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Abstract: Background: To investigate the relationship between dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI) radiomic features and the expression activity of hallmark pathways
and to develop prediction models of pathway-level heterogeneity for breast cancer (BC) patients.
Methods: Two radiogenomic cohorts were analyzed (n = 246). Tumor regions were segmented
semiautomatically, and 174 imaging features were extracted. Gene set enrichment analysis (GSEA)
and gene set variation analysis (GSVA) were performed to identify significant imaging-pathway
associations. Random forest regression was used to predict pathway enrichment scores. Five-fold
cross-validation and grid search were used to determine the optimal preprocessing operation and
hyperparameters. Results: We identified 43 pathways, and 101 radiomic features were significantly
related in the discovery cohort (p-value < 0.05). The imaging features of the tumor shape and mid-
to-late post-contrast stages showed more transcriptional connections. Ten pathways relevant to
functions such as cell cycle showed a high correlation with imaging in both cohorts. The prediction
model for the mTORC1 signaling pathway achieved the best performance with the mean absolute
errors (MAEs) of 27.29 and 28.61% in internal and external test sets, respectively. Conclusions:
The DCE-MRI features were associated with hallmark activities and may improve individualized
medicine for BC by noninvasively predicting pathway-level heterogeneity.

Keywords: radiogenomics; association analysis; breast cancer; DCE-MRI; pathway; radiomics;
machine learning

1. Introduction

Breast cancer (BC) is currently the most frequent malignant tumor worldwide (11.7%
of new tumors in 2020), with an estimated 2.3 million new cases, and the death rates of BC
were 15.0 and 12.8 per 100,000 cases in developing and developed countries, respectively,
indicating that BC is a serious health threat to women [1]. The high degree of heterogeneity
poses a challenge to accurate diagnosis and the decision of treatment strategy in the
clinical practices of BC [2,3]. Based on the expression profiling of 50 important genes,
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BC can be categorized into five major molecular subtypes, including luminal-A, luminal-
B, HER2-enriched, basal-like, and normal-like, which is also known as the prediction
analysis on microarray (PAM50) intrinsic molecular subtypes [4,5]. Different PAM50
subtypes of BC have distinct risks of recurrence, metastasis, and response to treatment [6,7].
Accurate and timely identification of the intrinsic molecular subtypes of patients is essential
for the clinical management of BC. However, due to the high cost of RNA-sequencing,
immunohistochemistry (IHC) testing is the commonly used alternative method in clinics
to identify the molecular characteristics of BC by detecting the gene expression of four
specific biomarkers, including the estrogen receptor (ER), progesterone receptor (PR),
human epidermal growth factor receptor 2 (HER2), and Ki67 [8,9]. These findings on
the transcriptomic heterogeneity of BC, including both the intrinsic expression pattern
and status of the IHC biomarker, have greatly contributed to precision medicine for BC
and improved overall patient outcomes [10,11]. Most of these studies were based on a
single gene or a small number of genes and have been highly successful. The expression
heterogeneity at the level of the pathway is also considered a very important feature
of BC, but a lot of work is still needed in this area [12–14]. For example, the hallmark
pathways are derived from various overlapping original gene sets, which can reduce
noise and redundancy and provide a better delineated biological space to characterize the
transcriptomics of disease [15]. Non-invasive access to the heterogeneity at the hallmark
pathway level might contribute to personalized medicine for BC.

In the last decade, with the advancement of data science and artificial intelligence
technologies, radiomics has been rapidly developed within the field of oncology research,
including BC [16,17]. Identifying the reliable associations between quantitative medical
imaging features and vital information about the disease, such as genetic mutations, molec-
ular or clinical features, and treatment responses, as well as non-invasively predicting these
cancer characteristics from imaging features are the core goals of radiomic research. As a
subset of radiomics, radiogenomics focuses on analyzing the association of tumor genomic
or transcriptomic characteristics with imaging features [18,19]. The association between
transcriptomic characteristics and imaging features has been investigated in BC [20–24],
for example, the distinct expression activity of cell cycle pathways was related to the
imaging characteristics and clinical outcomes of BC patients [21]. However, the current
studies have some shortcomings. First, most of the associations between the transcriptomic
characteristics and imaging features in previous BC radiogenomics studies have been
reported in a single dataset only, lacking the validation of an independent dataset. Second,
few studies have analyzed the association between pathway heterogeneity and imaging
features, especially for the representative hallmark gene sets. Finally, to our knowledge, no
radiomic feature-based machine learning prediction models of pathway expression activity
in individual BC patients have been built and reported.

In this work, to explore the associations between the imaging features of BC patients
and the transcriptional heterogeneity of the hallmark pathways, two radiogenomics cohorts
were collected from local and public databases. The workflow of this radiogenomic study
is illustrated and detailed in Figure 1. The dynamic contrast-enhanced MRI (DCE-MRI)
data and RNA-Seq data from the radiogenomics cohorts were analyzed. DCE-MRI is the
most accurate modality for BC imaging now with the advantages of high resolution and
temporal contiguity. Using contrast agents, DCE-MRI can amplify the differences between
tumor tissue and normal tissue, which helps to reflect the imaging characteristics of tumors.
The discovery cohort, including 174 patients, was used to identify the associations, and
the multi-center validation cohort, including 72 patients, was used to validate. Then, the
preference for significant transcriptomic–radiomic correlations was further analyzed and
reported for the first time. Namely, different types of imaging features were associated
with diverse pathway activities, and, correspondingly, hallmark pathways with various
biological functions displayed distinct imaging correlations. Finally, we developed machine
learning regression models for the enrichment scores (ESs) of some key hallmark pathways
in BC based on the DCE-MRI radiomic features in an attempt to non-invasively predict
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pathway expression heterogeneity in individual patients. We hope this exploratory work
can contribute to precision medicine in BC.
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Figure 1. The workflow of this DCE-MRI- and RNA-Seq-data-based radiogenomics study.

2. Materials and Methods
2.1. Subjects and Pathology Evaluation

This study was approved by the local institutional ethics committee. Written informed
consent was obtained for each local patient because patients had been informed that their
data, including specimens and images, might be used for possible research in the future.
We employed two independent radiogenomic cohorts from multiple medical centers. The
discovery cohort was collected from the local database between August 2016 and December
2018 and included 174 BC patients whose preoperative T1-weighted DCE-MRI and tumor
specimens were both available. Data of DCE-MRI and RNA-seq of the external validation
cohort were retrieved from the Cancer Imaging Archive (TCIA) and the Cancer Genome
Atlas (TCGA) databases from four centers, including the Memorial Sloan Kettering Cancer
Center, Mayo Clinic, University of Pittsburgh Medical Center, and Roswell Park Cancer
Institute [25]. The detailed inclusion and exclusion criteria of both cohorts are displayed in
Figure S1, and finally, we obtained and analyzed 174 and 72 patients in the discovery and
validation cohorts, respectively.

ER, PR, HER2, and Ki67 were used to determine the clinical immunohistochemistry
(IHC) subtypes for each patient in the discovery cohort. ER-positive, HER2-negative,
high-PR expression (more than 20%), and low-Ki67 expression (less than 20%) subjects
were defined as luminal-A. ER-positive, HER2-negative, low-PR, or high-Ki-67 expression
subjects were defined as luminal-B. In addition, ER- and HER2-positive subjects were
defined as luminal-B. ER, PR-negative, and HER2-positive patients were HER2-positive,
and finally, all negative samples were triple-negative BC (TNBC).

2.2. DCE-MR Imaging

The DCE-MR images of the discovery cohort were scanned and acquired using Siemens
TrioTim 3-Tesla (3T) scanner (Siemens Healthcare, Erlangen, Germany) in the axial position.
Gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) was used as the contrast
agent, and patients were injected with the agent at an amount of 15 mL in a dose of
0.1 mmol/kg. The dynamic T1-weighted MRI sequences with fat suppression were acquired
at six-timepoints, including one pre-contrast and five post-contrast (time interval was
approximately 1 min). For most images from the discovery cohort, the echo time was
15.7 ms, the repetition time was 423 ms, the flip angle was 10 degrees, the field of view was
340 × 340 mm, the matrix size was 448 × 448 pixels, and the slice thickness was 0.9 mm.
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For the multi-center validation cohort, using the T1-weighted 3D spoiled gradient-echo
sequence, GE scanners (GE Healthcare, Chicago, IL, USA) on a 1.5 Tesla magnet strength
scanned and generated the images. The in-plane resolution of validation images ranged
from 0.53 to 0.86 mm, spacing between slices ranged from 2 to 3 mm, the flip angle was
10 degrees, and the acquisition matrix was 256 × 192.

2.3. Segmentation of Tumor Regions

Before extracting the quantitative radiomic features, tumor segmentation, and image
pre-processing were conducted. Firstly, based on the differences in kinetic characteristics
between tumor tissue and normal tissue during dynamic contrast enhancement, we seg-
mented and obtained the rough volume of interest (VOI) of the tumor mask by setting a
threshold of intensity value on the registered and subtracted images of the first enhanced
MRI sequences in the open-source software 3D Slicer (version 4.8.1, Cambridge, MA, USA).
Secondly, the tumor masks were corrected manually and finally confirmed by two radiol-
ogists blinded to the clinical information, one with 10 years and another with 3 years of
breast imaging experience.

2.4. Calculation of Percentage Enhancement and Signal Enhancement Ratio Maps

By taking advantage of the DCE-MRI technique, we defined and calculated the voxel-
based percentage enhancement (PE) and signal enhancement ratio (SER) maps based
on the signal intensity of each voxel for each patient in this work [23,26,27]. Firstly, the
N4 bias correction algorithm was used to reduce the possible heterogeneity bias of 3T
MR images [28]. Then, with the purpose of extracting the dynamic radiomic features of
signal intensity in the tumor region after contrast agent injection, MRI sequences at four
timepoints, including pre-enhanced (scan before contrast injection), early, middle, and late
post-enhanced images (scans at approximately 1, 3, and 5 min after contrast injection), were
selected and used to calculate the intensity ratio maps. The early PE map for each patient
was acquired using Equation (1):

PEearly = 100 ×
Iearly − Ipre

Ipre
(1)

where Iearly was the signal intensity of each voxel in early enhancement, and Ipre was the
voxel initial intensity before contrast. The SER maps of both middle and late enhancement
were calculated using Equation (2):

SERmap =
Iearly − Ipre

Imap − Ipre
(2)

where Imap here is the voxel-enhanced signal intensity in middle or late images. After that,
we performed the subsequent radiomic feature extraction using pre-contrast MR images
and early PE, middle, and late SER maps. The map calculation was conducted in Python
3.5.2 (Virginia, USA).

2.5. DCE-MRI Radiomic Feature Extraction

An open-source Python package, pyradiomics (version 2.2.0), was used to perform
image normalization and feature calculation [29]. Image normalization included remapping
the histogram to fit within µ ± 3σ (µ means gray level within the volume of segmentation;
σ means gray-level standard deviation) and resampling images to an isotropic voxel
resolution of 1 mm using the B-spline method. Finally, according to the image biomarker
standardization initiative (IBSI), 174 quantitative radiomic features, including 14 tumor-
shape features, 72 histogram features, and 88 gray-level co-occurrence matrix (GLCM)
features, were calculated for each patient. All procedures of image pre-processing and
feature extraction were completed in Python 3.5.2 (Virginia, USA).
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2.6. RNA-Sequencing and Bioinformatics Analysis

Tumor tissue of 199 BC patients was collected in the local database. The total RNA
was obtained using VAHTS Total RNA-seq (H/M/R) Library Prep Kit for Illumina with
the manufacturer protocol and stored in liquid nitrogen at −80 ◦C. Ovation human FFPE
RNA-seq library systems were used to construct RNA-seq libraries, and RNA was se-
quenced on an Illumina HiSeq X Ten platform using paired-end 150 bp runs. We used
Trimmomatic to control the sequencing quality [30]. Then, the RNA-seq reads were aligned
to human genome 19 using STAR29 and quantified using HTSeq-Count [31,32]. Finally,
expression values of 57,773 transcripts were quantified in the forms of both counts and
FPKM (fragments per kilobase of exon per million reads mapped) for each patient in the
discovery cohort.

Both the qualitative and quantitative associations between 174 imaging features
and the 50 hallmark pathways (defined in http://www.gsea-msigdb.org/gsea/msigdb/
human/genesets.jsp?collection=H, accessed on 20 January 2020) were investigated in this
work. To obtain the qualitative associations, patients were classified into high and low
groups for each imaging feature using the median as the cutoff. The gene differential ex-
pression analysis between the high and low groups was then conducted using DESeq2 [33].
After that, the gene set enrichment analysis (GSEA) was performed to identify the hallmark
gene sets that were significantly enriched in the high- or low-imaging feature value groups
by determining the positions of the genes of a hallmark pathway in the ranked all gene list
based on differential expression analysis. The P values of hallmark–imaging correlation
pairs were corrected using false discovery rate (FDR), and an FDR-corrected P value less
than 0.05 could finally be retained [34]. The quantitative associations were calculated using
the gene set variation analysis (GSVA) and Pearson correlation coefficient. GSVA was
performed using the R package GSVA based on the RNA-seq data to obtain the enrichment
scores (ESs) of pathways in individuals [35], and Pearson correlation coefficient was used
to calculate the relationships between radiomic features and ESs.

2.7. Feature Pre-Processing and Machine Learning Modeling

To non-invasively predict the enrichment scores (ESs) of GSVA of hallmark pathways
from radiomic features, the random forest (RF) regression-based models were trained and
tested using the scikit-learn Python package (version 1.0.2). The radiogenomics discov-
ery cohort was randomly divided into an internal training set (n = 139) and an internal
independent test set (n = 35) according to 80 and 20%, and the validation cohort was
used as the external test set (n = 72). In this work, optimization was performed for both
feature pre-processing and model hyper-parameters. Five pre-processing operations were
considered before training the model. The first operation was whether to normalize the
image features using the Z-score method. The second one was whether to perform over-
sampling to remove the imbalance of the sample distribution. The specific process was
performed by discrete the training set samples into 10 bins according to the enrichment
scores of the target pathway and then balancing the number of samples in each interval
by oversampling. The third operation was whether to construct the final training model
using only the 15 most important image features determined by the 5-fold cross-validation
training process. The fourth operation was whether to set weights on the samples based
on the enrichment scores of the target pathway to balance the sample inhomogeneity.
The final operation was whether to optimize the RF hyper-parameters automatically or
just use the default hyper-parameters. If the model should be optimized, five important
hyper-parameters of RF, including the number of trees, node criterion, max depth, max
samples, and max features were optimized using gird search with 5-fold cross-validation
and negative mean absolute error. The details of the RF parameters to be optimized in this
work were as follows: n_estimators: [30, 50, 100, 250, 500, 1000, 2000]; criterion: [“abso-
lute_error”, “squared_error”, “poisson”]; max_depth: [2, 4, 6, 8, 10, none]; max_samples:
[0.2, 0.4, 0.6, 0.8, none]; and max_features: [0.2, 0.4, 0.6, 0.8, 1.0]. Five-fold cross-validation

http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=H
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=H
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(CV) was applied to avoid overfitting. The pre-processing and machine learning analysis
was performed in Python 3.8.10 (Virginia, USA).

2.8. Statistical Analysis

Two-sided Pearson’s chi-squared test or Fisher’s exact test were used to determine
whether there was a significant difference between the two cohorts. The quantitative
association between radiomic features and the GSVA enrichment scores of the pathways
was given by the Pearson correlation coefficient. P-values smaller than 0.05 were considered
significant. Mean absolute error (MAE) was used to evaluate the prediction performance
of RF prediction models, and the 95% confidence interval (CI) was used to evaluate the
performance stability during the 5-fold CV. The statistical analysis was performed using R
4.0.1 (Murray Hill, NJ, USA).

3. Results
3.1. Broadly Significant Associations between Hallmark Pathways and DCE-MRI Radiomic
Features in BC

We performed statistical analysis and the presentation of both the demographic in-
formation of the radiogenomic cohorts and the significantly associated imaging features
or hallmark pathways based on GSEA, respectively. Table 1 details the clinical character-
istics of the two radiogenomic cohorts. Except for the PAM50 molecular subtypes, the
two datasets had no differences in other characteristics. For the GSEA-based association
analysis, we observed 101 radiomic features, and 43 hallmark pathways were significantly
associated with GSEA (p-value < 0.05) in the discovery cohort, and 138 radiomic features
and 41 hallmark pathways in the validation cohort (Table 2). The number of all of the
significant qualitative association pairs of the two cohorts were 805 and 1114 (accounting
for 9.3 and 12.8% of all possible pathway-feature combinations), respectively. Although
the absolute proportions of significant associations were low, more than 80% of hallmark
pathways in both cohorts (86 and 82%, respectively) showed significant imaging feature
correlations (Table 2), demonstrating the widespread impact of the transcriptional activity
on the phenotypes of complex disease. In addition, the proportion of radiomic features
significantly associated with the hallmark pathways to all of the imaging features was 58
and 79.3%, respectively (Table 2). For a hallmark pathway, an average of 18.7 and 27.2
radiomic features were associated with it, respectively. Conversely, for a radiomic feature,
there were averagely 7.9 and 8.1 hallmark pathways associated with it.
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Table 1. The clinical and molecular characteristics of BC tumors in the radiogenomic discovery and
validation cohorts.

Characteristics Discovery Cohort
(n = 174)

Validation Cohort
(n = 72) p-Value

Age, mean (SD) ≤50y: 95/>50y: 79;
49.78y (9.99)

≤50y: 30/>50y: 42;
53.96y (11.75) 0.088 a

IHC receptors
ER status
PR status

HER2 status
Ki67 status

P:127/N:47
P:111/N:63
P:36/N:138

high:136/low:38

P:61/N:11
P:55 N:17

P:14 N:37/NA:21
NA

0.071 a

0.077 a

0.407 a

NA

IHC-based subtype
Luminal-A
Luminal-B

HER2-positive
Triple-negative

28
101
15
30

NA
NA
NA
NA

NA
NA
NA
NA

PAM50 subtype
Luminal-A
Luminal-B

HER2-enriched
Basal-like

Normal-like

49
43
29
43
10

44
9
5

10
4

<0.001 b

Pathological stage
Stage I
Stage II
Stage III

55
94
25

17
47
8

0.267 a

Note: unless otherwise indicated, data are the number of patients or P-value of the statistical test. a p-value for
the two-sided Pearson’s chi-squared test, b p-value for the two-sided Fisher’s exact test. P for positive and N for
negative. NA: not available.

Table 2. Percentages of hallmark pathways or imaging features with radiomic–transcriptomic as-
sociations. The proportion of pathways with significant imaging correlation with all 50 hallmark
pathways, and the proportions of DCE-MRI features with significant transcriptomic association with
all imaging features of that type were calculated and displayed for both cohorts.

Pathways or Features Discovery Cohort Validation Cohort

Unique associated hallmark pathways 43 (86.0%) 41 (82.0%)

Unique associated DCE-MRI radiomic features
Shape features

First-order features
GLCM features
Pre-MR images
Early PE images

Middle SER images
Late SER images

101 (58.0%)
9 (64.3%)

46 (63.9%)
46 (52.3%)
18 (11.3%)
21 (13.1%)
25 (15.6%)
28 (16.3%)

138 (79.3%)
14 (100.0%)
56 (77.8%)
68 (77.3%)
33 (18.3%)
34 (21.3%)
26 (17.5%)
31 (19.4%)

Note: unless otherwise indicated, data are the number of hallmark pathways or DCE-MRI features which showed
a statistically significant radiomic–transcriptomic association. The percentages of significant pathways or features
to the total number of pathways or features of the respective type to which they belong are in parentheses.

3.2. Radiomic Features of Tumor Shape and Mid-To-Late Enhanced Stages Showed More
Transcriptional Associations

We further investigated whether imaging features related to hallmark pathway activity,
identified by GSEA, differed significantly across the feature categories and reported these
findings for the first time. Using the algorithm-based imaging feature category criteria
(feature category I), 174 radiomic features were divided into shape, first-order, and GLCM
features. The first-order and GLCM features contributed the most significant correlations,
but the shape features had the highest ratio of transcriptional associations (Figure 2a,
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Figure S2a, and Table 2). We then compared the radiomic features extracted from MR
images at different times (feature category II) and found that features from the SER images,
at the time of late contrast enhancement, showed relatively high transcriptional associations
in both cohorts (Figure 2b, Figure S2b, and Table 2). This temporal preference persisted
when considering the features of different algorithms and images (feature category III),
except for the validation cohort where PE images from early enhancement had more
transcriptional associations (Figures 2c and S2c). Furthermore, due to the possible one-to-
multiple relationships, the number of unique radiomic-associated hallmark pathways of
each type of DCE-MRI feature was calculated (Figure 2, Figure S2, and Table 3). The two-
sided chi-squared test showed that there was no significant difference in the transcriptional
association between different categories of imaging features in the two cohorts.
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Figure 2. GSEA-based associations of different kinds of DCE-MRI features with hallmark pathways
in the discovery cohort of BC radiogenomics. Imaging features were categorized into different classes
according to three different definitions. The number of significant associations between different
algorithm imaging features and hallmark pathways are displayed in (a), the number of significant
associations between imaging features at different times during enhancement and hallmark pathways
are shown in (b), and (c) presents the numbers of imaging features significantly related to hallmark
pathways for different algorithms and at different times. As an imaging feature may be significantly
associated with more than one hallmark pathway based on the GSEA, not only the absolute number of
all significant associations was counted (type: All) but also the number of unique hallmark pathways
was obtained by removing the duplicated pathways (type: Unique). Numbers represent the number
of significant associations.
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Table 3. The number of radiomic-associated hallmark pathways of each type of DCE-MRI feature. The
number of significant imaging-correlated hallmark pathways was counted for each class of imaging
features in both cohorts, and whether the radiomic–transcriptomic associations were significantly
different in the two independent datasets is shown.

Characteristics Discovery Cohort Validation Cohort p-Value

Feature category I
Shape features

First-order features
GLCM features

23
38
42

27
37
39

0.801

Feature category II
Pre-MR images
Early PE images

Middle SER images
Late SER images

29
24
38
37

29
36
31
32

0.324

Feature category III
First-order from pre-MR images

GLCM from pre-MR images
First-order from early PE images

GLCM from early PE images
First-order from middle SER images

GLCM from middle SER images
First-order from late SER images

GLCM from late SER images

22
19
17
18
25
37
34
29

25
26
27
34
30
26
30
22

0.129

Note: unless otherwise indicated, data are the number of unique hallmark pathways or the p-value of the
two-sided Pearson’s chi-squared test.

3.3. The Significant Radiomic-Associated Hallmark Pathways Demonstrated Molecular Function
Preferences

On the other hand, we attempted to identify qualitative GSEA-based imaging–
transcriptomic associations that were stable across different datasets and uncover whether
there is an overlap in the biological function between the hallmark pathways that have
significant correlation with imaging features. The results from the two independent radio-
genomic cohorts demonstrated a significant and stable relationship between the hallmark
pathways and radiomic features (Figures 3 and S3). The intersection of the number of path-
ways with the radiomic–transcriptomic association in the two cohorts was 38 (Figure 3a),
and the intersection of the DCE-MRI radiomic features was 81 (Figure S3b). We first ranked
the hallmark pathways by the number of significant associations with the radiomic features
and selected the top 15 pathways in both radiogenomic cohorts. Ten hallmark pathways,
including “E2F TARGETS”, “G2M CHECKPOINT”, “MYC TARGETS V1”, “MTORC1 SIG-
NALING”, “KRAS SIGNALING DN”, “EPITHELIAL MESENCHYMAL TRANSITION”,
“MYOGENESIS”, “INTERFERON GAMMARESPONSE”, “INTERFERON ALPHA RE-
SPONSE”, and “ALLOGRAFT REJECTION”, showed broad and stable imaging phenotype
associations in both radiogenomic cohorts (Figures 3b–c and S3a). For example, the path-
way “E2F TARGETS” was remarkedly related to 83, and 84 DCE-MRI features in the
discovery and validation cohorts, ranking first and third, respectively (Figures 3c and S3a).
Although imaging features significantly associated with pathway activity also overlap
remarkably in both datasets, there was a notable difference in the ranking of the transcrip-
tional associations of the DCE-MRI radiomic features in the two cohorts (Figure S2b–c).The
first-order and GLCM features extracted from the middle and late SER images exhibited a
high proportion of transcriptional correlations in the discovery cohort, yet in the validation
cohort, the features of early PR images and tumor shape ranked high (Figures 3c and S3a).
This may be explained by the high system bias of the MRI data in the validation cohort.

In order to further explore the heterogeneity of imaging-related transcriptional activi-
ties, the 10 remarkable pathways were grouped into 4 categories based on their molecular
functions. Cell cycle-related pathways included “E2F TARGETS” and “G2M CHECK-
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POINT”. Proliferation-related pathways consisted of “MYC TARGETS V1”, “MTORC1 SIG-
NALING”, and “KRAS SIGNALING DN”. Extracellular matrix (ECM)-related pathways
included “EPITHELIAL MESENCHYMAL TRANSITION” and “MYOGENESIS”. Addi-
tionally, “INTERFERON GAMMA RESPONSE”, “INTERFERON ALPHA RESPONSE”,
and “ALLOGRAFT REJECTION” attributed to the immune-related pathways. The four
major categories were further analyzed using GSVA and demonstrated in our subsequent
results.
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Figure 3. Hallmark pathways with significant imaging correlation were highly overlapping in both
cohorts. The distribution of the pathways related to imaging features in the discovery and validation
cohorts, shown in (a,b), presents the overlap of the top 15 pathways in the discovery dataset and the
top 15 pathways in the validation dataset, as ordered by the number of significant associations. The
details of the top 15 hallmark pathways and the top 15 DCE-MRI features of the discovery cohort are
presented in (c), and the numbers on the middle axis represent the number of significant associations.

3.4. The Association Heterogeneity between the Four Categories of Hallmark Pathways and
Radiomic Features

To quantify the radiomic–transcriptomic correlation, we calculated and reported the
Pearson correlation coefficient of each hallmark pathway enrichment score obtained using
GSVA with each DCE-MR imaging feature value. Firstly, many significant positive Pearson
correlations between cell cycle-related pathways and imaging features were observed in
both the discovery and validation cohorts (Figure 4). It was noteworthy that the GLCM
feature JointEntropy from the late SER map had the highest Pearson correlation coefficient
values of 0.25 and 0.25 in the discovery cohort and 0.24 and 0.24 in the validation cohort
with the expression variation scores of cell cycle-related pathways “E2F TARGETS” and
“G2M CHECKPOINT”, respectively (Figure 4a,b). We further illustrated the differences
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in imaging between patients with high and low late SER JointEntropy (Figure 5a,b) and
revealed that patients with higher late SER JointEntropy showed significantly higher
enrichment scores in the cell cycle-related pathways, such as “E2F TARGETS” and “G2M
CHECKPOINT” (p-value < 0.05, Figure 5c,d). Our results demonstrate that the relationship
between the late SER JointEntropy and the two hallmark pathways exhibited a high degree
of consistency and robustness in both datasets. In addition, the tumor-shape feature
SurfaceVolumeRatio exhibited the greatest negative relationships with the GSVA scores
of “E2F TARGETS” and “G2M CHECKPOINT”, as the Pearson correlation coefficients
(p-value < 0.05) of −0.23 and −0.23 were found for the discovery cohort and −0.24 and
−0.24 for the validation cohort, respectively (Figure 4a,b).
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Figure 4. Quantitative associations of GSVA enrichment scores of two cell cycle-related hallmark
pathways with imaging features. The significant Pearson correlation coefficients of the enrichment
scores of both “E2F TARGETS” and “G2M CHECKPOINT” pathways with the imaging features
for the discovery and validation cohorts are detailed in (a,b), respectively. Non-zero values in the
cells represent significant correlation coefficients, and zero represents non-significant correlation
coefficients.

Three proliferation-related pathways were found related to more tumor-size fea-
tures than other hallmark pathways (Figures S4a and S5a). Two tumor-size features,
including LeastAxisLength and MinorAxisLength, both indicating the minimum size of
the tumor, were significantly positively related to the “MTORC1 SIGNALING” pathway
(p-value < 0.05). Interestingly, many significantly negative correlations between the two
ECM-related pathways (“EPITHELIAL MESENCHYMAL TRANSITION” and “MYOGE-
NESIS”) and radiomic features were revealed (Figures S4b and S5b). The GLCM feature
Idn, from the pre-contrast MRI, showed the most significant negative correlation with both
pathways, with the r values of −0.27 and −0.3, respectively (p-value < 0.05, Figure S4b). In
addition, most of these negatively correlated imaging features, such as the first-order fea-
ture Mean, Median, 90Percentile, and 10Percentile from the late SER map, were associated
with tumor signal enhancement (Figures S4b and S5b). For the immune-related pathways
in the discovery cohort, most of the pathway-related features were extracted from both the
middle and late SER maps (Figure S4c); however, the significantly correlated features in
the validation dataset were mainly from the early PE images (Figure S5c). Despite some
discordant results, overall, the significant correlations between the DCE-MRI features and
GSVA scores of the hallmark pathways were identified and validated for the first time.
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3.5. Non-Invasive Prediction of the Enrichment Scores of GSVA of Hallmark Pathways

To extend the application scenario of radiomics, for the first time, in this work, we
attempted to use imaging features to build machine-learning models for predicting the tran-
scriptomic characteristics at the level of pathways in BC, namely, predicting the enrichment
scores (ESs) of the GSVA in the pathways. The RF prediction models were established and
validated for four representative hallmark pathways. The model was trained in the internal
training set (n = 139) and tested in the internal test set (n = 35) and external multi-center
test set (n = 72). The training and testing MAEs of the RF regressors are reported in Table 4.
The best-performing constructs of the RF models are detailed in Table S1. Compared to the
other models, the RF model for the mTORC1 signaling pathway had the lowest MAEs, with
27.42% in the five-fold CV training set, and 27.29 and 28.61% in the internal and external test
sets, respectively. Notably, the RF regressors for cell cycle-, proliferation-, and ECM-related
pathways showed similar performances in the internal and external datasets (Table 4).
However, the prediction model for the immune-related pathway (INTERFERON GAMMA
RESPONSE) performed significantly worse in the external test set (40.37%) than in the inter-
nal test set (36.82%). This was consistent with the results of the GSEA-based analysis in that
the association of the immune-related pathways with imaging features was more unstable.
The top 15 important radiomic features for the prediction models of “G2M CHECKPOINT”,
“MTORC1 signaling”, “Epithelial mesenchymal transition”, and “INTERFERON GAMMA
RESPONSE” are displayed in Figures 6a–b and S6a–b, respectively. The important imaging
features with predictive ability demonstrated remarkable pathway correlations. For exam-
ple, the GLCM, featuring MaximumProbability from the middle SER image, was the most
important feature in the RF regressor of “G2M CHECKPOINT” (Figure 6a) and significantly
negatively associated with the ES of GSVA (Figure 4a). Tumor-shape characteristics such as
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SurfaceVolumeRatio and Flatness were important features in all of the prediction models
(Figures 6a,b and S6a,b), suggesting that tumor-shape features, as simple features that can
be readily available in clinical practice, may have more application.

Table 4. The prediction performance of the GSVA enrichment scores of hallmark pathways based on
radiomic features. The random forest prediction models of enrichment scores for four representative
hallmark pathways were built in the internal training set and validated in the independent internal
and external test sets. Five-fold cross-validation (CV) was performed to avoid overfitting, and MAE
was used to evaluate model performance. The 95% CI was used to evaluate the performance stability
during the 5-fold CV.

Hallmark Pathways Training Set (5-Fold CV) Internal Test Set (n = 35) External Test Set (n = 72)

G2M checkpoint
MAE 32.86% (6.5%, 59.6%) 37.43% 37.22%

Epithelial mesenchymal transition
MAE 33.11% (31.2%, 35.1%) 33.04% 36.25%

MTORC1 signaling
MAE 27.42% (23.3%, 31.5%) 27.29% 28.61%

Interferon gamma response
MAE 35.12% (8.4%, 62.2%) 36.82% 40.37%

Note: unless otherwise indicated, data are the mean absolute errors (MAEs) for each random forest regression
prediction model. Values in parentheses are 95% confidence intervals (CIs) for the MAEs of the 5-fold CV.
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Figure 6. The top 15 important radiomic features for the random forest prediction models of represen-
tative hallmark pathways. The top 15 important DCE-MRI features of the G2M checkpoint prediction
model and the mTORC1 signaling prediction model are detailed in (a,b), respectively.
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4. Discussion

In the present work, we investigated, for the first time, the associations of DCE-
MRI radiomic features with hallmark pathway expression activities in BC based on two
independent datasets. Our results indicate that more than 80% of hallmark pathways
significantly correlated with imaging features in both cohorts, and at least half of the
imaging features showed the relevance of transcriptional activity. Tumor-shape features and
imaging features extracted from the middle and late images in the contrast enhancement
exhibited broader correlations with hallmark pathway activities. The hallmark pathways
associated with radiomics showed a similar preference in biological functions. Cell cycle-,
proliferation-, ECM-, and immune system-related hallmark pathways have broader and
more remarkable imaging associations. Moreover, we made the first attempt to develop
non-invasive RF regression models of the enrichment scores of hallmark pathways in BC
patients based on radiomic features, which may be useful for personalized medicine for
BC.

Radiomics is an emerging field in translational medicine that is gaining increasing
interest in the practice of precision medicine for a variety of cancers, such as breast cancer
and prostate cancer, because of its ability to provide a promising approach to non-invasive
predictions of the characterization of key gene mutation, molecular activity, progression,
treatment response, and prognosis of disease [36–39]. The associations of DCE-MRI imaging
features with transcriptomic activities in BC have been reported in many studies. For
example, the enhancement pattern in DCE-MRI suggested the deregulation of the mTOR
pathway [40], and the enhancing rim fraction score can indicate the early metastasis of
BC and expression of some important long non-coding RNAs [41]. Compared to the
pre-contrast and early post-contrast images, we found that radiomic features from the
middle and late post-contrast images were more transcriptomic-related in the discovery
cohort (Figure 2), which might be because, in the mid or late stage of dynamic contrast
enhancement, the contrast agent was sufficiently absorbed and metabolized in the tumor
tissue and its microenvironment to accurately reflect the imaging features of the tumor.
However, features from the early post-contrast images displayed more transcriptional
correlations in the validation cohort (Figure S2). This might be caused by the inconsistent
acquisition time points during DCE-MRI, with the images from the local database using
the newest MRI protocols, whose first post-contrast acquisition time was around 1 min,
whereas the validation dataset from the public database used the old imaging protocol,
whose first post-contrast adoption time point was much later. In addition, the tumor-
shape features were found to be most closely connected to the hallmark transcriptional
activity in both cohorts (Table 2). This result was reasonable because shape features
were the most basic tumor characteristics and were affected and regulated by various
transcriptional activities [22]. Although the two cohorts originated from different medical
centers, the association of the imaging features with the transcriptional activity did not
differ significantly between the two cohorts when the imaging features were analyzed by
different types. This illustrated the robustness of the associations between imaging features
and hallmark expression activities (Table 3).

Previous radiogenomic studies of BC showed that the expression activities of some
genes or the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways with specific
functions were associated with imaging features [20,22]. In particular, KEGG pathways
such as cell cycle, ECM–receptor interaction, and primary immunodeficiency have been
frequently reported to be correlated with DCE-MRI imaging features [21,22]. In this work,
we used hallmark gene sets instead of KEGG pathways to investigate the radiomic asso-
ciations because the hallmark pathways are noise-removed and more representative. We
found that most of the hallmark pathways were related to the DCE-MRI imaging features
(Table 2) and that the top-ranked pathways in both cohorts had high overlap (Figure 3).
By looking at the detailed biological functions involved in these notable pathways, we
further found that they can be classified into four major categories, including cell cycle-,
proliferation-, ECM-, and immune-related pathways. In our work, the E2F target pathways
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exhibited the broadest imaging correlation, particularly a significant negative correlation
with the surface-to-volume ratio and significant positive correlations with the joint entropy
of the middle and late SER images (Figures 3 and 4). The E2F transcription factors regulate
a wide range of genes that are essential for DNA replication and cell-cycle progression
and are closely involved in the progression and metastasis of BC [42,43]. Recent research
also showed that the E2F targets pathway score is a potential biomarker of a neoadjuvant
therapy response in BC patients [44]. As a recently revisited hallmark of cancer develop-
ment, MYC transcription factors regulate almost every aspect of cellular metabolism and
are dysregulated in most types of cancers [45]. MYC can also promote tumor proliferation
in BC, and it may be a potential therapeutic target of triple-negative BC patients [46]. The
mTORC1 signaling pathway is a widely studied pathway with important roles in cellular
protein synthesis and autophagy and is closely associated with BC metastasis and response
to targeted therapies [47,48]. In addition, as an essential component of the tumor microen-
vironment, the ECM likewise plays an important role in mediating the progression and
metastasis of BC, which may influence the process of enhanced imaging [49–51]. Playing a
dual role in tumor suppression and pro-tumorigenesis in human cancers, interferon gamma
is engaged in complex tumor immune regulatory mechanisms and is associated with the
immune microenvironment and prognosis of BC [52–54]. Our results suggest that these
hallmark gene sets, which are intimately involved in the processes of BC development,
progression, metastasis, and treatment response, have clear and robust relationships to the
radiomic features of DCE-MRI.

The non-invasive prediction of key molecular characteristics or clinical parameters of
cancer is the core task of radiomics towards clinical application. Many efforts have been
made to predict the receptor status, clinical or molecular subtypes, and other important
disease features in BC patients [24,55–57]. However, few studies have focused on the non-
invasive prediction of heterogeneity at the pathway level, and the vast majority of these
studies were binary classification or multi-classification tasks, which are still insufficient
for individualized medicine where higher precision is required. In this work, we made a
preliminary attempt using DCE-MRI radiomic features to predict the enrichment scores
of hallmark pathways for BC individuals. Although the random forest regression models
showed poor prediction performance in both the internal and external test sets overall,
the model of the mTORC1 signaling pathway performed reasonably in predicting the
enrichment scores, with MAEs of 27.29 and 28.61% for the internal and external test sets,
respectively (Table 4). Compared to the other three pathways, the prediction model for
the interferon gamma response pathway performed significantly worse in the external
dataset than in the internal dataset, probably due to the high heterogeneity of the individual
immune system. Moreover, the important imaging features with predictive ability selected
by RF were found to be highly overlapping with the significantly associated features
obtained based on GSEA and GSVA (Figure 6 and Figure S6), which may improve the
interpretability of the machine-learning models. It was also to be noted that the models did
not perform very well during the training process of the five-fold CV (Table 4). The results
might indicate that the imaging features we used in this work were not yet representative
and that the accurate prediction of the expression heterogeneity for a specific pathway was
difficult.

There were some limitations to this work. Firstly, the external cohort had a small
sample size and was collected from multiple medical centers. Although we performed the
required data normalization preprocessing and validated some radiomics–transcriptomics
correlations in the cohort, a more refined image preprocessing and normalization approach
is needed to better address data bias in a larger dataset. Secondly, we simply demonstrated
and validated the association of DCE-MRI radiomic features with hallmark pathway
activities in BC and analyzed the heterogeneity of this association. How to more effectively
integrate these findings into clinical practice needs to be further explored in the future.
Finally, the performance of the pathway enrichment score prediction models based on
DCE-MRI radiomic features was still low, and the models can be further optimized by
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collecting larger study cohorts and using more radiomic features or deep features based on
deep learning algorithms in future works.

5. Conclusions

In this work, the associations of DCE-MRI radiomic features with hallmark pathway
expression activities were investigated and validated in two BC radiogenomic cohorts.
There was a broad and significant relationship between imaging features and hallmark
expression heterogeneity. The imaging features of tumor shape and mid-to-late post-
contrast stages showed more transcriptional connections. Ten hallmark gene sets of cell
cycle-, proliferation-, ECM-, and immune-related pathways exhibited more significant and
tighter correlations with DCE-MRI radiomic features. We further developed prediction
models for the expression enrichment scores of hallmark pathways based on radiomic
features to expand the clinical application scenario of radiogenomics. Generally, our
findings suggest that there was a significant correlation between the radiomic features and
BC transcriptional activity and that this correlation can be validated and predicted in an
external dataset. In addition, we believe that as more data are generated and combined
with artificial intelligence technologies, such as deep learning, in the future, radiomics will
certainly play an essential role in the clinical management of diseases throughout their
stages, including early diagnosis, the monitoring of key molecular features, the selection of
treatment strategies, and the evaluation of prognostic risk.
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cohorts. Figure S4: Quantitative associations of GSVA enrichment scores of hallmark pathways with
imaging features in the discovery cohort. Figure S5: Quantitative associations of GSVA enrichment
scores of hallmark pathways with imaging features in the validation cohort. Figure S6: The top
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