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Abstract: Long non-coding RNA (lncRNA) participates in the regulation of various biological pro-
cesses, but its function and characteristics in intramuscular fat (IMF) deposition in different breeds of
pigs have not been fully understood. IMF content is one of the important factors affecting pork qual-
ity. In the present study, the differentially expressed lncRNAs (DE lncRNAs) and their target genes
were screened by comparing Queshan Black (QS) and Large White (LW) pigs based on RNA-seq.
The results displayed 55 DE lncRNAs between QS and LW, 29 upregulated and 26 downregulated,
with 172 co-located target genes, and 6203 co-expressed target genes. The results of GO and KEGG
analysis showed that the target genes of DE lncRNAs were involved in multiple pathways related to
lipogenesis and lipid metabolism, such as the lipid biosynthetic process, protein phosphorylation,
activation of MAPK activity, and the Jak-STAT signaling pathway. By constructing regulatory net-
works, lincRNA-ZFP42-ACTC1, lincRNA-AMY2-STAT1, and/or lincRNA-AMY2/miR-204/STAT1
were sieved, and the results indicate that lncRNA could participate in IMF deposition through direct
regulation or ceRNA. These findings provide a basis for analyzing the molecular mechanism of IMF
deposition in pigs and lay a foundation for developing and utilizing high-quality resources of local
pig breeds.

Keywords: LncRNAs; intramuscular fat; large white pigs; queshan black pigs; pork quality

1. Introduction

Pork is a crucial part of people’s diet. With the improvement in quality of life and
changing dietary preferences, people introduce higher requirements for pork meat quality,
nutrient content, and taste. Intramuscular fat (IMF) is a vital trait that determines meat
quality; its content is positively correlated with meat quality, and it is one of the key indexes
to determine meat quality [1]. Meanwhile, IMF is also an important sensory quality of
pork, which will affect the taste and flavor of pork and consumer preference [2]. Producing
high-quality meat with high IMF content has always been a major challenge in China’s
livestock production. Considering the different genetic backgrounds and artificial breeding
methods, the IMF content of Chinese native pigs and western pigs are quite different [3]. In
comparison with the Large White (LW) pig breed, which is the most widespread represen-
tative western lean pig breed, the Queshan Black (QS) pig, as a local excellent pig breed in
Henan Province, has high IMF content, strong fertility, strong adaptability, and excellent
meat quality [4,5]. Therefore, these two pig breeds are good animal models for the study
of IMF and lay a foundation for the analysis of the molecular regulatory mechanisms that
affect fat deposition in pigs.

lncRNAs are RNA transcripts larger than 200 nucleotides in length and with no coding
ability that were previously considered transcriptional noises without biological func-
tion [6]. However, with the continuous progress in and application of high-throughput
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sequencing technology, lncRNAs have been found to have important functions in animal
fat deposition and other processes [7,8]. In recent years, research on the regulatory role of
lncRNAs in fat deposition and sarcomere improvement has been increasing, and IMF depo-
sition is influenced by several genes and signaling pathways. SRA is the first lncRNA that
regulates adipocytes and is highly expressed in adipocytes. It enhances its transcriptional
activity by binding to PPARγ, thus promoting adipocyte differentiation [9]. Studies have
shown that KLF6 knockdown may affect the formation and lipid metabolism of bovine
adipose cells through various biological and molecular pathways such as calcium and
cAMP signaling pathways [10]. C/EBPα is a key transcriptional regulator of adipogenesis,
and it promotes adipogenesis by affecting the H3K4me3 and H3K27me3 histone modifica-
tions of the C/EBPα locus and activating cis-C/EBPα transcription [11]. PU.1 overexpression
in preadipocytes downregulates PPARγ and C/EBPα, thus inhibiting adipogenesis, and
the PU.1 antisense strand can transcribe the un-encodable transcript PU.1 AS lncRNA,
which combines with PU.1 mRNA to form a complex mRNA/AS lncRNA, hinting at the
translation of PU.1 and promoting adipogenesis [12,13]. LncIMF4 promotes adipogenesis
in porcine intramuscular preadipocytes by attenuating autophagy and inhibiting lipoly-
sis [14]. By selecting three pairs of full-sib LW × Min F2 sows with different IMF content
for RNA-seq, IRLnc further affected IMF decomposition by regulating the expression of
IMF [15]. After analyzing RNA-seq data from Laiwu and LW pigs, Huang et al. found
that 55 lncRNAs and 513 mRNAs were differentially expressed; through cis and trans
regulation analysis and co-expression network construction, five key lncRNAs and their
target genes were finally identified, and these structures may play a key regulatory role
in fat accumulation and differentiation [16]. The analysis of lncRNA expression levels
in the IMF of Landrace and Jinhua pigs showed that 119 lncRNAs were differentially
expressed, and after co-expression with mRNAs, 6 of the co-expressed lncRNAs were
associated with lipid metabolism and fat deposition-related pathways, thus providing a
basis for subsequent studies on fat deposition [17]. LncIMF2 can sponge for miR-217, thus
influencing the expression level of miR-217 target genes and promoting the proliferation
and differentiation of porcine intramuscular precursor adipocytes [18]. LncRNA-FNIP2
accelerates lipid synthesis through the lncRNA-FNIP2/miR-24-3p/FNIP2 axis in chicken
abdominal adipocytes [19]. LncRNA regulates adipogenesis through multiple mechanisms,
and it is a regulator that affects adipocyte differentiation [20,21].

Pigs are highly similar to humans in anatomy, physiology, and genome, making them
ideal animal models for biomedical research [22]. Therefore, the molecular regulation
mechanism of fat deposition in pigs should be explored. The function of lncRNA target
genes is the starting point for the study of lncRNA function. Wang et al. identified 17 DE
lncRNAs and 180 mRNAs in Laiwu black pigs with different IMF content, revealing seven
candidate genes related to IMF accumulation, which is critical for further understanding of
the molecular mechanism controlling adipogenesis [23]. In the present study, the longis-
simus dorsi (LD) of QS and LW pigs were used for RNA-seq, from which lncRNAs and
mRNAs that are differentially expressed between the two breeds were extracted. Further,
through target gene prediction and functional enrichment analysis of lncRNAs, the key
lncRNAs and their target genes that regulate pig fat deposition were screened. At the same
time, the miRNAs combined with key lncRNAs were predicted to construct the ceRNA
regulatory network. This study aims to explore the molecular regulation mechanism that
affects pig IMF deposition and provide a theoretical basis for further analysis of the pig fat
deposition regulation network.

2. Materials and Methods
2.1. Animals and Tissue Preparation

The QS and LW pigs used in this experiment were obtained from Henan Fenghua
Breeding Share Limited Company and were fed under the same feeding and management
conditions. Three QS and three LW with a weight of 100 kg were selected and fasted for
24 h. After slaughtering, LD samples at the 6th to 7th ribs on the right were collected for
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RNA extraction and placed in liquid nitrogen immediately. Then, all samples were stored
at −80 ◦C for further analysis.

2.2. RNA Sequencing, Quality Control and Mapping

Total RNA was isolated using TRIzol reagent (15596026, Thermo Fisher Scientific,
Waltham, MA, USA) according to the manufacturer’s instructions. RNA purity was checked
using a NanoPhotometer® spectrophotometer (IMPLEN, Westlake Village, CA, USA). RNA
quality detection, RNA sequencing, quality control, and mapping have been described in
detail in our previous publication [5]. The reference genome and gene model annotation
files can be downloaded directly from the genome website. The reference genome was
indexed using HISAT2 v.2.0.4, and paired-end clean reads were aligned to the reference
genome by using HISAT2 v.2.0.4 [24]. HISAT2 was run with ‘–RNA-strandness RF’ and
the defaults for other parameters. The mapped reads of each sample were assembled by
StringTie (v.1.3.3) [25].

2.3. Coding Potential Analysis

Known transcripts and transcripts less than 200 bp in length were filtered out. We
determined whether the encoding potential was the key condition to determine lncRNAs.
CNCI (v.2), CPC2 (v.0.1), and Pfam-sca (v.1.3) were used to screen the transcripts, and
transcripts predicted with coding potential by either/all of the three tools mentioned
above were filtered out [26–28]. Transcripts with no coding potential were considered as
candidate lncRNAs. The transcripts considered to have coding potential by at least one
piece of coding potential software are TUCP (transcripts of uncertain coding potential).
They have high evolutionary conservation but may include short open reading frames
(ORFs). They can encode proteins and may serve either as lncRNAs or as small peptides.

2.4. Quantification and Differential Expression Analysis

StringTie (v.2.1.1) was used to calculate the fragments per kilobase of transcript per
million mapped reads (FPKMs) of both lncRNAs and coding transcripts in each sample [25].
The Ballgown suite includes functions for the interactive exploration of the transcriptome
assembly, visualization of transcript structures and feature-specific abundances for each
locus, and post-annotation from assembly features to annotated features [29]. Cuffdiff
provides statistical routines for determining differential expression in digital transcript or
transcript expression data by using a model based on the negative binomial distribution [30].
The differentially expressed lncRNAs, miRNAs, and mRNAs were screened using the DESeq2
R package (v.1.10.1) that satisfied the condition of p < 0.05 and |log2 fold change| ≥ 1.

2.5. Prediction of lncRNA Target Genes

In this study, the co-expression and co-localization genes of lncRNA were predicted
to explore the functions of lncRNAs. We retrieved the genes 100 kb upstream and down-
stream of lncRNAs and analyzed their functions. “Trans-acting” refers to the co-expression
relationship between lncRNA and mRNA. To explore the trans roles of these molecules, we
used a custom script to calculate the Pearson’s coefficient between the lncRNAs and coding
genes. The correlation coefficient was greater than 0.95 to predict lncRNA target genes.

2.6. Analysis of Enrichment

GO enrichment analysis of the related genes of DE lncRNAs was performed using
KOBAS. GO terms with a corrected p-value of less than 0.05 were considered to be signif-
icantly enriched in differential expressed genes. KEGG is a database resource for under-
standing the advanced capabilities and utilities of biological systems [31]. We performed
statistical enrichment of differentially expressed genes or lncRNAs target genes in the KEGG
pathways using KOBAS software [32]. The results were visualized using the ClueGo (v.2.5.8)
and CluePedia plugins (v.1.5.8) in Cytoscape software [33]. Gene set enrichment analysis
(GSEA) was performed using the OmicStudio tools at https://www.omicstudio.cn/tool

https://www.omicstudio.cn/tool
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(accessed on 19 November 2022), The pathway with |NES| > 1, NOM p-val < 0.05, FDR
q-val < 0.25 was considered statistically significant.

2.7. Regulatory Networks Construction

DE lncRNAs and their co-expressed target mRNAs which may play a role in the
regulation of intramuscular fat deposition were screened, and the interactions between
miRNAs and DE lncRNAs and mRNAs were analyzed using miRanda software [34] to
construct lncRNA-mRNA and lncRNA-miRNA-mRNA regulatory networks and were
visualized using Cytoscape (v.3.9.1).

2.8. Protein Interaction Network Analysis

The differentially expressed genes were subjected to protein–protein interaction (PPI)
analysis based on the STRING database, which is known and predicted for PPIs. The
screened differential genes were imported into STRING for online analysis, and the corre-
sponding data were imported into Cytoscape (v.3.9.1) for MCODE (v.2.0.0) analysis. The
parameters were set as degree cutoff = 2, node score cutoff = 0.2, k core = 2, maximum
depth = 100, and the score was set to ≥4 to obtain the two closest clusters from the PPI.

2.9. Verification of Sequencing Data

We randomly selected five lncRNAs and five mRNAs to validate their expression.
Approximately 1 µg of each RNA sample was used in the PrimeScript™ RT reagent kit with
gDNA Eraser (Perfect Real Time, Code No. RR047A, Takara, Beijing, China) to convert the
total RNA to cDNA. Next, qRT-PCR was performed using TB Green® Premix Ex Taq™ II
(Code No. RR820A, Takara, Beijing, China) on the CFX96 Real-Time PCR Detection System
(Bio-Rad, Hercules, CA, USA). Glyceraldehyde3-phosphate dehydrogenase (GAPDH) was
used as the normalization control, and all reactions were carried out in triplicate. The
2−∆∆CT method was used to quantify relative expression levels.

3. Results
3.1. Identification and Genomic Characterization of lncRNAs and TUCPs

In this study, we obtained the raw reads by RNA-seq and filtered out articulated,
null, and low-quality sequences. Clean reads obtained in each library accounted for
94.33%–95.20% of the raw reads [5]. A total of 9918 lncRNAs, 4415 TUCPs, and 10,107 mR-
NAs were identified from the two groups of LD muscle. Among these lncRNAs, 50 were
annotated lncRNAs, and 9868 were novel lncRNAs with proportions of 22.7% lincRNAs
(2240), 10.8% antisense lncRNAs (1070), and 66.5% intronic lncRNAs (6561, Figure 1A,B).
The expression levels of mRNAs were higher than those of lncRNAs and TUCPs in both
pig breeds (Figure 1C). The average exon number of mRNAs was approximately 12, while
the average exon number of novel lncRNAs, annotated lncRNAs, and TUCPs were approx-
imately 5, 4, and 12, respectively (Figure 1D). The average length of TUCPs was 3531.129 nt,
and the average length of mRNAs was 3296.133 nt, which was longer than the average
length of novel lncRNAs and annotated lncRNAs (1580.563 nt/1650.96 nt, Figure 1E). The
ORF of TUCPs was longer than that of the mRNAs and lncRNAs. TUCPs had an average
length of 622.8725 nt, while the average length of novel lncRNAs, annotated lncRNAs,
and mRNAs were 231.8486 nt, 147.12 nt, and 593.891 nt, respectively (Figure 1F). Overall,
compared with mRNAs, lncRNAs are characterized by a lower number of exons, shorter
length, shorter average length of ORFs, and lower expression levels.
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Figure 1. Identification and genomic characterization of lncRNAs and TUCPs. (A) Screening of
candidate lncRNAs in porcine LD muscles; (B) Classification of candidate lncRNA; (C) Violin plot
of the expression level for lncRNA, TUCP, and mRNA transcripts; (D–F) Density distribution of
lncRNA, TUCP, and mRNA transcripts, (D) Exon number; (E) Length; (F) Length of open reading
frame.

3.2. Differentially Expressed lncRNAs/TUCPs in the LD Muscle of QS and LW Pigs

Of the 55 DE lncRNAs detected, 29 were upregulated, and 26 were downregulated
(Figure 2A). A total of 46 TUCPs were differentially expressed, 28 upregulated and 18 down-
regulated (Figure 2B). We calculated the total mapped reads density for each chromosome
(forward and reverse strands) in the genome and found that the upregulated DE lncRNAs
were mainly distributed on chromosomes 5, 6, 9, and 13, while the downregulated DE
lncRNAs were mainly located on chromosomes 3, 4, 7, and 13 (Figure 2C). DE TUCPs were
mainly concentrated on chromosomes 1, 3, 4, 5, 6, 13, 14, and X, among which chromosomes
3 and 5 had more upregulated TUCPs, but chromosome 4 had more downregulated TUCPs
compared with other chromosomes (Figure 2D). DE mRNAs were mainly distributed on
chromosomes 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, and X. Chromosomes 1, 2, 13, and 14
had more upregulated mRNAs, and chromosomes 1, 2, and 7 had more downregulated
mRNAs (Figure 2E).
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Figure 2. Difference in lncRNAs/TUCPs expression in LD muscle of QS and LW pigs. (A) Vol-
cano plots of the DE-lncRNAs; (B) Volcano plots of the DE-TUCPs; (C) Chromosome distribution
of differentially expressed lncRNAs; (D) TUCPs; (E) mRNAs. Red points represent upregulated
lncRNAs/TUCPs, while green points represent downregulated lncRNAs/TUCPs.

3.3. Comprehensive Analysis of DE lncRNAs and Targeted mRNAs

In order to understand the potential functions of novel lncRNAs, we conducted co-
localization and co-expression analysis of candidate DE lncRNAs. Among the 55 DE
lncRNAs, the co-localization analysis revealed 45 DE lncRNAs corresponding to 172 related
mRNAs, and the co-expression analysis revealed 55 DE lncRNAs corresponding to 6203 re-
lated mRNAs. Further analysis showed that 7 DE lncRNAs were co-located with 8 DE
mRNAs, and 55 DE lncRNAs were co-expressed with 326 DE mRNAs. It was obtained by
enrichment analysis that the DE target genes co-localized with DE lncRNAs were mainly
involved in muscle contraction regulation, cell differentiation, thyroid hormone synthesis,
and cellular response to the lipopolysaccharide and p53 signaling pathway (Figure 3A).
The DE target genes co-expressed with DE lncRNAs were mainly involved in the activation
of MAPK activity, protein phosphorylation, the insulin signaling pathway, and fructose
and mannose metabolism (Figure 3B).
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Figure 3. GO and KEGG analysis of DE lncRNAs co-location and co-expression of targeted DE
mRNAs. (A) ClueGO network of DE lncRNAs co-location of targeted DE mRNAs; (B) ClueGO
network of DE lncRNAs co-expression of targeted DE mRNAs; (C) GO biological processes and
(D) KEGG analysis of DE lncRNAs co-expression of targeted DE mRNAs. Each node represents a
term.

GO analysis of co-localized DE target genes showed that, skeletal muscle contraction,
apolipoprotein binding, calcium channel regulator activity, skeletal muscle cell differen-
tiation, regulation of I-kappaB kinase/NF-kappaB signaling, gluconeogenesis, muscle
contraction, and other items were significantly enriched (Table S1). The results of KEGG
analysis showed that 17 pathways such as cellular senescence, the HIF-1 signaling pathway,
thyroid hormone synthesis, the AGE-RAGE signaling pathway in diabetic complications,
and the osteoclast differentiation pathways were significantly enriched (Table S2).

GO enrichment analysis of co-expressed DE target genes showed that the main enrich-
ments were positive regulation of gene expression, muscle contraction, cellular response
to lipopolysaccharide, skeletal muscle contraction, regulation of myoblast differentiation,
lipid biosynthetic process, regulation of cell population proliferation, phosphatidylinositol
phosphate binding, and other terms (Figure 3C, Table S3). The results of KEGG analysis
showed that osteoclast differentiation, the Jak-STAT signaling pathway, Th17 cell differ-
entiation, the thyroid hormone signaling pathway, ECM-receptor interaction, the insulin
signaling pathway, apoptosis, and the T cell receptor signaling pathway were significantly
enriched (Figure 3D, Table S4).

Gene Set Enrichment Analysis (GSEA) of DE lncRNAs co-expressed target genes
showed that the insulin signaling pathway, FoxO signaling pathway, and Jak-STAT sig-
naling pathway were also highly enriched (Figure 4A–C), which was consistent with the
results of KEGG enrichment analysis. In addition, the regulation of lipolysis adipocyte was
also significantly enriched (Figure 4D).
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3.4. LncRNA-mRNA and lncRNA-miRNA-mRNA Interaction Network Analysis

The lncRNA-mRNA co-expression network consisted of 126 network nodes with
427 junctions between 55 DE lncRNAs and 71 DE mRNAs (Figure 5A). The central nodes
are LNC_003934, LNC_000314, LNC_002449, LNC_007885, LNC_009493, LNC_006333,
and LNC_004524, and the corresponding target genes are LZTR1, CFL1, AGRN, STAT6,
ZNF148, STAT1, LMNA, and so on. These DE lncRNAs and mRNAs may be potential key
genes for the regulation of IMF deposition. Each lncRNA can be associated with one or
more mRNAs, such as LNC_000040-ERCC2, LNC_003934-ACTC1, AGRN, and LMNA. Each
mRNA can also be associated with one or more lncRNAs, such as MAPK1-LNC_009261,
ACTC1-LNC_002449, LNC_000314, and LNC_003934.

The constructed DE lncRNA-miRNA-mRNA ceRNA regulatory network included
6 DE lncRNAs, 8 DE miRNAs, and 39 DE mRNAs, as shown in Figure 5B. DE mRNAs
such as STAT1, STAT6, AGRN, LMNA, and PIK3CD were the predicted target genes of
miRNA. One lncRNA could bind to one or more miRNAs, and each miRNA could bind to
one or more lncRNAs, where LNC_006333 adsorbed both ssc-miR-149 and ssc-miR-204,
constituting the LNC_006333/ssc-miR-149/STAT6 and LNC_006333/ssc-miR-204/STAT1
regulatory networks.
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mRNAs, pink nodes indicate upregulated transcripts, and blue nodes indicate downregulated
transcripts.

3.5. Network Analysis of DE Target Genes

The DE mRNAs in the above regulatory networks were analyzed using STRING and
Cytoscape software to obtain the PPI network (Figure 6A). Two clustering modules were
obtained using the MCODE plug-in, each containing four nodes and six contigs. Module 1
consists of STAT1, STAT6, IL6, and TBK1, where IL6 is the core gene. Module 2 consists of
ACTC1, PIK3CD, TLN1, and CAPN3, where ACTC1 is the core gene (Figure 6B).
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3.6. Validation of Gene Expression in RNA-seq

To further validate the RNA-seq results and detect the expression levels, we randomly
selected five DE lncRNAs and five DE mRNAs for qRT-PCR. The experimental results were
consistent with RNA-seq (Figure 7), revealing that the gene expression trends detected by
these two methods are consistent. Therefore, the RNA-seq data are highly reliable and
accurate. Details of primers used for real-time PCR amplification are shown in Table S5.
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Figure 7. Validation of gene expression in RNA-seq. (A) Verification of mRNA expression level;
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results are shown on the right. The accuracy of the sequencing results was verified by qRT-PCR. The
data represent the mean ± SEM from three biological replicates, and each measurement was repeated
at least thrice.
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4. Discussion

Fat deposition is a complex process, which involves biochemical processes such as
proliferation, differentiation, occurrence, and apoptosis of adipocytes. IMF participates in
several biological pathways such as hormones, muscle development, and fat deposition,
which are affected by breed, nutrition, and deposition time. It is an important index for the
evaluation of meat quality. lncRNAs can bind to nucleic acids and proteins and regulate
gene expression through various mechanisms, and play a complex regulatory role in animal
growth and development. In addition, lncRNAs can also act as signals to stimulate or
repress transcriptional processes, act as epigenetic regulators, and even play the role of
scaffold to interact with other proteins to produce ribonucleoprotein complexes. However,
the functions and characteristics of lncRNAs in porcine fat deposition and metabolism are
poorly understood, and the regulatory mechanisms have not been fully elucidated and
need to be further explored.

In this study, the expression level of lncRNAs in the LD of QS and LW pigs was
analyzed by RNA-seq, and 55 DE lncRNAs were identified. lncRNAs have no coding
ability and can play a role by binding to proteins or chromosomes, especially transcription
factors [35]. Huang et al. found by RNA-seq that NDUFC2-AS lncRNA in bovine adi-
pose tissue promoted lipid differentiation by upregulating the expression levels of THRSP
and C/EBP-α in buffalo [36]. It was found that the highly expressed lnc-LLMA interacted
with MTTP and GYS2 in Duroc pigs, affecting the process of fat decomposition and trans-
port [37]. lncRNA Blnc1 is a novel nuclear lncRNA, EBF2 acts as its target gene, and these
two structures combine to form a nucleoprotein complex, which promotes beige and brown
adipocyte differentiation [38]. By constructing a co-expression network between lncRNAs
and mRNAs, Zheng et al. found that lncRNAs AC004797.1, PRKG1-AS1, and GRPC5D-
AS1 may be associated with aging-associated muscle atrophy [39]. In addition, lncRNAs
can adsorb miRNAs and act as ceRNA to regulate the expression of their target genes.
lncRNA ADNCR is a downregulated lncRNA during bovine adipocyte differentiation,
inhibits adipocyte differentiation by adsorbing miR-204, and affects the expression level of
miR-204 target gene SIRT1 [40]. FDNCR1 competitively binds to miR-204, which inhibits
the expression of the transforming growth factor β receptor 1 (TGFBR1) gene, to regulate
porcine precursor adipocyte differentiation [41]. MSTRG.25116.1 is progressively upregu-
lated during chicken abdominal adipocyte differentiation and directly regulates fatty acid
amide hydrolase (FAAH) gene transcriptional activity in a trans-regulatory manner, while
MSTRG.25116.1 was found to also act as a molecular sponge that competitively binds to
gga-miR-1635 to promote the post-transcriptional expression of FAAH and participates
in the regulation of chicken fat formation [42]. SYISL, a conserved lncRNA in pigs and
humans, can act as a sponge for miR-23a-3p, miR-103-3p, and miR-205-5p to increase the
expression of the muscle atrophy inducer genes FoxO3a, MuRF1 and Atrogin-1, thus partic-
ipating in the cross-species muscle atrophy process [43]. Therefore, in the present study,
we analyzed the potential functions of DE lncRNAs by co-location and co-expression of
related genes and predicted the miRNAs bound by the screened DE lncRNAs to construct
ceRNA regulatory networks for further functional mining of lncRNAs.

In order to further explore the potential functions of DE lncRNAs in pork quality
regulation such as IMF deposition and muscle growth and development, we analyzed the
intersection of DE mRNAs and target genes of DE lncRNAs by GO and KEGG enrichment
analysis. GO results showed that DE lncRNAs are involved in muscle contraction, response
to muscle activity, skeletal muscle cell differentiation, sarcomere organization, and myofibril
development. Muscle consists of muscle fibers, which serve as the material basis for
meat quality traits, and its type is closely related to meat quality, which is an important
parameter for the evaluation of meat quality [44,45]. Studies have shown that lncRNA
is a participant in the regulation of muscle fiber types [46]. For example, linc-MYH gene
deletion leads to phenotypic phenomena such as muscle hypertrophy and muscle weight
gain in mice, which may be related to the mechanism of muscle atrophy [47]. Therefore,
DE lncRNAs in this study may also play an important regulatory role in muscle growth
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and development. They are also involved in the activation of MAPK activity, protein
phosphorylation, glucose transmembrane transport, lipid droplet formation, and lipid
biosynthetic process, and the MAPK signaling pathway plays an important role in insulin
resistance, T2DM, and inflammation [48]. Insulin promotes glucose uptake and conversion
to glycerol 3 phosphate, thus promoting lipid synthesis and storage. The higher the level
of protein phosphorylation, the faster the rate of glycolysis [49], while regulating the rate
of pH decrease improves meat quality by affecting protein hydrolysis [50]. MAPK1, IL6,
and PIK3CD are involved in the significantly enriched terms above and are associated
with lipid metabolism, muscle development, inflammatory response, and cell proliferation
migration, respectively [51–53]. Therefore, the corresponding lncRNAs may be a potential
factor in meat quality regulation. Based on KEGG analysis, the thyroid hormone synthesis
pathway, p53 signaling pathway, fructose and mannose metabolism, and ECM-receptor
interaction were significantly enriched. Thyroid hormones are important regulators of
lipid metabolism and are involved in the regulation of multiple metabolic pathways,
including lipid synthesis and lipid oxidation [54]. ECM–receptor interaction affects meat
quality by altering IMF content by influencing intramuscular adipocyte differentiation
and lipid anabolism [55]. GSEA results reconfirmed the KEGG pathway analysis results,
the Jak-STAT signaling pathway, FoxO signaling pathway, insulin signaling pathway, and
regulation of lipolysis adipocyte were all highly enriched, suggesting that these pathways
have important effects on the process of fat metabolism. Adipocytes play an important
role in energy balance, lipid storage, and systemic insulin homeostasis, and the Jak-STAT
signaling pathway participates in adipocyte differentiation and mediates cell fate such as
apoptosis, differentiation, and proliferation [56–58].

In the present study, the construction of the PPI interaction network revealed a high
degree of correlation and a strong linkage between four genes, namely, STAT1, STAT6, IL6,
and TBK1. The STAT family plays a regulatory role in adipogenesis [59,60]. As a member of
the STAT family, STAT1 is related to adipocyte differentiation and affects the process of lipid
metabolism [61,62], and plays an important role in the process of muscle regeneration [63].
LNC_006333 is co-expressed with STAT1 and binds to miR-204, and STAT1 is the target
gene of miR-204 and participates in many pathways related to lipid metabolism. Therefore,
LNC_006333 can directly regulate gene expression and exert its biological function through
ceRNA, thus affecting the expression level of STAT6, IL6, and TBK1 while regulating
STAT1. LNC_006333 is a lincRNA between PRMT6 and AMY2, and AMY2 is the nearest
protein-coding gene to LNC_006333. Therefore, it is named lincRNA-AMY2, and lincRNA-
AMY2-STAT1 and/or lincRNA-AMY2/miR-204/STAT1 may be an important regulatory
network that affects fat deposition in pigs. In the present study, lncRNAs such as EAD1-AS
(LNC_004524), lincRNA-STRIT1 (LNC_002449), HNRNPH3-IT (LNC_003082), and IBA57-
IT (LNC_004931) regulate fat deposition in the above manner. ACTC1 is involved in the
regulation of the proliferation cycle of bovine myogenic cells, which is positively correlated
with myogenesis and promoting adipocyte differentiation, thus playing a biological func-
tion in muscle development and fat deposition [64]. LNC_003934, which is located between
SLC7A2 and FAT1, is a lincRNA, named lincRNA-FAT1 because it is the closest to FAT1. It
directly regulates ACTC1 and affects the expression levels of PIK3CD, TLN1, and CAPN3.
In addition, lncRNAs such as PLP1-IT (LNC_009595), lincRNA-PPP2R5A (LNC_009318),
lincRNA-RORA (LNC_000187), and lincRNA-MIR99A (LNC_002605) regulate the fat depo-
sition process in the same way. In summary, the regulation of different lncRNAs differs.
Through a series of analyses, this study screened regulatory networks such as lincRNA-
AMY2-STAT1 and/or lincRNA-AMY2/miR-204/STAT1, and lincRNA-FAT1-ACTC1 may
affect IMF deposition by regulating adipocyte proliferation and differentiation and, thus,
regulate pork quality. The results of this study provide an important reference for un-
covering the regulatory mechanisms of intramuscular fat deposition in pigs and lay the
foundation for further understanding the genetic mechanisms of pork quality formation.
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5. Conclusions

In the present research, based on the RNA-seq of LD muscle tissue of QS and LW pigs,
55 DE lncRNAs were identified, 29 upregulated and 26 downregulated. Through targeted
prediction, we discovered that 172 target genes were co-located, and 6203 target genes
were co-expressed. Functional enrichment analysis revealed that it was involved in many
pathways related to lipid metabolism, such as the activation of MAPK activity, the lipid
biosynthetic process, the thyroid hormone signaling pathway, and the Jak-STAT signaling
pathway. The regulatory networks of lincRNA-ZFP42-ACTC1, lincRNA-AMY2-STAT1,
and/or lincRNA-AMY2/miR-204/STAT1 were filtered out, which were potentially related
to lipid deposition. These results provide a reference basis for analyzing the mechanism of
intramuscular fat deposition in pigs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14010197/s1, Table S1: GO biological processes analysis of
DE lncRNAs co-location of targeted DE mRNAs (15 terms); Table S2: KEGG analysis of DE lncRNAs
co-location of targeted DE mRNAs (15 pathways); Table S3: GO biological processes analysis of DE
lncRNAs co-expression of targeted DE mRNAs (15 terms); Table S4: KEGG analysis of DE lncRNAs
co-expression of targeted DE mRNAs (15 pathways); Table S5: The primers used for the validation of
lncRNAs and mRNAs.
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