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Abstract: The common bean (Phaseolus vulgaris L.), whose annual production is 26 million tons
worldwide, is one of the main sources of protein and is known as one of the most important food
sources. In this study, the karyotype variations and the genome size of four common bean genotypes
in Turkey were investigated to determine whether the geographic variables in these regions affected
the genome size and the karyotype parameters. In addition, it is known that as that the cytological
and chromosomal parameters change under the influence of the climatic conditions of each region,
appropriate and stable cytological methods for each plant facilitate and enable the determination
of the chromosomal structure and the identification of specific chromosomes in the genotypes of
the relevant region. Correct and valuable information such as this enables breeders and researchers
to determine the correct shape and actual size of chromosomes. The genome size of the genotypes
was measured with a flow cytometer, and chromosome analyses were performed with the squash
method. For each genotype, the karyotype parameters, such as the number of somatic chromosomes,
the Mean Total Chromosome Length (MTCL), the Mean Centromere Index (MCI), and the Mean
Arm Ratio (MAR), were measured. The results showed that the highest and the lowest amounts of
DNA per nucleus (3.28 pg and 1.49 pg) were observed in the Bitlis and Elaziğ genotypes. In addition,
all genotype chromosome numbers were counted to be 2n = 2x = 22. The Mean Total Chromosome
Length varied from 15.65 µm in Elaziğ to 34.24 µm in the Bitlis genotype. The Mean Chromosome
Length ranged between 1.42 µm and 3.11 µm in the Elaziğ and Bitlis genotypes. The Hakkari and
Van genotypes consist of eleven metacentric chromosomes, while the Bitlis and Elaziğ genotypes
consist of ten metacentric chromosomes and one sub-metacentric chromosome. However, the Mean
Centromere Index and Arm Ratio differed considerably among the genotypes. The highest (46.88)
and the lowest (43.18) values of the Mean Centromere Index were observed in the Hakkari and Elaziğ
genotypes, respectively. On the other hand, the lowest (1.15) and the highest (1.36) values of the Mean
Arm Ratio were obtained in the Bitlis and Elaziğ genotypes, respectively. Eventually, intraspecies
variations in genome size and chromosomal parameters were observed, and it was determined that
the changes in nuclear DNA content and different chromosomal parameters among the four Phaseolus
genotypes from four different regions of Turkey indicate the effect of climate change in the regions
on these parameters. Such information in these areas can be used as useful information for the
improvement of this plant and breeding programs.
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1. Introduction

Legumes are among the most important sources of protein in the diet of many people in
developing countries and are the second largest source of human food after cereals [1]. The
common bean (Phaseolus vulgaris) is one of the most important legumes worldwide, and it
is an important source of nutrients, especially in East Africa and Latin America [2]. It ranks
first among legumes in terms of its economic value and cultivated areas [3]. According to
the Food and Agriculture Organization (FAO), the area for the cultivation of this plant in
the world in 2014 was about 26.5 million hectares, with an average yield of 697 kilograms
per hectare [4]. Due to the deterioration of the global climate and the reduction in annual
rainfall, various stresses, such as drought, salinity, flooding, pests, and diseases, reduce
the global yield of crops [5]. The region encompassing Ecuador and Northern Peru is
considered the origin of the common bean [6], which has subsequently been dispersed
both northwards and southwards due to the establishment of the Mesoamerican and
Andean gene pools, respectively [7]. The divergence of the gene pools occurred before
the domestication events within the individual gene pools [8,9]. After the independent
domestication events, local adaptation created diverse landraces [10], which may have
possibly caused morphological and genetic variability. Since the common bean is an
important nutrient, it has economic importance; therefore, breeding efforts have focused
on the global development of bean species with higher yields by increasing resistance to
biotic and abiotic stresses [11].

One-third of the world’s arable land suffers from insufficient water for agriculture,
and this problem is expected to become more severe with climate change and population
growth. Therefore, one of the most essential solutions to combat stress is identifying plants
tolerating these conditions with optimal performance and studying their tolerance mecha-
nisms [12]. The lack of tolerance to quantitative abiotic stresses and direct measurement
methods makes identifying resistant genotypes challenging. Still, grain yield under normal
conditions and stresses seems to be the first step in selecting genotypes for use in breeding
work under stress conditions [13]. Determining the correlation between chromosomal char-
acteristics and plant phenotypic traits, and determining the cause-and-effect relationships
between them allow the facilitator to choose the most appropriate and logical ratio between
components that leads to higher performance [14].

One of the most important stages of eugenics studies is the study of genetic diversity
and knowledge of chromosomal and genomic characteristics, which are necessary to help
these studies. Many classical and molecular cytogenetic studies have been performed on
this plant, but since these characteristics are variable under the influence of geographical
and ecological factors [15,16], it seems necessary to study the characteristics of the nuclear
and chromosomal genomes separately in each region. Several cytogenetic studies have
been conducted to investigate the chromosomal structure of the common bean, which
include chromosome analysis and cytogenetic maps [17–30]. Genome size information is
an important issue in ploidy analysis, genome analysis, taxonomy, evolution, and breeding
studies [31–35].

The Eastern Anatolia region is Turkey’s coldest and highest region, and especially
under high-altitude conditions, such as those in Van, Muş, Bingöl, Bitlis, and Hakkari, the
vegetation period, which is considered to be between the last spring frosts and the first
autumn frosts, is quite short. For this reason, it is difficult to establish a reliable culture with
long-maturity bean varieties, and production is at risk, so for more reliable bean production
under similar ecological conditions, improved cultivars resistant to low temperatures with
short maturity periods are needed in this region. A total of 40 common bean genotypes,
which were selected among 414 genotypes in previous research conducted by one of the
current study’s authors [36] in Turkey, were used in this study.

After the 40 genotypes selected according to international standards were put at our
disposal in this geographical climate, it was planned to select the top 4 genotypes (the top
genotype from each province, for a total of 4 genotypes) to perform some cytogenetic analyses.
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The purpose of this study was to determine the cytogenetic diversity among the four
common bean genotypes, including Elaziğ (E.L.), Bitlis (B.T.), Van (V.N.), and Hakkari
(H.K.), that are more suitable for the climate of this region in terms of chromosomal
parameters and nuclear DNA content and that could be used in the next breeding programs
in this region.

2. Materials and Methods
2.1. Plant Material Preparation

The common bean (Phaseolus vulgaris) genotypes selected in the previous research
study were used in this research. In the previous research study [36], the authors collected
different genotypes from the selected villages of 8 cities, including Bingöl, Bitlis, Elaziğ,
Hakkari, Malatya, Muş, Tunceli, and Van, which are located in the south of the Eastern
Anatolia region and engage in bean farming. A total of 414 bean genotypes were harvested
in autumn 2009 and spring 2010 and were planted in 2010 and 2011 in Van-Gevaş under
farming conditions, and the characteristics of the genotypes were evaluated. International
Plant Genetic Resources Institute (IPGRI) and European Union Community Plant Variety
Office (EU-CPVO) criteria were used in the characterization of dwarf and climbing bean
genotypes. The top four genotypes were selected based on good quantitative, qualitative,
biological, and agronomic characteristics, including seed shape, seed color, yield, seed
quality, flowering status, and appearance. A genotype name was given to each accession
based on the first two letters of the provinces and then the number of the village in which
they were collected. Three replications of each genotype were used in the cytogenetic
analyses. The study was carried out in Field Crops Department, Agriculture Faculty of Van
Yuzuncu Yil University, Van, Turkey, during 2015–2016. All of the common bean accessions
analyzed in this study are listed in Table 1.

Table 1. Genotype code numbers, names, locations, growing patterns, latitude, longitude, and
altitude of the common bean used as material in the study.

Genotype
Code Number

Genotype
Name Location Growing

Pattern Latitude Longitude Altitude
(m)

471-7 BT-52 Kuşlu köyü Climbing 38◦19′739′′ 42◦14′841′′ 1615
471-12 BT-97 Kuştaşı köyü Dwarf 38◦29′645′′ 42◦04′575′′ 2002
471-3 BT-123 Yazlikonak Climbing 38◦26′765′′ 42◦51′660′′ 1810
471-9 BT-124 Yolalan köyü Dwarf 38◦17′889′′ 42◦15′891′′ 1543
471-35 BT-114 Yumrumeşe köyü Climbing 38◦26′765′′ 42◦51′660′′ 1659
471-20 BT-117 Cınarbaşi köyü Dwarf 38◦15′861′′ 42◦17′972′′ 1710
471-17 BT-68 Mutki Kavakbası köyü Dwarf 38◦28′884′′ 41◦48′924′′ 1303
471-28 BT-28 Kalkanlı köyü Climbing 38◦07′704′′ 42◦37′670′′ 2004
471-39 BT-58 Topköy köyü Dwarf 38◦24′217′′ 42◦16′295′′ 1752
471-10 BT-100 Sütderesi köyü Dwarf 38◦36′113′′ 42◦00′993′′ 1307
596-11 HK-30 Bay köyü Climbing 37◦32′687′′ 42◦43′333′′ 1832
596-27 HK-33 Otluca köyü 1 Climbing 37◦36′105′′ 43◦41′643′′ 2096
596-21 HK-8 Otluca köyü 2 Climbing 37◦36′246′′ 43◦42′370′′ 2054
596-32 HK-56 Otluca köyü 3 Dwarf 37◦36′33′′ 43◦42′525′′ 2095
596-3 HK-12 Ağaç dibi köyü Climbing 37◦29′370′′ 43◦38′184′′ 2097
596-26 HK-18 Üzümlü köyü Climbing 37◦29′773′′ 43◦34′389′′ 1135
596-18 HK-79 Çimenli köyü Climbing 37◦29′096′′ 43◦37′693′′ 1137
596-36 HK-73 Şemdinli merkez Climbing 37◦19′045′′ 44◦33′625′′ 1408
596-19 HK-71 Şemdinli güzel konak Climbing 37◦25′223′′ 44◦29′056′′ 1724

596-25 HK-66 Yüksekova köprücü
köyü Climbing 37◦34′196′′ 43◦22′555′′ 1866

387-1 VN-26 Bahçesaray batalor köyü Climbing 38◦30′234′′ 42◦23′285′′ 1958

387-33 VN-20 Bahçesaray aksaray
köyü Climbing 38◦30′862′′ 42◦19′043′′ 1684
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Table 1. Cont.

Genotype
Code Number

Genotype
Name Location Growing

Pattern Latitude Longitude Altitude
(m)

387-34 VN-24 Bahçesaray çatbayır
köyü Climbing 38◦30′943′′ 42◦24′735′′ 1917

387-2 VN-58 Başkale barış köyü Climbing 38◦01′147′′ 43◦39′146′′ 2224
387-38 VN-50 Gürpınar Merkez Climbing 38◦19′124′′ 44◦33′625′′ 1748
387-13 VN-48 Çatak Merkez Climbing 38◦00′451′′ 43◦03′619′′ 1502
387-40 VN-27 Çatak karsıyaka köyü Climbing 38◦00′721′′ 44◦33′625′′ 1783
387-37 VN-30 Çaldıran Merkez Climbing 37◦42′409′′ 44◦07′448′′ 2005
387-14 VN-28 Şemdinli Merkez Climbing 37◦19′045′′ 44◦33′625′′ 2072
387-31 VN-39 Başkale germon köyü Dwarf 37◦59′908′′ 43◦57′436′′ 2247
411-4 EL-11 Maden gezin Merkez Dwarf 38◦31′283′′ 89◦31′880′′ 1266
411-24 EL-16 Sivrice kızıltepe köyü Dwarf 38◦28′865′′ 39◦31′155′′ 1291
411-15 EL-40 Maden küçükova köyü Dwarf 38◦02′552′′ 39◦32′526′′ 1410
411-23 EL-30 Maden Merkez Dwarf 38◦30′760′′ 39◦33′172′′ 1350
411-5 EL-34 Maden yeşil ada köyü Dwarf 38◦32′905′′ 39◦38′695′′ 1503
411-29 EL-33 Maden kardeldere köyü Dwarf 38◦33′108′′ 39◦35′801′′ 1404
411-16 EL-28 Sivice elmasaray köyü Dwarf 38◦24′728′′ 39◦23′341′′ 1364
411-30 EL-27 Sivice boşkaynak köyü Dwarf 38◦22′855′′ 39◦22′217′′ 1390
411-6 EL-26 Sivrice kavak köyü Dwarf 38◦23′522′′ 39◦25′121′′ 1304
411-22 EL-21 Sivrice kızıltepe köyü Dwarf 38◦29′472′′ 39◦31′362′′ 1250

2.2. Karyotype Analysis

The root tip meristems (1–2 cm length) were cut from the seedlings and pretreated with
8-Hydroxiquinolin solution; then, they were fixed in Lewitsky solution (1% chromic acid
and 10% formaldehyde) for 36 h at 4 ◦C, followed by rinsing in distilled water, hydrolyzing
in 1N HCl at 60 ◦C (hydrolysis was performed in a hot water bath) for 10 min, and staining
with %2 Aceto-Orcein. Ten metaphase plates were analyzed with the squashing method.
Several chromosomal features, including the number of somatic chromosomes, the MTCL
(Mean Total Chromosome Length), the MCL (Mean Chromosome Length), the MCI (Mean
Centromere Index; CI = Total Length of Short Arms/Total Chromosome Length × 100),
the MAR (Mean Arm Ratio; AR = the ratio of the length of the largest to the smallest
chromosome), the karyotype formula, and the total diploid chromosome length, were
determined in each genotype using microscopic photos. The type of chromosome was
determined according to Levan’s method [37].

2.3. Determination of the Genome Size

The genome size of the accessions was determined using the FCM. For this purpose,
the root tips were fixed as previously described, rinsed with SO and distilled water, and
squashed in acetic acid (45%), followed by freezing and dehydration in ethanol (96% and
100%, respectively) for 5 min. A total of 75–100 telophase nuclei were selected for measuring
the DNA content in each genotype using the flow cytometry technique with a PARTEC
Flow cytometer. The nuclear DNA amount was calibrated using Allium cepa root tips as
the control [38].

2.4. Statistical Analysis

To test the statistical significance of the differences between the genome sizes of the
accessions, variance analyses and Duncan tests were performed.

3. Results
3.1. Chromosome Counting and Analysis

As a result of the chromosome analysis, it was determined that all of the accessions
had 22 chromosomes (2n = 2x= 22). The MTCL values varied from 15.65 ± 0.99 µm in
E.L. (Elaziğ) to 34.24 ± 0.35 µm in the B.T. (Bitlis) genotype, respectively. In addition, the
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MCL values ranged between 1.42 ± 0.10 µm in E.L. (Elaziğ) and 3.11 ± 0.32 µm in the B.T.
(Bitlis) genotype (Table 2). The H.K. and V.N. genotypes consisted of eleven metacentric
chromosomes, while the B.T. and E.L. genotypes consisted of ten metacentric chromosomes
and one submetacentric chromosome. The genotypes showed considerable variations in
the Centromere Index (CI) and Arm Ratio (AR) values. The highest and lowest CI values
(46.88 ± 0.91 and 43.18 ± 0.99) were obtained in the H.K. and E.L. genotypes, respectively.
On the other hand, the lowest and the highest AR values (1.15 ± 0.10 and 1.36 ± 0.07) were
observed in the B.T. and E.L. genotypes, respectively (Table 2). In addition, the total diploid
chromosome length was measured to be from 31.30 ± 0.019 µm in E.L. to 68.48 ± 0.012 µm
in B.T. (Table 3).

Table 2. Variations in the karyotype features in examined Phaseolus vulgaris L. genotypes.

Genotype MTCL ± SE
(µm)

MCL ± SE
(µm)

MCI ± SE
(µm) MAR ± SE Karyotype Formula

B.T. 34.24 ± 0.35 3.11 ± 0.32 46.83 ± 3.52 1.15 ± 0.10 2n = 2x = 22 = 10 m +
1 sm

H.K. 33.98 ± 1.35 3.09 ± 0.12 45.71 ± 0.91 1.25 ± 0.05 2n = 2x = 22 = 11 m
VN 24.90 ± 1.12 2.26 ± 0.01 45.66 ± 1.32 1.26 ± 0.08 2n = 2x = 22 = 11 m

E.L. 15.65 ± 0.99 1.42 ± 0.10 43.18 ± 0.99 1.36 ± 0.07 2n = 2x = 22 = 10 m +
1 sm

MTCL, Mean Total Haploid Chromosome Length; MCL, Mean Chromosome Length; MCI, Mean Centromere
Index; MAR, Mean Arm Ratio; SE, Standard Error; µm, micrometer; m, metacentric; sm, submetacentric. B.T.,
Bitlis; H.K., Hakkari; VN, Van; E.L., Elaziğ.

Table 3. Nuclear DNA content and total diploid chromosome length in studied genotypes of
P. vulgaris L.

Genotype DNA Content (pg) Total Diploid Chromosome
Length (µm)

B.T. 3.28 ± 0.101 68.48 ± 0.012
H.K. 3.12 ± 0.142 67.96 ± 0.017
VN 3.05 ± 0.029 49.80 ± 0.014
E.L. 1.49 ± 0.032 31.30 ± 0.019

pg, picogram; µm, micrometer; B.T., Bitlis; H.K., Hakkari; VN, Van; E.L., Elaziğ.

3.2. Estimation of DNA Contents in Genotypes

The genome size of the accessions was determined using the FCM. The mean genome
size of the common bean accessions varied between 1.49 ± 0.032 pg in the E.L. genotype
and 3.28 ± 0.101 pg in the B.T. genotype (Table 3).

The variance analysis of the MTCL (Mean Total Chromosome Length) in the four
studied genotypes of the common bean (Table 4) showed a statistically significant difference
among the studied genotypes at the level of 0.1. The statistical grouping of the average
TCL (Total Chromosome Length) in the examined genotypes (Table 5) showed that the
genotypes could be divided into three separate groups: genotypes B.T. and H.K., with the
highest value of Mean Total Chromosome Length in one group, V.N. in the second group,
and the E.L. genotype placed separately in another group.

Table 4. Analysis of variance of TCL (Total Chromosome Length) in P. vulgaris L. genotypes.

S. O. V df MS

Genotypes 3 936.89 **
Error 8 0.68
Total 11

** Significant at p < 0.01.
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Table 5. Mean comparison of different P. vulgaris L. genotypes studied.

Genotype TCL (Total Chromosome Length) ± S.E. (µm)

B.T. 68.48 ± 0.012 a
H.K. 67.96 ± 0.017 a
VN 49.80 ± 0.14 b
E.L. 31.30 ± 0.019 c

The values with the same letters were not significant at p < 0.01 in Duncan’s Multiple Range Test. B.T., Bitlis; H.K.,
Hakkari; VN, Van; E.L., Elaziğ.

The results of the variance analysis of the amount of nuclear DNA in the four studied
genotypes of the common bean (Table 6) showed that there was a statistically significant
difference among the studied genotypes at the level of 0.1. The statistical grouping of the
average amount of nuclear DNA in the examined genotypes (Table 7) showed that the
genotypes were divided into two separate groups: genotypes B.T., H.K., and V.N., with the
highest amount of nuclear DNA, in one group and the E.L. genotype placed separately in
another group.

Table 6. Analysis of variance of nuclear DNA content in P. vulgaris L. genotypes.

S. O. V df MS

Genotypes 3 2.095 **
Error 8 0.099
Total 11

** Significant at p < 0.01.

Table 7. Mean comparison of different P. vulgaris L. studied genotypes.

Genotype Nuclear DNA Content Mean ± S.E. (pg)

B.T. 3.28 ± 0.101 a
H.K. 3.12 ± 0.142 a
VN 3.05 ± 0.029 a
E.L. 1.49 ± 0.032 b

The values with the same letters were not significant at p < 0.01 in Duncan’s Multiple Range Test. B.T., Bitlis; H.K.,
Hakkari; VN, Van; E.L., Elaziğ.

4. Discussion

The chromosome number in all genotypes was 2n = 2x = 22, confirming several
previous results [17,19–24,27–30]. The MTCL (Mean Total Chromosome Length) recorded
in the studied genotypes varied from 15.65 ± 0.99 to 34.24 ± 0.35 micrometers (Table 2),
which is almost similar to the previous study on nine genotypes of the common bean,
who’s MTCL was measured to be between 13.74 and 29.50 micrometers [24]. In another
study on bean karyotype analysis, the MCI (Mean Centromere Index) ranged between 42
and 48, which is very similar to our results (43.18 ± 0.99 to 46.83 ± 3.52) (Table 2) [39].
The MAR (Mean Arm Ratio) was calculated to be between 1.14 ± 0.10 and 1.36 ± 0.07
(Table 2) in this study, which does not correspond to previous results (3.50 ± 0.36 to
4.30 ± 0.35) [24]. The mean genome size of the common bean accessions varied between
1.49 ± 0.032 pg in the E.L. genotype and 3.28 ± 0.101 pg in the B.T. genotype (Table 3).
Previous studies showed the genome sizes of the common bean to be 3.7 pg [17], 2.7 pg [18],
1.32 pg [20], 1.40–1.53 pg [40], 1.39–1.41 pg [21], 1.58 pg [41], and 2.65 and 4.96 pg [24]. The
results obtained from the current study area similar to some of these results and different
from others. This may be due to the use of different methods, internal standards, and
accessions or technical problems [42]; in many cases, these changes are related to different
geographical and climatic conditions [29].

The variance analysis results showed a significant difference among the investigated
genotypes in terms of the measured traits. The greater the diversity of the traits is, the more
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the selection based on them leads to a better selection response [43]. According to Table 5,
it can be observed that there was a statistically significant difference among the studied
genotypes (p < 0.01) in TCL (Total Chromosome Length). The comparison of the average
TCL (Total Chromosome Length) values in the studied genotypes (Table 5) showed that
the genotypes could be divided into three separate groups: genotypes B.T. and H.K., with
the highest values of Mean Total Chromosome Length, could be put in one group; the V.N.
genotype was in the second group; and the E.L. genotype was placed separately in the
third group. This indicates the high diversity among the studied genotypes in terms of
this parameter. Using this parameter in breeding programs could help to achieve suitable
genotypes that can adapt to different environmental conditions [44]. Phenotypic changes
always represent a part of the overall diversity, but genotypic changes represent a part of
the diversity and heritable changes that increase the response to selection [45].

There was a significant difference in the relative amount of nuclear DNA (p < 0.01),
which indicates high intra-species diversity among the studied genotypes of the common
bean collected from different regions of Turkey. The average comparison (Table 7) showed
that the genotypes could be placed in two separate groups.

The amount of DNA in the cell nucleus positively correlates with various cellular
parameters, including total length and chromosome volume in the metaphase of mitosis and
meiosis. In addition, the C-value of DNA in plants is positively related to the characteristics
that interact for determining the growth rate and the type of plant life cycle [46]. Genome
size refers to the DNA content in the nucleus and is known to be associated with the
nucleus, cell size, division rate, and thus various organism-level traits, such as metabolism,
body size, or developmental rate [47]. The C-value is the amount of DNA in the haploid un-
replicated nucleus (haploid genome size) [48]. It is typically measured in picograms (pg) for
mass or as the total number of nucleotides in megabase pairs (Mbp), where 1 pg is equal to
978 Mbp of DNA [42]. The genome size is mainly estimated using two cytogenetic methods:
flow cytometry and Feulgen micro-densitometry [49–52]. Previous studies have shown that
the high probability of genetic variation among species occurs due to intra-species changes
in the nuclear DNA amount [45]. In addition, the correlation between genome size, and
growth, development characteristics, and climate characteristics has been observed [53].
The difference in genome size is one of the most important evolutionary processes in
plants. Many studies have demonstrated that a significant difference in genome size is
correlated with the evolution of species and their grouping based on ecological conditions
and geographical origin [54]. In breeding programs, the cytogenetic study is considered the
first step, since crossing between species with higher chromosomal phenotypic similarity is
successful and variations in DNA content can result from changes in chromosome structure,
leading to wide variations in morphology [55].

Considering the difference in the geographical origin of the studied genotypes and
the rapid changes in the nuclear DNA amount in plants in response to environmental
stimuli [56], differences in the amount of nuclear DNA were expected. According to
previous results, the change in the relative amount of nuclear DNA in plants is probably
due to the presence of abnormal chromosomes, the role of the amount of nuclear DNA in
environmental adaptations [57], and changes in chromosome length [58]. Turkey is one
of the most important centers of leguminous diversity with different climates, so it has
good potential for the improved development of these plants, and it is necessary to conduct
careful planning to use this diversity optimally. In order to increase the production and use
of legumes, conventional plant breeding techniques have played the greatest role in their
genetic improvement. Still, their breeding speed is lower than that of other crops, such as
cereals, for some reason. The creation of synthetic cultivars requires germplasm evaluation,
selection of superior parental genotypes, and knowledge of the genetic and cytogenetic
parameters of traits [59,60].
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5. Conclusions

It can be concluded that the results of the examination of these promising genotypes
selected among the many genotypes used in different regions of Turkey show that the Van
and Hakari genotypes have the same karyotypic formula, including eleven metacentric
chromosomes. The shapes of their chromosomes are also similar, which can be consid-
ered for breeding programs between these two genotypes. In fact, cytogenetic studies are
regarded as primary and fundamental achievements in breeding research, because deter-
mining the number and similarity of chromosomes and ploidy levels as well as the amount
of the nuclear DNA content is essential to choosing the appropriate breeding method. On
the other hand, the Bitlis and Elaziğ genotypes have close and similar karyotypes, which
include ten metacentric chromosomes and one submetacentric chromosome. In addition,
upon examining the amount of nuclear DNA content in these four genotypes, the highest
amount was found in the Bitlis genotype, and the Hakari, Van, and Elaziq genotypes
had lower values of this parameter. Knowledge of these parameters in this plant can be
helpful for the breeders who decide to carry out the breeding of Phaseolus according to the
conditions in these regions in Turkey, because successful breeding is possible when the
characteristics of the size of the genome and the number of chromosomes in the researched
plants are known.
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