for model training. Secondly, the study utilizes the classifier chain approach where multiple classifiers
are joined in a chain and the predictions from all the preceding classifiers are used by the conceding
classifiers to make the final prediction. Because of the multi-label multi-class data, macro accuracy,
Hamming loss, and α-evaluation score are used to evaluate the performance. Results suggest that
extreme gradient boosting (XGB) produces the best scores with a 92% α-evaluation score and a 84%
macro accuracy score. The performance of XGB is much better than state-of-the-art approaches, in
terms of both performance and computational complexity.

Keywords: genome mutation; genetic disorder; machine learning; chain classifier approach

1. Introduction

The genetic disorder is caused by a mutation in the genome or by a change in the
gene structure [1]. As the genome carries the information, the change in the genome can
result in a change in the structure or function of an organism [2]. The genes are made of
deoxyribonucleic acid (DNA), and any change in the sequence of DNA results in genetic
disorders. The genome data contains important information and health care indicators that
can be used to analyze the genetic disorders that cause diseases. A dedicated branch of
bioinformatics, genomics, focuses on the study of genomes, their structure, abnormalities,
etc. [3]. There are several genetic disorders: single gene inheritance disorders [4], chromo-
somal disorders or mitochondrial genetic inheritance disorders [5], and complex disorders
or multifactorial genetic inheritance disorders [6] and they are examined based on the
DNA structure [7]. The single gene disorder type is caused by a mutation in a single gene
in the DNA. The chromosomal disorder type is caused when a chromosome or a part of
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chromosomes is deleted or replaced in the DNA structure. Complex disorders are caused
by the mutation in more than one gene present in the DNA.

The genes present in the DNA carry important information that can explain the forma-
tion of the different types of proteins [8]. Some changes in the structural properties of the
gene can result in the formation of an abnormal protein. The abnormal protein does not work
properly in the cell. Such abnormalities in the DNA gene lead to different genetic disorders
such as cancer [9], diabetes, Alzheimer’s, etc. In 2020, 15,000 people were diagnosed with
syndrome B disorder. About 100,000 children currently have syndrome B disorder while
12,000 people died from syndrome C disorder around the world [10]. Approximately 2% to
5% of all childbirths are diagnosed with genetic disorders [11] that may lead to 5% to 50%
of deaths in the childhood [12]. The genome data contain useful information and several
health-related indicators that can be used to predict the genetic disorder. However, keeping
in view the complex nature of the DNA data, the number of features, and the volume of the
data, manual prediction is laborious, error-prone, and inefficient.

Recently, the use of machine learning-based models has provided a great success
in different fields, including prognosis, prediction, medicine, automation, etc. [13]. Such
models are trained using good-quality historic data. A machine learning model finds the
relationship or patterns in the data to make predictive decisions. Such models can provide
automated prediction, as well as can perform assistive roles for medical experts, concerning
the sensitivity and importance of the task. The choice of machine learning techniques is
based on the type of real-world problem [14]. Machine learning techniques have a large
variety of potential applications in bioinformatics [15]. The exponential growth of bio-
logical data raises the problem of management and useful information extraction. The
transformation of heterogeneous data into biological knowledge is the main challenge in
computational biology [16]. Machine learning models are applied to make a predictive de-
cision based on large gene sequences and manage the large biological data. There are many
biological domains currently using machine learning approaches for knowledge extraction.
The applications of machine learning include analysis of genome-wide association [17],
X-rays [18], enzyme function prediction [19], protein function prediction, and many more.

Machine learning models can help with precision medicine, however, often limited
by low accuracy. Often using a single feature extraction approach, the sensitivity and
specificity of the models are low than expected which requires further improvements. This
study contributes to improving the predictive capabilities of machine learning models and
makes the following key contributions:

• Genetic exploratory data analysis (GEDA) is performed to obtain useful insights and
discover important information from the genome data. Various attributes and their
distributions are investigated to analyze their trends regarding different disorders.

• A novel approach to extracting features from the genome data is designed where the
extra tree (ET) and random forest (RF) are used to extract features that are combined
to enrich the feature set.

• A chain classifier approach is adopted in this study to obtain higher prediction accu-
racy. Machine learning models, equal to the number of classes, are placed in the chain
and each classifier predicts in the specified sequence. Each conceding model uses the
predictions of all preceding models as the input to make its prediction.

• Eight machine learning models are also used for performance analysis including
logistic regression (LR), multi-layer perceptron (MLP), decision tree classifier (DTC),
random forest classifier (RFC), k nearest neighbors (KNN), extra tree classifier (ETC),
extreme gradient boosting (XGB), and support vector classifier (SVC). Hyperparameter
fine-tuning is completed for performance optimization. In addition, data balancing is
applied to the genomes data to reduce the probability of model overfitting.

• Extensive experiments are performed to analyze precision, recall, accuracy, and F1
score. Moreover, performance comparison with existing studies is carried out in terms
of training time, macro accuracy, Hamming loss, and α evaluation score.
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The remainder of this article is structured as follows: the related literature is examined
in Section 2. Section 3 contains a description of the methodology, multi-label multi-class
chain classifier approach, and the proposed ETRF technique. Results and evaluations of
the proposed approach are examined in Section 4. Finally, the conclusions are elaborated in
Section 5.

2. Related Work

The related literature to our proposed research approach is examined in this section.
The past applied techniques and proposed approaches are analyzed. The related litera-
ture analysis is based on the previous dataset used, limitations, applied approach, and
performance results.

Alzheimer’s, one of the diseases caused by the genetic disorder has been investigated
by several researchers [20]. For example, [21] presents a stacked machine learning model
for Alzheimer’s prediction. The AD genetic dataset of the neuroimaging project [22] is
utilized for experiments. Results suggest that the proposed stacked model can obtain an
accuracy score of 93%. The research findings proved the effectiveness of stacked-based
models for predicting Alzheimer’s disease. Similarly, classification of Alzheimer’s disease
is performed using neuroimaging initiatives in [22]. Experiments are performed using the
genetic dataset [23]. For this purpose, machine learning-based feature selection from the
gene data is utilized. The age and number of education years features are added as addi-
tional features. The non-genetic factors are also considered for Alzheimer’s classification.
The study proposes a novel XGBoost model for classification [24]. The proposed approach
achieves 64% for the area under the curve (AUC).

The prediction of complex genes using supervised machine learning methods is carried
out in [25]. The complex genes lead to a large number of diseases [26]. The GEO dataset is
utilized for machine learning-based model testing. The study develops a machine learning-
based genetic disease analyzer (GDA) using principal component analysis (PCA), Naive
Bayes (NB), random forest (RF), and decision tree (DT) techniques. The proposed approach
achieves a 98% of accuracy score.

The study [27] uses a supervised machine learning approach to predict dementia,
cancer, and diabetes. The multifactorial genetic inheritance disorder multiclass dataset
is used to perform experiments. The employed learning techniques are KNN and SVM
where SVM proves to be superior with a 92% accuracy score. The inflammatory bowel
disease prediction using machine learning techniques is proposed in the study [28]. The
metagenomic dataset on inflammatory bowel disease multi-omics is utilized for machine
learning model building and experimental research evaluations. Several machine learning
classifiers are applied, and RF outperforms with a 90% accuracy score.

The study [29] uses machine learning techniques to predict COVID-19 infection and
related diseases. The genetic SNP mutation dataset utilized RF and neural networks. RF
shows superior performance with a 92% accuracy score. The prediction of familial hyperc-
holesterolemia genetic disorder of lipid metabolism by using machine learning techniques
is performed in [30]. The virtual genetic, clinical test of familial hypercholesterolemia is
performed for experimental results evaluations. Of the machine learning models used for
experiments, the gradient boosting classifier shows an 83% accuracy score. The study [31]
proposes a machine learning-based algorithms DOMINO to predict dominant (monoallelic)
mutations in genes for Mendelian disorders. The proposed DOMINO is based on the linear
discriminant analysis. Experimental results reveal a 92% accuracy which is better than
existing approaches.

In biomedical areas, gene-based disease prediction is a prominent issue and several
researchers are working in this domain [32]. A machine learning-based model for the pre-
diction of gene diseases is proposed in [33]. The study focuses on the binary class problem
and classifies the disease genes and healthy genes. For experiments, 12 representative
machine learning-based models are examined in terms of comparisons and interpretability.
Table 1 contain the summary of related work.
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Table 1. Summary of genetic disorder-related literature.

Ref. Year Approach Dataset Accuracy (%) Aim

[21] 2021 Stacked ML
Model

AD genetic data of
neuroimaging project

(ADNI-1)
93 Classify Alzheimer’s disease type of

brain disorders using ML.

[25] 2021 Genetic Disease
Analyzer (GDA) GEO dataset 98

Prediction of complex genes and
identify genetic classifications that

cause complex diseases.

[34] 2021 XGBoost
Alzheimer’s Disease

Neuroimaging Initiatives
(ADNI)

64 Alzheimer’s Disease Classification
Using Genetic Data

[33] 2020
Machine

Learning-based
model

Genes data - Disease gene prediction using machine
learning

[35] 2020
Machine

Learning-based
model

Microarray gene
expression dataset of

autism spectrum
disorder (ASD)

97
Predicting autism spectrum disorder
from associative genetic markers of

phenotypic groups.

[36] 2020 Random forest
classifier

GWAS and GTEx Portals
data 81

Machine Learning-based Model for
predicting the effect of the deleterious

and neutral variant for Alzheimer’s
disease.

[37] 2021 Support vector
machine

Molecular-based
network and brain
connectome data

72

Propose a framework for integrating
brain connectome data and

molecular-based gene association
networks to predict brain disease

genes.

[27] 2022 Support vector
machine

Multifactorial Genetic
Inheritance Disorder

multiclass dataset
92

Machine learning approaches were
used to predict dementia, cancer, and

diabetes.

[28] 2021 Random forest
classifier

Metagenomic
dataset-based on

inflammatory bowel
disease multi-omics

90 Inflammatory bowel disease prediction
using machine learning techniques.

[29] 2020 Random forest
classifier

Genetic SNP mutation
dataset 92

Machine learning techniques were
utilized to predict the COVID-19

infection and related diseases.

[30] 2020
Gradient
boosting
classifier

Virtual genetic, clinical
test data 83

Prediction of familial
hypercholesterolemia genetic disorder
using the machine learning techniques.

[31] 2017 DOMINO Genomic dataset 92
Machine learning-based DOMINO was
used to Predict dominant mutations in

Genes for Mendelian disorders.

The prediction of autism spectrum disorder from the genome data is investigated in [35].
A novel gene selection technique is utilized to find the candidate biomarker genes [38]. The
phenotypic group associative genetic markers are utilized for the prediction task. The gene
expression carries the specie genetic information and gene patterns show the relationship of
genes associated with numerous diseases. The optimal features are identified by regularized
genetic algorithms. The proposed approach achieves a 97% of accuracy score.
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The Alzheimer’s disease prediction is carried out in [36] where a machine learning-
based model is designed. Next-generation sequencing techniques are utilized for identify-
ing biomarkers for diseases that help early diagnosis. The proposed method achieves an
81% accuracy score by using 10-fold cross-validation. A network-based technique named
brainMI is proposed for brain disease gene prediction [37]. The predicting is performed
by brain connectome integrating and molecular network. The brain connectome data are
utilized for model building. The support vector machine model is utilized to predict gene
brain diseases. The proposed model achieved a 72% accuracy score.

3. Methods

The multi-label multi-class genomes and genetics dataset is utilized for the proposed
approach. Figure 1 shows the steps followed in the proposed approach. GEDA is applied
to reveal the factors that cause genetic disorders and useful insights are obtained regarding
genes. Feature engineering techniques are employed to feature data mapping and select
the high-importance features to achieve better performance from the models. The data
balancing of the genetic disorder class is applied to train the learning model on an equal
number of data distributions which also helps to improve the performance. The novel
ETRF feature extraction technique is applied to enrich the feature set which is later used for
training all the models.

Genomes and
Genetic Dataset

Genetic Exploratory
Data Analysis (GEAA) Feature Engineering Data Balancing

Mitochondrial Genetic
Disorder Identified

ETRF Technique

Data
Splitting

Hyperparameterized Chain
Classifier Based Model

Mitochondrial  
Genetic Disorder 

Single Gene  
Disorder 

Multifactorial  
Genetic Disorder 

Model
Predictions

Training (90%)

Testing (10%)

Figure 1. The methodological analysis of our proposed research approach for predicting the genetic
disorder and types of disorder.

3.1. Genomes Dataset

The genome and genetic dataset are based on the medical information of children and
adult patients who have genetic disorders [39]. The type of dataset is multi-label multi-class.
The first attribute of the dataset is genetic ‘disorder’ and the second sub-label is ‘disorder
subclass’. The dataset contains a total of 44 attributes. The dataset-related information is
analyzed in Table 2.
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Table 2. The genomes dataset features descriptive analysis.

Sr No. Feature Count Data Type Sr No. Feature Count Data Type

1 Patient Id 31,548 object 23 Follow-up 29,382 object

2 Patient Age 30,121 float64 24 Gender 29,375 object

3 Genes in mother’s side 31,548 object 25 Birth asphyxia 29,409 object

4 Inherited from father 30,691 object 26 Autopsy shows birth defect (if applicable) 30,522 object

5 Maternal gene 25,015 object 27 Place of birth 29,424 object

6 Paternal gene 31,548 object 28 Folic acid details (peri-conceptional) 29,431 object

7 Blood cell count (mcL) 31,548 float64 29 H/O serious maternal illness 29,396 object

8 Patient First Name 31,548 object 30 H/O radiation exposure (X-ray) 29,395 object

9 Family Name 12,540 object 31 H/O substance abuse 29,353 object

10 Father’s name 31,548 object 32 Assisted conception IVF/ART 29,426 object

11 Mother’s age 25,512 float64 33 History of anomalies in previous pregnancies 29,376 object

12 Father’s age 25,562 float64 34 No. of previous abortion 29,386 float64

13 Institute Name 24,406 object 35 Birth defects 29,394 object

14 Location of Institute 31,548 object 36 White Blood cell count (thousand per microliter) 29,400 float64

15 Status 31,548 object 37 Blood test result 29,403 object

16 Respiratory Rate (breaths/min) 26,513 object 38 Symptom 1 29,393 object

17 Heart Rate (rates/min 26,535 object 39 Symptom 2 29,326 object

18 Test 1 29,421 float64 40 Symptom 3 29,447 object

19 Test 2 29,396 float64 41 Symptom 4 29,435 object

20 Test 3 29,401 float64 42 Symptom 5 29,395 object

21 Test 4 29,408 float64 43 Genetic Disorder 19,937 object

22 Test 5 29,378 float64 44 Disorder Subclass 19,915 object



Genes 2023, 14, 71 7 of 31

3.2. Genetic Exploratory Data Analysis (GEDA)

GEDA is applied to the genomes dataset to find hidden patterns and important
information that may be helpful to predict genetic disorders. GEAA is based on several
graphs, such as pair plots, 3-D data distributions analysis, bar charts, and scatter plots.
GEAA proves helpful in the research study to find statistical insights from the gene data.

The genetic disorder label and the disorder sublabel data distribution analysis are
applied and the results are visualized in Figure 2. The analysis shows that the dataset has
an equal distribution. Genetic disorder attribute has three classes: single gene inheritance
diseases, mitochondrial genetic inheritance disorders, and multifactorial genetic inheri-
tance disorders. The mitochondrial genetic inheritance disorders class has the highest data
distribution while the multifactorial genetic inheritance disorders have the lowest number
of samples. The subclass category has nine classes: Leber’s hereditary optic neuropathy,
diabetes, Leigh syndrome, cancer, cystic fibrosis, Tay-Sachs, hemochromatosis, mitochon-
drial myopathy, and Alzheimer’s. Leber’s hereditary optic neuropathy and diabetes have
the lowest data distribution values. Similarly, the number of samples for Tay-Sachs is
comparatively low.

(a) (b)

Figure 2. Distributions of samples for different classes in the dataset, (a) genetic disorders’ main
classes, and (b) genetic disorder subclasses.

The 3-D scatter data distribution analysis of white blood cell count (thousand per
microliter) and blood cell count (mcL) features of genomes data with the genetic disorder
label is analyzed in Figure 3. The analysis demonstrates that when the white blood cell
count is less than zero, a genetic disorder of all types is found. When the white blood cell
count is between 0 and 2, there is no chance of type 0 (mitochondrial) genetic disorder.
However, type 1 (multifactorial) and type 2 (single-gene) disorders are found in patients.
Blood cell count (mcL) values of 4.2 or less show that there are no genetic disorders. White
blood cell count (thousand per microliter) value from 2 to 12 and the blood cell count (mcL)
values from 4.3 to 5.6 demonstrates that genetic disorders of all types are found in patients.
This analysis provides us with the significant range values of blood cells that cause genetic
disorder diseases.

Figure 3b shows the scatter plot for the distribution of blood cell count (mcL) and white
blood cell count (thousand per microliter) with the disorder subclass. There is no subclass
disease found when the blood cell count value ranges from 4.2 to 4.4. Leber’s hereditary
optic neuropathy disease is found when the blood cell count value varies between 4.4 and
4.8. White blood cell count values of 0 to 2 show the lowest chances of genetic disorder
subclass. A value above 4.8 for blood cell count demonstrates the occurrence of all subclass
disorder diseases. This analysis provides the significant values of blood cells that are
involved in sub-types of genetic disorders and diseases.
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Figure 3. The 3D scatter analysis for white blood cell count (thousand per microliter) and blood cell
count (mcL), (a) genetic disorder category, and (b) genetic disorder sub-category.

Analysis of inherited genes that cause the genetic disorder is given in Figure 4. The
analyzed genes are based on the maternal gene, paternal gene, genes from the mother’s side,
and inherited from the father. This analysis demonstrates that the genes are the prominent
factors that are causing the genetic disorder. Analysis reveals that when the maternal and
paternal gene value is 0 or 1 the mitochondrial disorder has a higher probability while
single gene disorder has less chance of happening. Similarly, Figure 4c,d demonstrate
that the mitochondrial disorder has a higher chance when the values of the genes on the
mother’s side and inherited from the father are 0 or 1.

Figure A. Figure B.

Figure C. Figure D.

(a)
Figure A. Figure B.

Figure C. Figure D.

(b)Figure A. Figure B.

Figure C. Figure D.

(c)

Figure A. Figure B.

Figure C. Figure D.

(d)

Figure 4. Genomes data distribution by genetic disorder category, (a) maternal gene, (b) paternal
gene, (c) genes from mother side, and (d) inherited from father.

The gene analysis for the disorder subclass is analyzed in Figure 5. The analysis
demonstrates that the diabetes disorder found high occurrence when the maternal and
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paternal genes have the values 0 or 1 while at the same time it has low chances of Leigh
syndrome for all genes. This analysis is based on the 8 disorder sub-class diseases.

Figure A. Figure B.

Figure C. Figure D.

(a)
Figure A. Figure B.

Figure C. Figure D.

(b)Figure A. Figure B.

Figure C. Figure D.
(c)

Figure A. Figure B.

Figure C. Figure D.
(d)

Figure 5. Genomes data distribution by genetic disorder sub-category, (a) maternal gene, (b) paternal
gene, (c) genes from mother side, and (d) inherited from father.

The age factor of patients is analyzed by the genetic disorder category and is visualized
in Figure 6. The age of the mother, father, and patient is examined in this analysis. The
analysis demonstrates that there are high chances of genetic disorders when the mother’s
age is between 20 and 60 years. When the mother’s age is less than 20 years, the probability
of a genetic disorder is low. A high chance of genetic disorder is associated with the age
of the father begins between 20 and 70 years. By analyzing the patient’s age, the genetic
disorder diseases occur within the 15 years. This analysis shows that age is an important
factor that can be used to study genetic disorders.

3.3. Data Normalization and Feature Engineering

Feature engineering is a crucial process for machine learning models [40]. Feature en-
gineering techniques are applied to encode data and map data for the genomes dataset. The
best fit optimal features are selected for learning models to train and test. For this purpose,
important features are selected and unimportant and irrelevant features are dropped. In
the current dataset, several features do not contribute to gene disorder prediction and can
be dropped to reduce the feature space which improves both the computational complexity
and performance of the models.

Feature importance is determined using the DT model and feature correlation is shown
in Figure 7. Irrelevant features or features with low importance are not considered for
experiments. The features ‘patient Id’, ‘patient first name’, ‘family name’, ‘father’s name’,
‘institute name’, ‘location of institute’, ‘place of birth’, and ‘parental consent’ are dropped
due to their low or no contribution in predicting the genetic disorders. The data features
‘test 1’, ‘test 2’, ‘test 3’, ‘test 5’, and ‘autopsy shows birth defect (if applicable)’ are dropped
due to lower feature importance values.
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Figure 7. Feature correlation analysis graphs of genomes data.
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The null values are filled with zeros in the dataset. The selected features are encoded
with proper categorical data values. The features ‘genes in mother’s side’, ‘inherited
from father’, ‘maternal gene’, ‘paternal gene’, ‘assisted conception IVF/ART’, ‘history
of anomalies in previous pregnancies’, ‘folic acid details (peri-conceptional)’, and ‘H/O
serious maternal illness’ contain the values ‘Yes’ and ‘No’ and are mapped by the values 1,
and 0, respectively. The features ‘H/O radiation exposure (X-ray)’ and ‘H/O substance
abuse’ contain the values of ‘Yes’, ‘No’, and ‘Not applicable’ and are mapped by the values
1, 0, and −1, respectively. The feature ‘status’ contains the values of ‘deceased’ and ‘alive’
that are mapped with 0 and 1, respectively. The feature ‘respiratory rate (breaths/min)’
contains the values of ‘normal (30–60)’ and ‘Tachypnea’ which are mapped with 0 and
1, respectively. The feature ‘heart rate (rates/min’ contains the values of ’normal’ and
‘Tachypnea’ and are replaced with 0 and 1, respectively. The feature ‘follow-up’ contains the
values of ‘Low’ and ‘High’ that are mapped with 0 and 1, respectively. The feature ‘gender’
has ‘male’ and ’female’ and ’ambiguous’ and are replaced with 0, 1, and 2, respectively. The
feature ‘birth asphyxia’ contains the values of ‘No record’, ‘Not available’, ‘No’, and ‘Yes’
which are replaced with 0, 0, 0, and 1, respectively. The feature ‘birth defects’ contains the
values of ‘singular’ and ‘multiple’ that are mapped with 0, and 1, respectively. The feature
‘blood test result’ contains the values of ‘normal’ and ‘abnormal’ and are replaced with 0,
and 1, respectively.

3.4. Data Balancing

The dataset balancing is applied to achieve high accuracy results from the applied
learning techniques [41]. By applying the data balancing approach, the learning models are
trained on an equal number of data samples, resulting in efficient results. Before applying
the data balancing, the mitochondrial genetic inheritance disorders, multifactorial genetic
inheritance disorders, and single-gene inheritance classes have the 10,202, 2071, and 7664
data samples, respectively. We have balanced the dataset by randomly dropping other class
data samples by the lowest class count.

3.5. Data Splitting

The data splitting is applied to split the data into training and test sets. The data
splitting reduces the learning model overfitting and makes the model generalized. For
experiments, the dataset is split into different split ratios as the cross-validation to validate
the performance of machine learning techniques. The split ratios 0.7:0.3, 0.8:0.2, 0.85:0.15,
and 0.9:0.1 are utilized for genomes dataset. These split ratios are used to determine the
suitable split for achieving the best learning model.

3.6. Applied Learning Techniques

Several machine learning models are applied to analyze the performance of the pro-
posed feature engineering approach. Eight well-known machine learning models, which
are reported to show good performance for tasks similar to genetic disorder prediction, are
utilized. A brief overview of each of these models is provided here regarding architecture
and working mechanisms.

DTC is a supervised machine learning algorithm used for the classification tasks [42].
DTC has a tree-like structure and contains nodes and leaves. The inner nodes contain the
data attributes and split them. The outcome label is placed on leaf nodes. The root node in
DTC is the highest. DTC algorithms construct decision trees from input data automatically.
The goal of the DTC technique is to identify the optimal decision tree by reducing the
generalization error. The data attribute selection is a major challenge in DTC. The two
data measures information gain and the Gini index are widely utilized. Information gain
calculates the change in entropy and can be calculated as

Gain(S, A) = Entropy(S)− ∑
υεValues(A)

‖Sυ‖
‖S‖ .Entropy(Sυ) (1)
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where S represents a set of instances and attributes are indicated by A.
Gini index is used to measure the randomly chosen attributes that would be incorrectly

identified. The attribute with a lower Gini index is preferred. It is calculated using

GiniIndex = 1−∑
j

p2
j (2)

RFC is a supervised machine learning model based on multiple decision trees [43].
RFC takes predictions from multiple trees and the final prediction is selected based on
majority voting known as the bagging approach [44]. RFC randomly chooses observations
to build decision trees and majority voting is taken as the final prediction. RFC is an
ensemble learning technique and shows better results than individual classifiers. It reduces
the overfitting problems and improves classification performance.

ETC is another ensemble-based, bagged decision tree technique similar to RFC [45]. It
uses the same parameter used by the RFC, yet proves to be superior to RFC as it reduces the
model variance. The key difference between ETC and RFC is the building of a tree where
ETC follows a random split selection of values and not the bootstrap observations [46]. ETC
utilizes a meta estimator that fits randomized decision trees on a sample dataset which
results in improved accuracy and reduced overfitting.

LR is a supervised statistical learning method used for classifications [47]. For multi-
label classification, the ordinal type of LR is utilized. LR predicts the dependent categorical
variable using the independent variables. The Sigmoid function is used to map the pre-
dicted output to probabilities. The probability is defined by the threshold value. It can be
expressed as

log[
y

1− y
] = b0 + b1x1 + b2x2 + b3x3 + . . . + bnxn (3)

MLP is a classification algorithm that uses a feedforward neural network [48]. MLP
consists of multiple fully connected layers. The nodes of the model layers are called neurons.
The training process of MLP is iterative and stochastic gradient descent is utilized to optimize
the loss function. The output of the layer is dependent on neurons and the neural network
weights. Contrary to several complex models [49], MLP has shown superior performance
for several tasks.

KNN is a non-parametric supervised learning technique [50] which uses data from
nearest neighbors to predict the class of data. KNN works to group the data based on
similar points near each other. The classification is performed based on the similarity of
data points. The training time is slow due to lazy learning. The data point’s similarity is
calculated by using Euclidean distance or similar other distance metrics [51].

XGB utilizes the boosting techniques used for the classification task [52]. XGB is
flexible, efficient, and portable. It is based on the parallel gradient boosting tree technique
to solve classification problems. To reduce overfitting, XGB uses a better regularization
technique. Prediction from the XGB can be made using

F2(x) = σ(0 + 1 ∗ h1(x) + 1 ∗ h2(x)) (4)

SVC is a supervised learning algorithm and is mostly used for classification tasks [53].
SVM finds the best fit or optimal hyperplane that separates input data points into two or
more components by maximizing the margin between different class samples. The data
points on the sides of the classification line represent the categories. The data points are
represented by the support vectors. The predictions by using the hyperplane are calculated
by the hypothesis function h which can be represented as

h(xi) =

{
+1 i f w.x + b ≥ 0
−1 i f w.x + b ≤ 0

(5)

The applied machine learning approaches are fully hyperparameterized. The iterative
process of tuning for employed machine learning models is performed to find the best
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fit model parameters. The selected parameters help to find efficient accuracy scores. A
complete list of hyperparameters for models is provided in Table 3.

Table 3. Configuration of hyperparameters for employed machine learning models.

Technique Hyperparameters

ETC
n_estimators = 300, random_state = 5, max_depth = 300,

criterion = “gini”, max_features = “sqrt”, bootstrap = False,
oob_score = False, ccp_alpha = 0.0

SVC penalty = ‘l2’, loss = ‘squared_hinge’, tol = 1 × 10−4, C = 1.0,
multi_class = ‘ovr’, fit_intercept = True, max_iter = 1000

LR penalty = ‘l2’, tol = 1 × 10−4, C = 1.0, fit_intercept = True, solver = lbfgs’,
random_state = None, max_iter = 100, multi_class = ‘auto’

DTC max_depth = 300, criterion = “gini”, splitter = “best”, ccp_alpha = 0.0,
random_state = None

RFC
max_depth = 300, n_estimatorsint = 100, criterion = “gini”,

max_features = “sqrt”, random_state = None, bootstrap = True,
ccp_alpha = 0.0

XGB use_label_encoder = False, eval_metric = ‘mlogloss’, max_depth = 300,
objective = ’multi:softprob’

KNN n_neighbors = 5, weights = ‘uniform’, leaf_size = 30,
metric = ‘minkowski’, algorithm = ‘auto’, p = 2

MLP
hidden_layer_sizes = 100, max_iter = 300, activation = ‘relu’,

solver = ‘adam’, alpha = 0.0001, learning_rate = ‘constant’, tol = 1 × 10−4,
epsilon = 1 × 10−8, max_fun = 15000

3.7. Multi-Label Multi-Class Chain Classifier Approach

The genomes and genetics datasets that are utilized in this study are multi-label multi-
class data. We solve the multi-label multi-class classification of genetic disorders and types
of disorders as a subclass. For this purpose, the classifier chain approach is utilized for
building multi-label multi-class machine learning techniques. The classifier preserves the
label correlations in the dataset during the training and testing of models. A connected
chain of multiple classifiers is created for a machine learning model. In the classifier chain
technique, each model predicts in the order specified by the chain, and the earlier predictions
of models in the chain are incorporated by the next models [54,55]. The classifier chain
technique uses a chain of classifiers where each classifier uses all the previous classifier’s
predictions as input. The total number of classifiers in the classifier chain is equal to the
number of classes in the dataset used in this study [56]. The architectural analysis of the
classifier chain approach is examined in Figure 8. The macro accuracy, α-evaluation score,
and Hamming loss are the evaluation metrics that are used for multi-label multi-class
data [57,58].
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Figure 8. The architectural analysis of the multi-label multi-class classifier chain approach.

3.8. Novel Proposed ETRF Feature Engineering Approach

The novel ETRF technique is analyzed in this section. The ETRF approach is formed by
combining the ET and RF algorithms. In this research, the ETRF technique is used as a fea-
ture extraction technique for learning model building and predicting genetic disorders [59].
The feature set formation and extraction mechanism from the genomes dataset by using
the proposed ETRF technique is visualized in Figure 9. The architectural analysis shows
that the genomes data samples are input to the ET and RF algorithms separately. The class
predicted probabilities are extracted from the RF and ET techniques. A hybrid feature set is
formed by combining the extracted class predicted probabilities. The hybrid feature set is
later used as an input to applied learning techniques for predicting the genetic disorder
and types of disorder.

Figure 9. The architecture analysis of proposed ETRF technique for hybrid feature set formation mechanism.

4. Results and Evaluations
4.1. Experimental Setup

Results and evaluations of the proposed research approach are examined in this section.
Experiments are performed on an Intel I5-8265U CPU, 12GB random access memory (RAM),
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and an NVIDIA Tesla K80 graphic card. Python and Scikit-learn tools [60] are utilized for
building machine learning models. The machine learning models are utilized to predict the
genetic disorders and types of genetic disorders.

4.2. Evaluation Metrics

The macro accuracy, α-evaluation score, recall, precision, Hamming loss, and F1
score are used as evaluation metrics. The followings are the important factors used in
evaluation metrics:

• True Positive: the number of correctly classified positive samples by the model.
• True Negative: the number of correctly classified negative samples by the model.
• False Positive: the number of incorrectly classified negative samples by the model

as positive.
• False Negative: the number of incorrectly classified positive samples by the model

as negative.

For multi-label problems, the label-based metrics are evaluated for each label and
then averaged over all labels. The macro accuracy metric is computed on individual class
labels and then averaged over all classes. The mathematical notations used to calculate the
multi-label macro accuracy are expressed here.

λ− accuracy (Aj
macro) =

∑n
j=1[(y

(i)
j ∧ ŷ(i)j )]

∑n
j=1[(y

(i)
j ∨ ŷ(i)j )]

(6)

where n is training instances, y(i)i is the true label, and y(i) is the predicted label.
The hamming loss calculates the proportion of incorrectly predicted target labels to

the total number of labels. The number of FN and FP per instance is computed and then
averaged over the total number of instances for multi-label classification. The mathematical
expression of Hamming loss is given as

hamming loss =
1

nL

n

∑
i=1

L

∑
j=1

[I(y(i)j 6= ŷ(i)j )] (7)

where n is training instances, y(i)i is the true label, and ŷ(i)i is the predicted label.
For evaluating each multi-label prediction, the α-evaluation score is used as the gen-

eralized version of Jaccard similarity. The α-evaluation score provides the best way to
evaluate the multi-label classification results of a learning approach. The mathematical
notations for the α-evaluation score are expressed as

α− evaluation score =
(

βMx + γFx

Yx ∨ Px

)a

(α ≥ 0, 0 ≤ β, γ ≤ 1, β = 1)
(8)

where Mx is the number of FNs, Fx is the number of FPs, Yx is the combination of TPs and
FNs, and Px is the combination of TPs and FPs.

Precision and recall are also utilized as evaluation metrics. Precision calculates the pre-
dicted number of samples that correctly belong to the positive class. The recall calculates the
predicted number of positive samples out of all positive data. The mathematical notations
for expressing the precision and recall are given as

Precision =
True Positive

True Positive + False Positive
(9)

Recall =
True Positive

True Positive + False Negative
(10)



Genes 2023, 14, 71 16 of 31

F1 score is based on the combination of precision and recall scores to measure model
performance. F1 score is the harmonic mean of precision and recall scores and is calcu-
lated as

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

(11)

The accuracy score comparative analysis of applied machine learning techniques with
a split of 70:30, 80:20, 85:15, and 90:10 is visualized. The imbalanced dataset accuracy
comparative analysis results with and without using the proposed approach are examined
in Figures 10 and 11. By applying the data balancing, the comparative analysis of accuracy
results with and without using the proposed approach is examined in Figures 12 and 13.
This analysis demonstrates the significance of our proposed approach by increasing the
accuracy of the results.
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Figure 10. The applied techniques performance comparative analysis of different data split ratios
without proposed technique using imbalanced data.
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Figure 11. The applied techniques performance comparative analysis of different data split ratios
with proposed technique using imbalanced data.
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Figure 12. The applied techniques performance comparative analysis of different data split ratios
with proposed technique using balanced data.
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Figure 13. The applied techniques performance comparative analysis of different data split ratios
without proposed technique using balanced data.

4.3. Experimental Results with Imbalanced Dataset

The applied machine learning techniques are comparatively evaluated with the imbal-
anced dataset. For evaluating the performance with different train–test splits, the ratio is
varied as 0.7:0.3, 0.8:0.2, and 0.9:0.1.

4.3.1. Results Using 70:30 Split

Table 4 demonstrates the comparative results analysis of machine learning models with
and without using the proposed approach. The performance metrics precision, recall, F1
score, and accuracy scores are examined label-wise. The comparative analysis shows that the
performance of the models is increased by using the proposed technique. ETC achieves a 59%
accuracy score, 54% precision score, 48% recall score, and 49% F1 score for label 1. By using
the proposed technique, its performance is elevated to 66% accuracy, 74% precision score,
72% recall score, and 71% F1 for label 1. In the same way, the performance metric scores are
improved for label 2. All metrics scores are increased by using the proposed technique.

The multi-label multi-class performance evaluation parameters are also analyzed with
a data split of 70:30 Table 5. The performance metrics used are training time (seconds), macro
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accuracy, hamming loss, and α-evaluation score. The comparative results are examined with
and without using the proposed technique. The analysis demonstrates that by using the
proposed approach, the performance metrics results are increased. SVC model achieves a
59% of accuracy score and by using the proposed approach, its accuracy is increased to 64%.
The hamming loss is decreased from 0.24 to 0.18 and the α-evaluation score is increased
from 86% to 91%. This shows that the proposed approach proves very effective to achieve
higher results.

4.3.2. Results Using 80:20 Train–Test Split

Performance of machine learning techniques is analyzed using an 80:20 split as well.
The performance results of models with and without using the proposed approach for
label 1 and label 2 are examined in Table 6.

The analysis demonstrates that performance metric results are increased by using
the proposed approach. MLP achieves a 60% accuracy, 54% precision, 50% recall, and
51% F score for label 1. By using the proposed technique, its performance is significantly
improved and it obtains 67%, 75%, 73%, and 72% for accuracy, precision, recall, and F1
scores. Another important point is the increase in the performance of models with a change
in train–test split ratios. For example, the accuracies of MLP is increased from 66% to 67%,
DTC from 66% to 67%, RFC from 66% to 67%, KNN from 53% to 55%, ETC from 66% to
67%, XGB from 66% to 67%, and SVC from 64% to 65%. An increase in the training data
size provides more samples for training which results in improved accuracy.

The multi-label multi-class performance comparative analysis with data split of 80:20
by using the imbalanced dataset is examined in Table 7. Analysis reveals that the perfor-
mance of the models is increased when used with the proposed features. For example, the
macro accuracy score of DTC is increased from 68% to 69% and the α-evaluation score from
83% to 90%. The hamming loss is decreased from 0.22 to 0.16. Similarly, the performance of
other techniques is also improved when using the proposed approach.

4.3.3. Results Using 85:15 Split Ratio

Table 8 shows the comparative analysis of all the models using the 85:15 train–test
split. MLP achieves a 61% accuracy, 55% precision, 53% recall, and 53% F1 score which is
the best performance without using the proposed approach. However, when the proposed
feature engineering approach is used, the performance of MLP is elevated to 66% accuracy,
74% precision, 72% score, and 71% F1. The performance results for label 2 are also increased.
This analysis demonstrates that the results of all metrics are improved by utilizing the
proposed approach. Other than that, the performance of models is also increased due to an
increase in the size of training data.

The multi-label multi-class comparative analysis of applied learning techniques with
and without the proposed approach is also examined in Table 9. Macro accuracy of the
KNN model is improved from 61% to 66% using the proposed approach. The hamming
loss is decreased from 0.25 to 0.17 and the α-evaluation score is increased from 84% to 91%.
All other learning techniques results are improvised.
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Table 4. Comparative analysis of machine learning models using an unbalanced dataset with a data split of 70:30.

Technique

Label 1 Label 2

Results without Proposed Technique

Accuracy (%) Precision (%) Recall (%) F1 Score (%) Accuracy (%) Precision (%) Recall (%) F1 Score (%)

LR 53 51 42 36 33 19 17 14

MLP 58 52 51 50 35 26 25 24

DTC 50 44 44 44 29 23 24 24

RFC 58 54 46 46 37 28 22 23

KNN 46 36 34 33 21 13 12 12

ETC 59 54 48 49 37 40 24 26

XGB 57 51 49 49 36 30 25 26

SVC 49 48 35 34 27 20 14 12

Results with Proposed Technique

LR 64 73 69 66 43 39 38 36

MLP 66 74 72 71 45 58 41 40

DTC 66 74 72 71 44 51 41 41

RFC 66 74 72 71 44 51 41 41

KNN 53 67 67 65 35 38 40 37

ETC 66 74 72 71 44 51 41 41

XGB 66 74 72 71 44 51 41 41

SVC 64 73 69 65 42 35 38 36
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Table 5. The multi-label multi-class performance comparative analysis with an imbalanced dataset
using a data split of 70:30.

Technique Training Time (s) Macro Accuracy (%) Hamming Loss α- Evaluation Score

Results without the proposed technique

LR 3.20 55 0.22 90

MLP 75.34 69 0.18 88

DTC 0.25 69 0.21 83

RFC 4.04 66 0.18 89

KNN 0.05 61 0.25 84

ETC 02.39 68 0.17 89

XGB 75.94 69 0.18 87

SVC 12.06 59 0.24 86

Results with the proposed technique

LR 2.05 65 0.18 91

MLP 13.17 68 0.18 90

DTC 0.01 68 0.17 90

RFC 0.79 68 0.17 90

KNN 0.02 71 0.23 78

ETC 2.18 68 0.17 90

XGB 7.49 68 0.17 90

SVC 0.28 64 0.18 91

Table 6. Performance analysis of machine learning models using an imbalanced dataset with a data
split of 80:20.

Technique

Label 1 Label 2

Results without Proposed Technique

Accuracy (%) Precision (%) Recall (%) F1 Score (%) Accuracy (%) Precision (%) Recall (%) F1 Score (%)

LR 53 52 42 37 33 19 17 14

MLP 60 54 50 51 37 27 24 25

DTC 49 43 43 43 29 21 21 21

RFC 58 54 45 45 36 27 21 22

KNN 47 36 34 34 22 12 12 12

ETC 59 55 48 49 37 34 23 25

XGB 57 52 48 49 36 32 26 28

SVC 50 45 35 32 19 17 16 12

Results with Proposed Technique

LR 65 75 71 68 43 39 39 37

MLP 67 75 73 72 45 48 40 39

DTC 67 75 73 72 45 55 41 41
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Table 6. Cont.

Technique

Label 1 Label 2

Results without Proposed Technique

Accuracy (%) Precision (%) Recall (%) F1 Score (%) Accuracy (%) Precision (%) Recall (%) F1 Score (%)

RFC 67 75 73 72 45 54 41 40

KNN 55 69 69 66 37 43 42 40

ETC 67 75 73 72 45 55 41 41

XGB 67 75 73 72 45 55 41 41

SVC 65 75 70 67 43 40 38 36

Table 7. The multi-label multi-class performance comparative analysis with an imbalanced dataset
using a data split of 80:20.

Technique Training Time (s) Macro Accuracy (%) Hamming Loss α- Evaluation Score

Results without the proposed technique

LR 3.47 55 0.22 90

MLP 69.57 70 0.17 89

DTC 0.29 68 0.22 83

RFC 4.74 65 0.19 89

KNN 0.03 61 0.24 84

ETC 14.45 68 0.18 89

XGB 91.50 69 0.18 87

SVC 14.04 55 0.24 88

Results with the proposed technique

LR 2.16 66 0.17 91

MLP 10.95 69 0.16 90

DTC 0.01 69 0.16 90

RFC 0.88 69 0.16 90

KNN 0.03 72 0.26 79

ETC 2.44 69 0.16 90

XGB 9.13 69 0.16 90

SVC 0.34 65 0.17 92
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Table 8. Performance comparative analysis of models using an imbalanced dataset and 85:15 split.

Technique

Label 1 Label 2

Results without Proposed Technique

Accuracy (%) Precision (%) Recall (%) F1 Score (%) Accuracy (%) Precision (%) Recall (%) F1 Score (%)

LR 54 52 42 37 32 15 16 13

MLP 61 55 53 53 38 30 29 29

DTC 51 44 44 44 30 24 25 24

RFC 58 54 46 46 36 27 21 22

KNN 47 33 33 32 22 13 13 12

ETC 59 54 47 48 37 33 23 25

XGB 57 51 48 49 35 27 23 24

SVC 41 44 34 29 25 20 20 14

Results with Proposed Technique

LR 65 75 70 67 42 40 38 36

MLP 66 74 72 71 43 45 40 39

DTC 66 74 72 70 42 47 40 40

RFC 66 74 72 71 43 48 40 40

KNN 65 74 70 68 39 44 38 38

ETC 66 74 72 70 42 47 40 40

XGB 66 74 72 71 42 45 39 39

SVC 64 74 70 66 41 35 38 35
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Table 9. The multi-label multi-class performance comparative analysis with an imbalanced dataset
using a data split of 85:15.

Technique Training Time (s) Macro Accuracy (%) Hamming Loss α- Evaluation Score

Results without the proposed technique

LR 4.08 55 0.22 91

MLP 104.1 70 0.16 89

DTC 0.31 69 0.21 84

RFC 5.42 66 0.18 89

KNN 0.04 61 0.25 84

ETC 16.8 69 0.18 89

XGB 99.37 69 0.18 87

SVC 16.4 70 0.25 77

Results with the proposed technique

LR 2.49 66 0.17 92

MLP 13.58 68 0.17 90

DTC 0.01 68 0.17 90

RFC 0.95 68 0.17 90

KNN 0.03 66 0.17 91

ETC 2.55 68 0.17 90

XGB 9.40 68 0.17 90

SVC 0.38 65 0.18 92

4.3.4. Results Using 90:10 Train–Test Split

In addition to the previous train–test splits, this study utilizes a 90:10 split ratio as
well to analyze the performance of models, and the results are given in Table 10. The best
performance is obtained using ETC with the proposed approach. ETC achieves 59%, 56%,
48%, and 49% for accuracy, precision, recall, and F1 score which are further improved when
the proposed approach is used. Accuracy, precision, recall, and F1 scores are improved to
67%, 76%, 73%, and 72%, respectively. The same is true for label 2 scores. In addition, an
increase in performance is also observed due to a change in the size of the training data.

The multi-label multi-class performance comparative analysis with an imbalanced
dataset using a data split of 90:10 is examined in Table 11. The analysis is based on the
multi-label multi-class metrics results with and without the proposed technique. The SVC
technique obtains better performance and its performance is further improved with the
proposed approach as its macro accuracy score is increased from 56% to 65% and the
α-evaluation score from 90% to 92%. The hamming loss is decreased from 0.23 to 0.17. This
analysis shows that our proposed approach helps us to achieve higher accuracy scores.
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Table 10. Performance comparative analysis using an imbalanced dataset with a data split of 90:10.

Technique

Label 1 Label 2

Results without Proposed Technique

Accuracy (%) Precision (%) Recall (%) F1 Score (%) Accuracy (%) Precision (%) Recall (%) F1 Score (%)

LR 53 57 42 37 34 24 17 14

MLP 57 56 49 48 36 31 24 24

DTC 50 44 45 44 30 23 24 24

RFC 58 56 46 47 38 39 23 25

KNN 46 34 33 32 22 13 12 12

ETC 59 56 48 49 38 40 26 28

XGB 57 52 49 50 36 33 26 28

SVC 51 40 41 35 31 15 19 15

Results with Proposed Technique

LR 66 77 71 68 43 40 38 37

MLP 67 76 73 71 45 45 40 40

DTC 67 76 73 72 45 50 41 41

RFC 67 76 73 73 45 51 41 41

KNN 62 71 71 70 41 50 42 42

ETC 67 76 73 72 45 50 41 41

XGB 67 76 73 72 45 50 42 42

SVC 65 76 70 66 43 41 38 36
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Table 11. The multi-label multi-class performance comparative analysis using a data split of 90:10.

Technique Training Time (s) Macro Accuracy (%) Hamming Loss α- Evaluation Score

Results without the proposed technique

LR 5.23 54 0.22 91

MLP 40.5 63 0.19 90

DTC 0.33 70 0.20 84

RFC 5.70 66 0.18 90

KNN 0.04 61 0.25 84

ETC 17.62 68 0.18 89

XGB 106.58 70 0.18 88

SVC 19.0 56 0.23 90

Results with the proposed technique

LR 2.76 66 0.17 92

MLP 17.6 69 0.16 91

DTC 0.01 70 0.16 90

RFC 1.02 70 0.16 90

KNN 0.03 69 0.19 87

ETC 2.82 70 0.16 90

XGB 15.7 70 0.16 90

SVC 0.37 65 0.17 92

4.3.5. Performance Comparison of All Split Ratios for Imbalanced Dataset

Figures 10 and 11 summarize the performance of machine learning models without the
proposed approach and using the proposed approach, respectively. It can be observed that
the performance of all the models is elevated using the proposed approach even when using
the imbalanced dataset. Instead of using single features, the proposed approach combined
features from ET and RF which are more suitable for training the models. Additionally, the
class probabilities from these models are used as features that improve the performance of
models. Another important observation is the similar performance of the models when
used with the proposed approach. All the models tend to show a similar performance with
slight variations.

4.4. Experimental Results with Balanced Dataset

Similar to experiments using the imbalanced dataset, experiments using the balanced
dataset involve different train–test splits of 70:30, 80:20, 85:15, and 90:10. However, the best
results are obtained using 80:20 train–test splits, so we discuss only the best results here.

The balanced dataset performance comparative analysis of learning techniques label-
wise is examined in Table 12. MLP shows better performance as compared to other models
and its performance is further improved when the proposed approach is used. For example,
its accuracy is improved from 58% to 74% while the precision, recall, and F1 scores are
improved from 57%, 58%, and 57% to 74%, 74%, and 74%, respectively. These results are
for label 1, however, a similar trend is observed for label 2 indicating the effectiveness of
the proposed approach.

The multi-label multi-class metrics result with and without the proposed approach by
using the balanced dataset is examined in Table 13. The analysis utilizes the 80:20 split size
with and without the proposed approach. XGB model obtains the highest macro accuracy
of 79% without the proposed approach which is further elevated to 82% when used with
the proposed approach. Similarly, its hamming loss is decreased from 0.17 to 0.14 and the
α-evaluation score is increased from 88% to 89%.
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Table 12. Comparative analysis of applied machine learning models using a balanced dataset with a data split of 80:20.

Technique

Label 1 Label 2

Results without Proposed Technique

Accuracy (%) Precision (%) Recall (%) F1 Score (%) Accuracy (%) Precision (%) Recall (%) F1 Score (%)

LR 55 54 56 54 41 18 22 19

MLP 58 57 58 57 41 26 24 24

DTC 47 47 47 47 32 24 26 25

RFC 57 56 57 55 42 23 23 21

KNN 37 37 37 36 25 14 14 14

ETC 58 57 58 57 43 47 26 26

XGB 54 53 54 53 39 41 26 27

SVC 37 44 37 027 25 20 20 15

Results with Proposed Technique

LR 72 73 73 72 57 38 41 39

MLP 74 74 74 73 51 59 42 41

DTC 73 73 73 73 59 50 45 44

RFC 73 73 73 73 59 50 44 44

KNN 71 71 71 71 56 44 44 44

ETC 73 73 73 73 59 50 44 44

XGB 73 73 73 73 59 49 44 44

SVC 72 73 73 72 38 58 41 39
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Table 13. The multi-label multi-class performance comparative analysis using balanced data with
80:20 split.

Technique Training Time (s) Macro Accuracy (%) Hamming Loss α- Evaluation Score

Results without the proposed technique

LR 0.99 81 0.16 87

MLP 17.21 82 0.14 89

DTC 0.08 77 0.19 87

RFC 1.63 79 0.16 89

KNN 0.01 71 0.24 85

ETC 4.54 81 0.14 90

XGB 19.98 79 0.17 88

SVC 3.41 81 0.17 82

Results with the proposed technique

LR 0.50 81 0.14 91

MLP 6.81 82 0.14 91

DTC 0.01 82 0.14 89

RFC 0.54 82 0.14 89

KNN 0.01 81 0.15 88

ETC 1.32 82 0.14 89

XGB 3.32 82 0.14 89

SVC 0.09 81 0.14 91

Regarding results for the 85 to 15 train–test split ratio, the performance of XGB is
superior with 73% accuracy, 73% precision, 72% recall, and 72% F1 score. For multi-label
multi-class performance comparative analysis, DTC obtains a macro accuracy score of
77%, hamming loss of 0.14, and the α-evaluation score of 91%. Using a train–test split of
90:10, XGB models obtain the highest accuracy of 76% using the proposed approach. For
multi-label multi-class analysis, XGB has macro accuracy of 84%. hamming loss of 0.12 and
the α-evaluation score of 92%.

The best individual performance is obtained by the XGB when used with the proposed
ETRF feature engineering, as shown in Figure 12. These figures further show that using
the proposed approach, all the models improve their performance and the difference in
their performance is reduced. Without using the proposed approach, the performance of
the models varies significantly as shown in Figure 13.

4.5. Results for High Dimensional Real Genomic Data

We applied the proposed XGB model on multi-omics and high dimensional real ge-
nomic datasets taken from [61] to validate the performance of the proposed approach. The
dataset is available at [62]. It contains the gene expression levels of 22,284 genes (columns)
from 64 samples (rows). Experimental results of the proposed approach are provided in
Table 14. The performance analysis of the proposed model demonstrates that a 100% ac-
curacy can be obtained. The scores for accuracy, precision, recall, and F1 metrics are also
100%. The classification report indicates a superior performance of the proposed model on
an additional dataset.
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Table 14. Results for the proposed XGB as classification model for multi-omics and high dimensional
real genomic dataset.

Category Precision Recall F1 Score

0 1.00 1.00 1.00

1 1.00 1.00 1.00

2 1.00 1.00 1.00

3 1.00 1.00 1.00

4 1.00 1.00 1.00

Average 1.00 1.00 1.00

Accuracy 1.00

4.6. Performance in Comparison to Existing Studies

Performance analysis of the proposed approach is desired with existing approaches
to show the effectiveness of the current study and highlight its performance within the
context of existing literature.

A comparative analysis is shown in Table 15 to demonstrate the importance of the
current study. For comparison, the models from the selected studies are implemented
on the dataset used in this study to make a fair comparison. Results suggest that the
proposed approach is superior in terms of overall performance, as well as computational
complexity. Using less training time, it can outperform the existing approaches with high
macro accuracy and α-evluation score, and low Hamming loss.

Table 15. Comparative analysis of proposed approach with state-of-the-art approaches.

Reference Year Technique Training Time (s) Macro Accuracy (%) Hamming Loss α-Evaluation Score (%)

[63] 2020 SVM 7.10 73 0.22 88

[64] 2020 KNN 0.01 70 0.25 86

[65] 2020 KNN 0.01 70 0.25 86

[66] 2020 RF 2.48 82 0.14 90

[67] 2021 KNN 0.01 70 0.25 86

Proposed 2022 ETRF + XGB 3.59 84 0.12 92

5. Conclusions and Future Work

Machine learning-based approaches have the need of time to build prediction models
for the medical field and have the potential to assist medical experts with timely decisions.
The prediction of genetic disorders is very important to reduce the risk of fatal outcomes.
This study proposed a novel approach to enhance the performance of predictive models
for genetic disorders. Two contributions of the study are the use of hybrid features from ET
and RF where the class probabilities from these models are combined to make a feature set
that is used to train machine learning models. Secondly, this study utilizes a classifier chain
approach where the predictions from the preceding models are utilized by the conceding
models. Each model in the chain predicts in a manner of its position in the chain. Extensive
experiments are carried out with and without using the balanced dataset for the proposed
approach. Results indicate that the proposed ETRF technique produces the best results
with the XGB model with a 92% α-evaluation score, 84% macro accuracy score, and 0.12
Hamming loss. Results are far better than existing state-of-the-art approaches, regarding
both performance and computational complexity. This study considers only machine
learning models and performance analysis of deep learning models is left for the future. We
also intend to apply transfer learning techniques for multi-label multi-class classification to
enhance performance for genetic disorder prediction.
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