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Abstract: Mitochondria are responsible for energy generation, as well as key metabolic and signaling
pathways, and thus affect the entire developmental process of plants as well as their responses to
stress. In metazoans, mitochondrial transcription termination factors (mTERFs) are known to regulate
mitochondrial transcription. mTERFs have also been discovered in plants, but only a few of these
proteins have been explored for their biological functions. Here, we report a role in root growth
for mitochondria-associated protein AhmTERF1 in peanut (Arachis hypogaea L.). Overexpressing
AhmTERF1 significantly stimulated the growth of peanut hairy roots and transgenic Arabidopsis.
Surprisingly, AhmTERF1 is predominantly expressed in the root meristem where it increases mito-
chondrial abundance. AhmTERF1 binding to mtDNA was enriched in the RRN18 and RRN26 regions,
suggesting it is related to the accumulation of mitochondrial ribosomes. Peanut is one of the main oil
crops and the important source of edible oil and AhmTERF1 likely affects agronomic traits related to
root growth in different peanut cultivars. We propose that peanut AhmTERF1 is an important protein
for root growth due to its role in regulating mitochondrial abundance.
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1. Introduction

Plant roots anchor the plant in the soil and are responsible for the uptake, storage
and transport of minerals and water. They also communicate and interact with the soil
microbiome and other plants, and sense biotic and abiotic stresses in the soil [1]. Overall,
plants depend on root development, growth and function for their survival.

Mitochondria originate from endosymbiotic α-proteobacteria and possess their own
vestigial genome, but most mitochondrial proteins are encoded by the nuclear genome and
then are transported into the organelles. Mitochondria are essential for energy produc-
tion [2], maintenance of calcium homeostasis [3] and the regulation of various intracellular
signaling pathways; hence, they play crucial roles in plant growth, development and stress
responses, such as seed germination [4,5], plant immunity [6] and the touch response [7,8].

A number of mitochondria-associated proteins that are involved in root growth and
its regulation have been described. For example, AtPHB3 is a conserved mitochondrial
type I prohibitin, which is reported to maintain the mitochondrial morphology and cell
division in the root meristem of Arabidopsis [9]. This finding also provides evidence of a role
for mitochondria in regulating cell division in the root meristem. The RETARDED ROOT
GROWTH (RRG) gene, encoding a mitochondrial protein, is predominantly expressed in
the root meristem to control cell division [10]. Arabidopsis slow growth3 (slo3) is a menber
of a large family called pentatricopeptide repeat (PPR) proteins; when slo3 mutates, the
generation of meristem cells is hindered, resulting in reduced root apical meristem area [11].
These proteins all affect root growth and development by impacting cell division in the
root meristem.
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In view of the small size of and number of genes in their genomes, mitochondria seem
to have an unexpectedly complex transcriptional regulatory network. The mitochondrial
transcription termination factor (mTERF) proteins share repeated conserved sequences
of 30-aa mTERF motif [12]. They were identified in human mitochondria three decades
ago as important control factors of transcription termination [13]. In animals, only four
mTERF members have been described [12], but there are more examples in plants, and
they are predicted to be targeted to nucleus, chloroplasts, mitochondria or other subcellular
locations [14], implying a range of complex and diverse functions. Nevertheless, in contrast
to mammalian mTERFs, reports about the roles of plant mTERFs are still scarce. To date,
these studies mostly focus on Arabidopsis and maize, which have 35 and 31 members of this
mTERF family, respectively [12,15].

The first mTERF gene identified in higher plants, SOLDAT10, is localized to chloro-
plasts; in Arabidopsis, entirely inactivation of SOLDAT10 lead to lethal mutation [16]. For
other Arabidopsis mTERF mutants, including loss-of-function alleles of BSM/RUG2 (BELAYA
SMERT/RUGOSA2) [17,18], MDA1 (mTERF DEFECTIVE IN Arabidopsis1) [19], mTERF6 [20],
TWR-1/mTERF9 (TWIRT1/mTERF9) [21,22], mTERF15 [23] and SHOT1 (SUPPRESSOR OF
HOT1-4) [24], stunted growth and altered organelle genes expression have been reported.
Recently, molecular functions have been proposed for some of the mTERF genes charac-
terised, all of which are related to post-transcriptional regulation of chloroplast and/or
mitochondrial gene expression. BSM/RUG2 is necessary for the splicing of the second
group II intron of the plastid clpP gene [17]. mTERF6 interacts with an RNA sequence in
the chloroplast isoleucine transfer RNA gene (trnI.2) of the rRNA operon and promotes
its maturation [20]. mTERF15 works in mitochondria as a splicing factor for nad2 intron 3
splicing [23].

Peanut (Arachis hypogaea L.), an important economic and oil crop, possesses a complex
allotetraploid genome due to its hybridization from two diploid species [25]. This com-
plexity results in the existence of many genes, including the mTERF family, of unknown
function. Our previous study indicated that, although the mTERF gene family underwent
large changes as a result of the polyploidization event, some mTERFs were conserved.
Among these, AhmTERF1 (Genebank of USA No. MG957109) is highly conserved between
the cultivated allotetraploid species and its wild progenitors. Subcellular localization
analysis indicates that the AhmTERF1 protein is closely associated with mitochondria [26],
consistent with it having a mitochondrial function.

Here, we report the function of AhmTERF1. AhmTERF1 is predominantly expressed in
the root meristem. In consideration of its subcellular localization, we further figure out the
relationship of AhmTERF1 with mitochondria and the regulation for peanut root growth
by modulating mitochondrial abundance. In conclusion, our results reveal an unexpected
role of AhmTERF1 and highlight the importance of this protein in peanut development.

2. Materials and Methods
2.1. Vector Construction

For the pAhmTERF1::GUS fusion construct, a 1.531-kb upstream sequence from the
AhmTERF1 gene was amplified from peanut genomic DNA using the primers shown
in Supplementary Table S1. The PCR product was then cloned into the HY107 vec-
tor [27]. To construct the 35S::AhmTERF1-GFP and 35S::AhmTERF1-mcherry plasmids, the
AhmTERF1 coding sequence was amplified from peanut cDNA (for the primers used, see
Supplementary Table S1). The PCR products were then cloned into the 35S::GFP vector or
the 35S::mcherry vector. The AhmTERF1 RNAi construct was made by associate research
fellow Xu Liu of South China Botanical Garden, Chinese Academy of Sciences according to
the method [28].

2.2. Plant Materials and Growth Conditions

Peanut was grown in pots with a mixed soil consisting of vermiculite, perlite and soil
(1:1:1), and cultivated at the condition of 28 ◦C and 16 h light photoperiod for 3 days. The
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35S::eGFP, 35S::AhmTERF1-GFP, 35S::AhmTERF1 RNAi and pAhmTERF1::GUS constructs
were transformed into Agrobacterium rhizogenes K599 to induce hairy roots, according to the
protocol [29].

Arabidopsis plants were grown in potting soil with 16 h light/8 h dark photoperiod.
To obtain AhmTERF1 overexpression and AhmTERF1::GUS Arabidopsis plants, constructs
were transformed into the Col-0 strain of Arabidopsis by the floral dip method as previous
reported [30]. AhmTERF1 overexpressing Arabidopsis plants were selected on 1/2 MS
medium containing 50 mg/L kanamycin. AhmTERF1::GUS Arabidopsis plants were selected
using the herbicide.

2.3. Quantitative Real-Time PCR (qRT-PCR)

RNA was extracted from peanut roots as described by Wan and Li [31]. Reverse
transcription process was carried out using the HiScript® III 1st Strand cDNA Synthesis
Kit (+gDNA wiper) (Vazyme). ChamQ Universal SYBR qPCR Master Mix (Vazyme) was
used according to the manufacturer’s instructions with a BioRad CFX96 Real-Time PCR
detection system. Primers for qRT-PCR are listed in Supplementary Table S1.

2.4. Histochemical Staining of GUS Activity

According to a previous reported methodology [32], histochemical staining of GUS
activity was carried out. To remove chlorophyll, stained samples were soaked with 70%
ethanol for 24 h. Nomarski DIC images of GUS expression were taken as mentioned in Xu
and Scheres [32].

2.5. Subcellular Localization Analysis

To visualise fluorescent fusion proteins, leaves of 2-week old Col-0 Arabidopsis grown on
soil were incubated for 3 h at 26 ◦C in the dark in a protoplasting solution (1.5% cellulase, 0.75%
macerozyme, 0.5 M mannitol, 10 mM MES pH 5.7, 10 mM CaCl2 and 0.1% BSA). The isolation
and transformation of protoplasts were performed as described [33], and then protoplasts were
observed with a confocal laser scanning microscopy (LSM800, Carl Zeiss, Germany).

2.6. Western Blotting

According to the reported protocol [5] with minor modifications, the extraction of
a crude preparation of mitochondria was conducted. Approximately 10 g of young
roots was ground at 4 ◦C in extraction buffer (10 mM KH2PO4, pH 7.5, 0.3 M sucrose,
2 mM EDTA, 5 mM tetrasodium pyrophosphate, 5 mM cysteine, 20 mM ascorbic acid, 1%
polyvinylpyrrolidone 40, 1% BSA and 10% glycerin). Two layers of Miracloth were used
for filtering. And then the homogenate was centrifuged in a process of 5 min at 3000× g.
Mitochondria were extracted from the clear supernatant by centrifugation at 20,000× g for
10 min. The AhmTERF1 antibody was made by Willget Biotech Co., Ltd. (Shanghai, China).
Western blotting was conducted as described previously [33].

2.7. Ultrastructural Analyses

The ultrastructural analyses were carried out according to the method previous re-
ported [34]. 2.5% glutaraldehyde solution was used to fix the hairy root tips at 4 ◦C for
12 h. Then the glutaraldehyde solution was discarded and phosphate-buffered saline (PBS;
0.1 M, pH 7.0) was added and allowed to stand for 15 min. The hairy root tips were washed
three times with PBS after which 1% osmic acid was added and the roots were soaked for
2 h. The osmic acid was discarded and PBS was added and allowed to stand for another
15 min. Hairy root tips were washed three times with PBS and then the hairy root tips were
dehydrated with alcohol step by step (30%→50%→70%→80%→90%→100%; 15 min at
each concentration). Then the roots were treated with 100% alcohol for 20 min, and finally
with acetone for 20 min.

The roots were submerged in osmotic solution I (Spurr embedding agent mixed with
acetone (v/v = 1/1)) for 1 h, then removed to osmotic solution II (Spurr embedding agent
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mixed with acetone (v/v = 3/1)) for 3 h. The samples were then transferred to Spurr
embedding agent overnight. The permeated samples were then heated overnight in a 70 ◦C
oven to complete the embedding treatment. The samples were processed using a Leica EM
UC7 ultrathin slicer to obtain 70–90 nm ultrathin slices, which were imaged using a Hitachi
H-7650 transmission electron microscope.

2.8. ChIP-qPCR Assay

The ChIP assay was conducted as previous described [35]. Primers for qPCR are listed
in Supplementary Table S1. An intergenic region (atp9) that does not bind AhmTERF1 was
used as a negative control.

2.9. mtDNA Copy Number Analysis

The mtDNA copy number was determined by reference to Mondal et al. [36] and
Mei et al. [37]. The relative mtDNA copy number is defined as the ratio of mtDNA to
nuclear DNA. mtDNA was labeled with RRN18 and RRN26, and nuclear DNA was labeled
with a single-copy gene, Arahy.U6ZXMA.

2.10. Statistical Analysis

Results are expressed as mean values ± standard deviation (SD). Data were evaluated
by one-way analysis of variance (ANOVA) or the Student t-test using SPSS19.0 software.
p < 0.05 were considered as significance.

3. Results
3.1. Overexpression of AhmTERF1 Promotes Root System Architecture

To investigate the function of AhmTERF1, we first transformed peanut hairy roots
with a vector carrying either a fusion of the CaMV35S promoter and AhmTERF1 cDNA or
a AhmTERF1 RNAi construct to obtain AhmTERF1 overexpression (AhmTERF1-OX) and
AhmTERF1-silenced hairy root lines. It was found that the number of primary and lateral
roots increased in AhmTERF1-OX lines. However, 70% of AhmTERF1-RNAi hairy roots
were thinner and shorter (<3 cm) and exhibited growth retardation (Figure 1). This suggests
a role for AhmTERF1 in hairy root formation in peanut. In other words, hairy roots were
stimulated to develop when AhmTERF1 was overexpressed, but roots were stunted when
AhmTERF1 expression was silenced. We obtained similar results in transgenic Arabidopsis
lines overexpressing AhmTERF1: two AhmTERF1 overexpression lines with increased root
length and number are shown in Figure S1.
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Figure 1. AhmTERF1 affects the growth of peanut hairy roots. (A): Phenotype of 20 d-old and 50 d-old
peanut hairy roots in control, AhmTERF1-overexpression (AhmTERF1-OX) and AhmTERF1-silenced
(AhmTERF1-RNAi) lines. (B): Proportion of roots of different length, i.e., <3 cm or >3 cm. (C,D): Number
of primary roots and lateral roots in 20 d-old and 50 d-old seedlings. Lower case letters (a, b, c) indicate
significantly different groups (p < 0.05).
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3.2. AhmTERF1 Is Preferentially Expressed in the Root Meristem

To understand the role of AhmTERF1 in root system architecture, we fused the
AhmTERF1 promoter to the GUS reporter gene and transformed the construct into peanut
hairy roots and Col Arabidopsis. The hairy roots containing pAhmTERF1:GUS displayed
a GUS expression pattern in the primary and lateral root tips (Figure 2A,B). Arabidopsis
transgenic plants showed GUS expression signal in the mucilage of imbibed seeds, root
hairs and seedling stems, and especially in the meristematic zone of primary and lateral
root tips (Figure 2C–E), consistent with the results obtained with transgenic peanut hairy
roots. To further explore AhmTERF1 expression, we next investigated the expression pattern
of AhmTERF1 in peanut roots at different development stages. Q-PCR results showed that
AhmTERF1 was upregulated as peanut roots develop (Figure 3), indicating that AhmTERF1
is involved in the root system architecture of peanut.
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Figure 2. Tissue distribution of AhmTERF1 gene expression. (A): GUS staining of pAhmTERF1:GUS
hairy roots. Scale bar: 0.5 cm. (B): Root tips of hairy roots (Left: Control hariy root; Right:
pAhmTERF1:GUS hairy roots). Scale bar: 200 µm. (C): GUS staining of transgenic pAhmTERF1:GUS
Arabidopsis seeds and seedlings (images from left): seed imbibing water; seed at germination stage;
seedlings 3 and 5 d after the onset of germination, respectively. Scale bar: 0.5 cm. (D): GUS staining
of transgenic pAhmTERF1:GUS Arabidopsis seedling 7 d after the onset of germination. The boxes and
the arrowheads indicate root tips. Scale bar: 0.5 cm. (E): Larger version of root tip. Scale bar: 100 µm.
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Figure 3. Expression pattern of AhmTERF1 at various peanut root growth stages. (A): Phenotype at
various peanut root growth stages. Scale bar: 1 cm. (B): AhmTERF1 expression level at the corresponding
root growth stages. Lower case letters (a, b, c) indicate significantly different groups (p < 0.05).

3.3. AhmTERF1 Overexpression Increases the Number of Mitochondria in Hairy Roots

AhmTERF1 has been localized within cells to a position close to mitochondria [26].
To further confirm the role of AhmTERF1 in mitochondria and its function in root growth,
we investigated the size and number of mitochondria in AhmTERF1-OX hairy root tips by
transmission electron microscopy. The size and morphology of mitochondria in AhmTERF1-
OX hairy roots were similar to those of controls. However, the number of mitochondria
was significantly higher in AhmTERF1-OX hairy roots (Figure 4).
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Figure 4. Mitochondria in the tips of Control and AhmTERF1-OX hairy roots shown by transmission
electron microscopy. (A): Images of mitochondria in the root tip of 20 d-old Control and AhmTERF1-
OX hairy roots. Scale bars: 1 µm. (B,C): The size and number of mitochondria in the root tips of
20 d-old Control and AhmTERF1-OX hairy roots. Lower case letters (a, b) indicate significantly
different groups (p < 0.05).
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Figure 5. AhmTERF1 accelerates root meristem growth in Arabidopsis plants. (A): Images of root
meristem in AhmTERF1-OX transgenic Arabidopsis. Scale bars: 20 µm. Arrows indicate the boundary
between the root meristem and the elongation zone. (B,C): Meristem size and cell number of roots
in A. Com indicates 35S:AhmTERF1/mterf14 Arabidopsis plants. Lower case letters (a, b, c) indicate
significantly different groups (p < 0.05).
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Mitochondrial defects in the Arabidopsis mterf14 mutant result in a dwarf phenotype.
Therefore, we hypothesized that AhmTERF1 might restore the dwarf phenotype of the
mterf14 mutant. Indeed, AhmTERF1mterf14 plants exhibited a normal Col phenotype,
confirming our hypothesis (Supplemental Figure S2). By examining the root tips, we
showed that the size of the meristem region and the number of cells decreased in the mterf14
mutant, but were higher than controls in the AhmTERF1-OX line. In 35S:AhmTERF1/mterf14
Arabidopsis plants, the short-root phenotype of the mterf14 mutant was restored to that
of controls (Figure 5), implying that AhmTERF1 regulates root growth by promoting the
activity of the root tip meristem.

We next treated the root tip with MitoTracker Red CMXRos to fluorescently mark
mitochondria. Compared with Col and mterf14 mutant plants, the intensity of fluorescence
in AhmTERF1-OX root tips was higher, which is consistent with an elevated number
of mitochondria in AhmTERF1-OX plants (Figure 6A,B). ATP content correlated with
fluorescence levels (Figure 6C). Overall, these results suggest that AhmTERF1 is crucial for
facilitating mitochondrial accumulation.
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Figure 6. Mitochondria and ATP content are increased in AhmTERF1-OX Arabidopsis. (A): Images
of mitochondria in the root tip of 3-d old Arabidopsis taken by confocal laser scanning microscope
(LSM800, Carl Zeiss, Germany). Scale bars: 5 µm. MitoTracker was used as a mitochondrial marker.
(B): Fluorescence intensity of A. (C): ATP content of the roots of 3-d old Arabidopsis seedlings. ATP
content was calculated as µmol/g. Com indicates 35S:AhmTERF1/mterf14 Arabidopsis plants. Lower
case letters (a, b, c) indicate significantly different groups (p < 0.05).

3.4. Identification of the Target Genes of AhmTERF1

We supposed that the target genes of AhmTERF1 would be located in the mitochon-
drial genome. ChIP-qPCR indicated that AhmTERF1 was enriched in regions of the RRN18
and RRN26 rRNA genes (Figure 7A). Furthermore, Q-PCR results suggested that the expres-
sion levels of RRN18 and RRN26 were enhanced in AhmTERF1-OX hairy roots (Figure 7B).
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18S RNA and 26S RNA, the products of RRN18 and RRN26, are important components
of mitochondrial ribosomes and are involved in their assembly. Presumably, AhmTERF1
promotes RRN18 and RRN26 expression to affect accumulation of mitochondrial ribosomes,
and thus to influence the number of mitochondria in cells.
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Figure 7. AhmTERF1 binds specifically to and regulates its target rRNA genes, RRN18 and RRN26.
(A): Enrichment of AhmTERF1 binding to RRN18 and RRN26 DNA sequences shown by ChIP-qPCR,
with atp9 as negative control. Cox is used as an internal reference. The upper figure represents
gene sequences. Blue rectangles represent the enrichment region. (B): RRN18 and RRN26 expression
in Control and AhmTERF1-OX hairy roots. Lower case letters (a, b) indicate significantly different
groups (p < 0.05).

3.5. AhmTERF1 Expression in Different Cultivars of Peanut

Different cultivars of peanut exhibit different agronomic traits, for example, varying in
the characteristics of their roots. Fuhua9, which has a well-developed root system, showed
stronger expression of AhmTERF1 than Zhonghua16, which has a relatively underdevel-
oped root system at the same stage (5 d) of seedling development (Figure 8A–H). The target
genes of AhmTERF1, RRN18 and RRN26, were also variably expressed in these two peanut
cultivars. Thus, RRN18 and RRN26 showed higher transcript levels in Fuhua9 than in
Zhonghua16 (Figure 8I). We also measured the abundance of mitochondrial DNA relative
to a nuclear gene to evaluate mtDNA copy number. In Fuhua9, the mtDNA copy number
was higher than in Zhonghua16 (Figure 8J). These results indicate a role for AhmTERF1 in
regulating agronomic traits. In particular, it seems likely that those peanut cultivars with
strong AhmTERF1 expression have a more extensive root system.
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Figure 8. The effect of AhmTERF1 expression on root growth and mtDNA copy number in Fuhua9
and Zhonghua16 peanut cultivars. (A): Phenotype of 5 d-old Fuhua9 and Zhonghua16 cultivars.
(B,C): AhmTERF1 transcript and protein expression, respectively, in the roots of 5 d-old Fuhua9
and Zhonghua16. (D,E): Length of primary root and number of lateral roots of 5 d-old Fuhua9 and
Zhonghua16. (F): Phenotype of 25 d-old Fuhua9 and Zhonghua16 cultivars. (G,H): Length of primary
root and number of lateral roots, respectively, of 25 d-old Fuhua9 and Zhonghua16. (I): RRN18 and
RRN26 expression in the roots of 5 d-old Fuhua9 and Zhonghua16. (J): mtDNA copy number in the
roots of 5 d-old Fuhua9 and Zhonghua16. mtDNA was labeled with RRN18 and RRN26. Lower case
letters (a, b) indicate significantly different groups (p < 0.05).

3.6. Mechanism of AhmTERF1 to Regulate Root Growth

In order to determine accurately the location of AhmTERF1 within cells, we futher con-
ducted the subcellular localization assay and it is revealed the co-localization of AhmTERF1
with the ER and mtDNA (Supplemental Figure S3). To sum up, we can speculate that
AhmTERF1 is located at ER-mitochondrion contract sites to regulate root growth by modu-
lating mitochondrial abundance (Figure 9).
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Figure 9. Working model of AhmTERF1 function.

AhmTERF1 is preferentially expressed in the root meristem. At mitochondrion-ER
contact sites, AhmTERF1 combines with mtDNA, and is enriched in the RRN18 and RRN26
loci. The respective transcripts 18S RNA and 26S RNA are involved in the assembly of
mitochondrial ribosomes, which promotes an increase in the number of mitochondria.
Thus, energy production is increased and can then be used for cell division, which will
increase the extent of the meristematic zone and result in peanut root growth.

4. Discussion

The mitochondrion is one of the most malleable organelles in the cell. It can change
its abundance, structure and distribution in the cytoplasm according to specific energy
requirements. In plants, when levels of energy demand and metabolic flux are high, this
is reflected in an increase in the number or area of mitochondria, as well as in higher
levels of mitochondrial electron transport chain (mETC) components [38–40]. During the
seed germination, development of pollen and ripening of fruit stages, mitochondria show
the highest respiration rate [41]. Pollen respiration increases 10-fold, and the number of
mitochondria increases 20 to 40 times, in meiotic and tapetal cells [38]. The doubling of
mitochondrial volume and number, as well as a boost in mitochondrial dynamics, occur
in germinated seedlings to provide energy for seedling growth and development [4]. In
the root apical meristem of Arabidopsis, along with an increasing of respiratory rate, an
approximately 3-fold increase in mitochondrial number have been found [41]. Within the
root meristem, cell division is important to maintain the root meristem activity and support
root growth [42]. Thus, presumably, our observations of an increase in the number of
mitochondria in peanut root tips indicate an acceleration in respiratory activity, providing
energy for root growth.

In comparison with other organelles, biosynthesis displays a particular level of complexity
in mitochondria, because they contain their own genomes and specialized ribosomes. The
mitochondrial translation process seems to be a key point to monitor mitochondrial homeostasis
and may play a part in establishing the abundance of mitochondria within the cells.

Previous research has shown that mTERFs are involved in ribosome biogenesis. Lack
of DmMTERF3 was found in Drosophila to be related with a reducing of the amount of
16S rRNA and the assembly of mitochondrial ribosomes was hindered [43]. MTERF4 and
NSUN4 RNA methyltransferase join together to form a complex, which is necessary to
target NSUN4 to the mammalian mitochondrial ribosome [44]. We found that binding of
AhmTERF1 to mtDNA was enriched in the region containing the rRNA genes, RRN18 and
RRN26. 18S RNA and 26S RNA, the products of these genes, are essential components of
mitochondrial ribosomes and are crucial for their assembly. In the mitochondrial genome
of higher plants, three ribosomal RNA (rRNA) genes, including rrn26, rrn18 and rrn5,



Genes 2023, 14, 209 11 of 13

encode 26S, 18S and 5S rRNAs, respectively [45]. Post-transcriptional modifications of
rRNAs are essential for ribosome biogenesis and translation [46]. In spite of their greater
diversity in plants, knowledge of mTERF functions in mitochondrial ribosomal biogenesis
remains sparse. For example, levels of 16S and 23S rRNAs were decreased in Zm-mterf4
mutants of maize, showing the important role of Zmmterf4 in the accumulation of plastid
ribosomes [47]. In this paper, we speculate that the expression of RRN18 and RRN26
accelerates the accumulation of mitochondrial ribosomes, thereby increasing the number of
mitochondria and supporting the growth of roots.

In addition, this paper revealed the co-localization of AhmTERF1 with the ER and
mtDNA (Supplemental Figure S3). Mitochondria have a close relationship with the ER; ER-
mitochondrion contact sites is important for mitochondrial fission, lipid transfer, calcium
signaling [48] and the synchronization of mtDNA synthesis [49]. The majority (84%) of
mitochondrial fission events happen at this location [50]. The unit of mtDNA inheritance,
nucleoids contain lots of copies of mtDNA and display distribution in mitochondrial net-
works. In mammalian cells, these nucleoids linked to a small subset of ER-mitochondrion
contact points spatially and temporally, involve in mtDNA synthesis. Before mitochondrial
constriction and division. mtDNA replication occurs. ER-mitochondrion contact sites
regulate mtDNA replication and distribute the newly replicated mtDNA to progeny mito-
chondria [49]. In our previous study, it was found that AhmTERF1 was closely surrounded
by mitochondria [26]. This might suggest that AhmTERF1 is located at ER-mitochondrion
contract sites and that the mitochondria around AhmTERF1 are daughter mitochondria
produced by mitochondrial division at those sites (Figure 9).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14010209/s1, Figure S1: AhmTERF1 promotes root growth in
Arabidopsis; Figure S2: AhmTERF1 restores the phenotype of mterf14 in Arabidopsis; Figure S3: AhmTERF1
co-localizes with mtDNA and ER; Table S1: Primers used in this study.
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