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Abstract: The rapid improvements in identifying the genetic factors contributing to facial morphology
have enabled the early identification of craniofacial syndromes. Similarly, this technology can be vital
in forensic cases involving human identification from biological traces or human remains, especially
when reference samples are not available in the deoxyribose nucleic acid (DNA) database. This review
summarizes the currently used methods for predicting human phenotypes such as age, ancestry,
pigmentation, and facial features based on genetic variations. To identify the facial features affected by
DNA, various two-dimensional (2D)- and three-dimensional (3D)-scanning techniques and analysis
tools are reviewed. A comparison between the scanning technologies is also presented in this review.
Face-landmarking techniques and face-phenotyping algorithms are discussed in chronological order.
Then, the latest approaches in genetic to 3D face shape analysis are emphasized. A systematic
review of the current markers that passed the threshold of a genome-wide association (GWAS) of
single nucleotide polymorphism (SNP)-face traits from the GWAS Catalog is also provided using the
preferred reporting items for systematic reviews and meta-analyses (PRISMA), approach. Finally, the
current challenges in forensic DNA phenotyping are analyzed and discussed.

Keywords: single nucleotide polymorphism (SNP); forensic DNA phenotyping (FDP); face landmarks;
genome wide association studies (GWAS)

1. Introduction

During the last two decades, various genotyping techniques have been used to dis-
cover genetic factors responsible for variations in human appearance. Face character predic-
tion has been a challenge for anthropologists, medical human geneticists and criminalists.
In this review this type of prediction will be referred to as forensic DNA phenotyping (FDP).
FDP aims to infer the unknown, externally visible characteristics (EVCs) of a person from
DNA. After the anthropologists have established the bases of the phenotypes for human
identification purposes, geneticists carry out research into genetic variations involving
morphological features commonly used in human identification, such as age, ancestry, eye
color, hair color, skin color, and facial features [1–5]. In 1996, Charles H. Brenner published
a paper regarding the extension of the use of DNA short tandem repeat (STR) profiles to
estimate the likelihood ratio of racially distinguishing Caucasians from African-Americans
based on Bayesian reasoning [6]. Accordingly, the mathematical grounds for determining
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the ancestry of suspects who leave biological evidence at a crime scene was established. In
addition, the determination of the inferential sense of human physical appearance such
as ancestry and other phenotypes using DNA testing was discussed in a book by Tony
Frudakis in 2008, using the term molecular photofitting [7]. DNA-phenotyping techniques
can be significant in disaster victim identification (DVI), wherein facial identification of
deceased individuals is difficult due to decomposition-induced changes in the skin, eye
color, and other environmental factors. Such common disasters include tsunamis and
hurricanes [8]. In addition, this type of facial prediction is vital in cases where searches in
DNA and fingerprint databases and employing crime-scene clues have been exhausted
without identification [9]. In 2003, genetic ancestry testing was first used to identify the
race of a suspect behind a series of rape and murder cases in South Louisiana. Analyzing
the evidence using a DNA Witness kit revealed that the suspect was of a mixed ancestry
which in particular was (85%) African and (15%) Native American. This DNA profile led
to the identification and conviction of the suspect in 2004 [10]. As the technology has ad-
vances and its reliability increased, it can now provide additional support to the traditional
DNA-profiling methods. By providing an informative description of a suspect’s physical
features, the technique can accelerate the investigation through the possible inclusion or
exclusion of suspects based on the provided data [3,11,12]. In addition, when a victim’s
skull is not available for facial reconstruction, victim identification can be hindered [13].

This review is organized as follows; in Section 1, we provide a general overview of
DNA phenotyping. Section 2 exposes the different 2D and 3D facial scanning techniques
and analysis tools. Section 3 provides an overview of the current face-landmarking tech-
niques, algorithms, and analysis tools. In Section 4, a detailed survey of some approaches
for analyzing and understanding facial features from DNA is provided. Section 5 elaborates
on the present challenges in forensic DNA phenotyping.

2. DNA Phenotyping

The genetic influence on facial features has been investigated through studying var-
ious factors such as the impact of Sonic-Hedgehog, bone morphogenetic proteins, and
homeobox genes on facial feature development [14–17]. Moreover, some genetic disorders,
such as Neurofibromatosis, Fetal Alcohol Spectrum Disorder, the deletion of 22q11.2, and
chromosomal abnormalities such as Down Syndrome can cause changes in facial features
when compared to healthy individuals [18–20].

Epigenetic factors such as DNA methylation have shown reproducible results in age
prediction due to the association between DNA methylation levels and age at some CpG
sites [21–24]. DNA methylation levels in other genes, such as ELOVL2, FHL2, KLF14,
C1orf132/MIR29B2C, and TRIM59, were also correlated with a mean absolute deviation
(MAD) of 3.844 years from chronological age [25]. On the other hand, Xia et al. used three-
dimensional facial image analysis to predict the age of Chinese participants with an aver-
age difference between the predicted and chronological age of only ±2.8 to 2.9 years [26].
This finding demonstrates the importance of age in face prediction, along with other
genetic factors.

In addition, examining the European population within datasets such as the
1000 Genomes Project showed that polygenicity strongly affects phenotypes. Nevertheless,
there is a correlation between different phenotypes within specific groups of people as they
share similar genetic variations [27,28]. There is a link between facial traits and population
substructures, which suggests that facial morphology could be affected by ancestry [17].
Most of the studies included in the genome wide association studies (GWAS) Catalog on
genetic-to-phenotype associations were conducted on populations of European descent
with an underrepresentation of other populations, such as the Middle Eastern population,
which only contributed to 0.08% of the GWAS database [29,30]. Studying samples from
under-represented population groups can improve our knowledge of genetic structures
and extend the applicability of forensic and medical findings [31].
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Ancestry-based SNPs (AISNP) are usually linked with facial traits because the pre-
dictability of a given population’s ethnicity is higher when the population’s facial features
are more distinct [32].

Research reports have demonstrated the importance of AISNPs in forensic, medical,
and anthropological applications [33–35]. The Kidd and Seldin AISNP panels include
diverse data concerning reference populations from major continental regions [33]. Most
of the ancestry markers are di-allelic (insertion–deletion) makers or SNPs, as the current
method of using short tandem repeat (STR) markers does not predict ancestry. Hence, SNPs
can provide investigative leads [36]. The Snipper App Suite is an open-source tool that
provides multiple solutions for biogeographical classifications based on massive parallel
sequencing (MPS) panels that contain AISNPs [37,38]. Other commercial kits have also
been developed to determine ethnic background and ancestry, including AncestryDNA,
23andMe, and National Geographic [39–41].

AISNPs have different frequencies in different populations, thus enabling the determi-
nation of individuals’ ancestry using DNA [33,42,43]. An individual’s genetic ancestry is
mainly presented as a proportional ancestry or admixture by determining the population
most correlated with the genetic variation in the DNA sample [44–46].

In addition to the investigative leads that AISNPs can provide, phenotype-informative
SNPs (PISNPs) reveal more information regarding a suspect’s physical appearance. Such
phenotypes include the color of the subject’s eyes, hair, and skin, as well as their fa-
cial features [5,47–54]. There are complex interactions between the genes controlling the
phenotypes of individuals, such as mutations, genetic drift, recombination, segregating
variants, and copy number variants. Therefore, scientific collaborators from genetics, image-
processing engineering, bioinformatics, statistics, and other backgrounds have focused
on categorizing the genetic variations correlated with a specific phenotype during the
last decade. This collaboration aims to understand the aforementioned correlation and
accurately predict facial features [17,55].

One of the main categories that identifies and distinguishes an individual from another
is color. The prominent, primarily identifiable visible colors are related to a person’s eyes,
hair, and skin. One of the tools designed to predict these three phenotypes is the HIrisPlex-S
system, which combines prediction models for eye, hair, and skin color [51,56].

The IrisPlex eye color prediction tool demonstrated a prediction accuracy of over 90%
with respect to blue/brown phenotypes using only 31pg of DNA when applied to Dutch
Europeans, making this kit sensitive and suitable for applications in low-copy-number
DNA samples [57–60]. However, the tool shows low prediction accuracies for green-hazel
or intermediate dark phenotypes and admixed populations, thus indicating the need to
further investigate the tool using admixed populations and larger sample sizes [61–63].
Another GWAS study incorporating many European participants (~193,000) from 10 pop-
ulation groups identified 124 genetic loci for eye prediction, of which 50 had not been
reported previously. The findings also demonstrated consistencies in the gene structure
of the eye color traits between East Asian populations and Europeans [64]. In addition,
some researchers have tested the tool on the Pakistani population using degraded DNA
samples, which showed lower accuracies (70%), mainly due to the considerable variation
of phenotypic eye color in Europeans compared to South Asians. They recommended
refraining from using the tool if some SNPs had dropout alleles [65].

Regarding hair color prediction, the HIrisPlex tool showed an area under the curve
(AUC) between 72–92 for blond, brown, red, and black hair colors, which indicates the
potential of the tool for applications in the forensics [5,47–50,52].

SNPs for skin color prediction were included in the HIrisPlex-S tool and were dis-
tributed among 16 pigmentation genes. Two skin tone models were assessed using the
following two approaches: three and five skin tone scales. The use of the three skin tone
models (light, dark, and dark-black) demonstrated an accuracy ranging from 83–97%, while
five skin tone models ranging from very pale to dark-black showed an accuracy range of
72% to 97% [51,53]. Some of the genes in the HIrisPlex-S tool were further studied in ad-
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mixed populations and indicated similar associations [66–69]. In addition, the association
of the SNP rs12913832 (HERC2) with the three skin pigmentation traits was discovered in
Polish, European, and mixed populations, including Hispanics [70–73]. Furthermore, a
GWAS study conducted on 17,019 Korean women revealed associations of seven loci with
face pigmentation, of which three had not been previously reported [74]. Other researchers
are testing these multiplexes and try to discover their associations to the nearby genes.
Their purpose is to validate and optimize the accuracy of their results when applied to
different populations [75–77].

On the other hand, Arab researchers have tested some of the primary loci associated
with eye color, such as HERC2 and OCA2, on a Middle Eastern population (Iraqi). They
discovered that due to a linkage disequilibrium between the SNPs of these loci and the
variations of the minor allele frequencies, some deviations from the model with respect
to predicting dark-brown, hazel, and blue eye colors were discovered since the tools did
not account for Middle Eastern populations [78]. Other researchers also confirmed similar
outcomes in other Middle Eastern populations (Saudi and Iranian) [72,79]. This shows
the importance of validating prediction tools on multiple population groups in order to
understand the resulting variations before officially using the tool in forensic applications.

Overall, eye, hair, and skin color prediction showed different accuracy levels among
population groups and lower prediction accuracies for intermediate color groups, which can
be improved by increasing the genetic markers that account for ancestry and by expanding
studies on admixed populations [5,47,49–51,53,56,72,80–82]. The HIrisPlex-S tool is an
open-source tool that is available online for any forensic investigators who are interested in
obtaining an inference of hair/skin/eye color using the allele copy number of the specified
SNPs of interest. The software provides the accuracy level of the results based on AUC
values [83].

Inference of Face Features

The use of the human skull to reconstruct an entire face has been employed in the
forensic investigation of the deceased bodies for the last few decades. Facial photos could
be highly important for identifying unknown individuals. These images were successfully
used in identifying unknown individuals [84–86]. In 2004, Turner et al. developed reality
enhancement/facial approximation by computational estimation (RE/FACE) software to
predict a skull’s soft tissue structure. This software was created for the Federal Bureau of
Investigation (FBI) to automatically employ dense landmark placement using computerized
tomography (CT) scans. Recently, other open-source computerized tools such as FacIT
were developed to allow for the reconstruction of a person’s face by scanning their skull
using tools such as CT [13,87]. These tools have helped investigators and anthropologists
identify people from different eras and population groups, despite the controversy. Some
researchers wanted to explore the influence of DNA on the skull, and their findings suggest
that facial traits are composed of variations in cranium and soft tissue thickness [88].

To address instances where there is no skull from which to build a face, facial trait
inference is currently being researched using DNA-phenotyping techniques. This method
provides investigative leads regarding a person’s physical appearance from biological
evidence. Similar to face reconstruction from skulls, facial landmarks are essential in this
type of analysis. They can be used to distinguish faces through linear measurements
between them, such as the face height, nose (width, prominence, and size), interocular
distance, chin and forehead prominence [5,47–51,89,90].

One of the approaches that investigated the effect of gender, ancestry, and genetic
variations on facial measurements used bootstrapped response-based imputation mod-
eling (BRIM) to measure and model facial shape variations. The related study involved
592 participants from an admixed population of West Africans and Europeans. The sample
pool was obtained from the United States, Brazil, and Cape Verde. They found 24 SNPs
distributed among 20 genes that significantly affect face morphology. Moreover, from the
total number of 7150 high-density quasi-landmark (QL) configurations of the superimposed
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and symmetrized 3D faces, 44 principal components (PCs) were selected, which described
98% of the total variation [80].

Other GWAS studies demonstrated the strong association between genetic variations
and facial features such as face width, forehead protrusion, cheek protrusion, nose ridge
elevation, nasal length and protrusion, nasion position, nose bridge breadth, and the dis-
tance between the eyeballs. These associations were mostly presented as p-values and
standard deviation values rather than as a percentage of accuracy. Each study targeted
a different population, which may have affected the correlation values due to factors
affecting ancestrally correlated facial features. Optimizing such technology for forensic
applications requires a further understanding of the genetic bases of human appearance.
Such optimization relies on the use of larger sample sizes from different population groups,
understanding the related epigenetic factors, investigating possible environmental fac-
tors, involving collaborators of varying scientific disciplines, and improving analysis
methods [1,8,17,89,91–95].

3. Facial Screening and Scanning Tools
3.1. Facial Screening Using 2D Approach

Two-dimensional images of the face have been used in clinical applications for the last
decade (ferry et al., 2014). Different medical applications have incorporated 2D photographs
in the diagnosis of genetic syndromes and face-related anomalies at earlier stages of the
human development [96]. The establishment of highly sophisticated centers with advanced
equipment and technologies is very difficult in some rural areas and poor communities. The
use of phones offers a readily available method and can provide the information required
by geneticists to offer their diagnoses online. This type of inference will create a practical
option for the early diagnosis of children from underdeveloped areas. Moreover, many
datasets that are available online, such as Face2Gene and Ferry and Colleagues, have been
made public to allow researchers to incorporate them into their tools [97,98]. As a result, the
algorithms has been simplified to be trained on face photos of patients of various genetic
conditions [99].

The architecture of the deep learning algorithm was created by developing three levels
of neural networks, which first standardize the 2D face images, then detect the shape of the
face, and, finally, estimate the genetic syndrome risks. Based on 2800 children’s photos from
different countries, age and gender were used to transform the ability for phone photos
and phone-based applications to be used as primary genetic screening tools. In general, the
model evaluated the risk of children presenting with a genetic syndrome with an average
accuracy of 88%. This study shows the amount of information a face can reveal about
an individual’s genetic makeup using 2D photographs. The system required the manual
landmarking of the faces at 44 locations. Then, measurements between these landmarks
based on an in-house application were taken as each quantity of dysmorphology was
associated with a specific genetic syndrome. Since photographs cannot provide details
in (mm) units, the interpupillary distance for every patient was used as a standard to
normalize error.

These technologies have higher success rates when the genetic diseases/syndromes
involve joint deformation morphologies of the face, such as in Williams–Beuren, Crnelia de
Lange, Down’s, 22q11.2 deletion, and Noonan syndromes [96].

However, to acquire a higher level of facial detail for human identification purposes
and to better represent the depth of a face, the third dimension is required. Most re-
searchers recommend using 3D scanners. They add higher resolution and more accuracy
in capturing facial details [100]. Thus, the following section focuses on the use of 3D face
scanning techniques.

3.2. 3D Face-Phenotyping Techniques

Three-dimensional surface imaging refers to the technique wherein three-dimensional
data are acquired from an object as a function of three coordinates (x, y, and z). Three-
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dimensional scanners generate exact point clouds by obtaining an object’s fine details
and capturing free-form shapes. Thus, once these features are transformed into digital
data, they can be used for different purposes, such as quality checks and measurements.
Moreover, surface imaging mainly works through measurements of coordinate points on
the surface of an image. These measurements can be viewed as a depth map function (z)
of the position (x, y) in the Cartesian coordinates system. They can also be expressed in a
matrix form {zij = (xi, yj), i = 1, 2, . . . , L, j = 1, 2, . . . , M} [101,102].

Different technologies are used in 3D scanners, in which each technique serves an
assorted purpose and has its advantages and disadvantages. These technologies include
phone applications, laser triangulation, structured light, and stereophotogrammetry.

3.2.1. Advanced Phone Application in 3D Scanning

The practice of gathering a sequence of points in space from a series of images is
known as photogrammetry. First, multiple 2D images of the object from all possible angles
are required; then, the software will connect all the relevant points from the overlapping
process of these images and create a 3D mesh [103]. The latest innovations by mobile
technology companies such as Apple, Sony, and Samsung have made it possible to generate
3D photos using their devices. iPhone models such as 12 Pro, 13 Pro, or the newest iPad
Pro may use LiDAR scanning. These devices are equipped with built-in LiDAR sensors,
which enable them to easily scan oversized objects using depth data. Multiple types of
software and applications utilize such technologies to process photos and create 3D objects,
such as Trnio and Scann3d. In addition, such phones can use augmented reality (AR) to 3D-
register physical objects with exceptional accuracy. While these techniques are promising,
these phones will need to have between 20–40 different photos of an object to acquire an
acceptable scan [104]. The Trnio 3D scanning software has two configurations: object and
scene modes. After the photographer scans the object, the software provides immediate
assistance in these modes. For the object mode, the photographer moves around the object
and the application creates a panoramic photo of the object to be available in a circular
manner. Scene mode is for free scanning, which means it can be used to scan massive
objects or outdoor scenes in 3D.

Other options may require the use of plug-in devices along with the phone, such as
itSeez3D and Bevel [105]. These devices are usually beneficial for lower phone capabilities
as they provide extra sets of cameras and eye-safe lasers as detectors. The collected
information is analyzed with software that collects size and geometric information from
the laser, while it collects the color, texture, and other object features from the phone
camera [104].

Although smart-phone applications are promising and have successfully recreated
3D-printed household objects, the high number of photos required and the long time it
takes to create a scan can lower the accuracy especially in forensic related research.

3.2.2. Laser Triangulation-Based 3D Scanners

These scanners scan an object either by a laser line or a single laser point. The scanner
emits the laser, and its light gets reflected off the scanned object. First, a sensor targets the
initial trajectory. Based on the changes between the trajectory and the angle of triangulation,
the system perceives specific aberration angles. These angles are associated with the
distance between the scanner and the object. When sufficient distance measurements are
collected, the scanner maps that object’s surface, thus creating a 3D picture. The scanner can
also be used on moving objects, as it can collect a series of profiles from the laser lines that
form a complete 3D map of an object. However, triangulation-based scanners exhibit safety
issues concerning the safety of the participants’ eyes [106]. They may also perform poorly
with respect to the scanning of shiny objects and materials with significant subsurface
scattering [107,108]. This method was utilized in capturing 3D face scans of the participants
of the Avon Longitudinal Study of Parents and Children (ALPAC) [109,110]. This laser
constituted eye-safe technology accepted by the U.S Food and Drug Administration (FDA)
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with a wavelength of 690 nm at 30 mW. Using this type of scanner shows how important it
could be to revisit older technologies and attempt to improve them for possible applications
in facial scanning.

3.2.3. Structured Light 3D Scanners

This type of scanner uses active illumination. It flashes 2D spatially assorted varying-
intensity patterns generated by a special light source or a projector. Then, it obtains the
object’s surface information using an imaging sensor. Suppose the light is projected onto a
planar surface (i.e., 2D surface). In that case, the pattern acquired by the camera will be
similar to the projected pattern, which means there will be no distortion of the projected
structured light. However, if the surface is nonplanar, which means it has prominence
and depth, the projected structured light will be distorted. The distortion pattern can
be computed using different algorithms to generate the 3D surface of the object. These
scanners can be either handheld or stationary. Usually, these scanners are made from
static SLR cameras and a light projector such as the SL2 system produced by XYZ RGB
Inc. (Kanata, ON, Canada) [101,111]. Revopoint 3D Technologies Inc. (Xi’an and Shenzhen,
China) produces other methods that use the same technique, including the Handysense
handheld 3D scanner [112].

3.2.4. Stereophotogrammetry 3D Scanners

The concept of these scanners involves the production of 3D images from a series of
2D images using computer vision algorithms. In this method, several photographs are
taken of the object from different viewpoints using any accessible camera. The changes
from one photo to the next are calculated via algorithms that automatically recognize pixels
corresponding to the same physical point, resulting in a 3D image. This technology can
scan objects of various scales [113]. Canfield Scientific Inc. (Parsippany-Troy Hills, NJ, USA)
is a company that invented the VECTRA® M3 system based on the stereophotogrammetry
3D scanner model. Plastic surgeons mainly use this system to view high-resolution images
of the face and neck [114].

3.2.5. Selecting the Right Type of Scanners

When choosing a 3D scanner for capturing facial features, several factors need to be
considered. The foremost factors are the scanning resolution and the accuracy. Scanning
resolution is the smallest distance between two points on the object that the scanner can
measure. Accuracy is the degree to which the measured value conforms to the object’s
actual value. Moreover, as the distance between the scanner and the object increases,
the absolute value of the error increases accordingly, and this is a value that should be
considered. When dealing with human subjects and reflective objects, laser triangulation
systems may harm the subjects’ eyes if suitable wavelengths are not considered. To compare
the three types of systems, four devices were selected in terms of their popularity of use in
3D-based facial research (Table 1).

Konica Minolta Vivid 900 laser cameras have the highest 3D resolution, the smallest
file size, and the fastest processing speed among the four devices. The 3dMDhead system,
a stereophotogrammetry stationary device, that can scan in 360 degrees the entire face,
head, and neck. This device allows the user to capture frames at the highest speed. The
3dMDhead system was used in multiple forensically related papers, as shown in Table 1.
The other device that uses stereophotogrammetry is Vectra H1 from Canfield. It has the
lowest geometry resolution, at 0.8 mm, and the lowest accuracy, at 0.84, among the other
instruments. The vertices of the images created by this device are the highest, with a
1.2 mm resolution.
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Table 1. A comparison between four scanning tools using three different 3D scanning techniques:
3dMDhead, Canfield VECTRA H1, Artec Eva, and Vivid 900 [115–118].

Model/Products 3dMDhead Canfield
VECTRA H1 Artec Eva

Konica Minolta Vivid
900 Laser Cameras

(Mid Lens)

Realization Active/Passive stereo
photogrammetry

Passive Stereo
Photogrammetry Structured Light Laser scan

Coverage
Full 360-degree capture

of the head, face,
and neck

Capturing volume
(H × W × D): 220 ×
130 × 70 mm typical

application: 100-degree
of left, right, or front

of face.

Closest (H × W):
90 × 70 mm

Furthest (H × W):
180 × 140 mm

Closest (H × V):
204.7 × 153.6 mm
Furthest (H × V)
830.6 × 622.9 mm

3D Resolution 0.2 mm
0.8 mm geometric

resolution (triangle
edge length)

0.5 mm 0.016 mm

3D Point Accuracy 0.58 ± 0.11 mm Average: 0.84 mm
(range 0.19–1.54 mm)

0.1 mm
0.03% over 100 cm

X: ±0.38 mm,
Y: ±0.31 mm Z: ±0.20

to the Z reference plane

Capture Speed ~0.0015 s at highest
resolution 0.008 s 0.067 s/frame

0.3 s (fast mode)/2.5 s
(Fine mode)/0.5 s

(Color mode)

Processing Speed <15 s ~20 s 4 min (for facial scans) 1 s (Fast) 1.5 s (Fine)

File Size
15–95 MB.

Depends on
configuration.

8 MB

10–20 MB
(full-body scan ranges
from 2–4 GB according

to Artec3D technical
support email)

1.6 MB (fast),
3.6 MB (Fine)

Geometric
Representation

A continuous point
cloud available as a
textured mesh and
densely textured

point model

Mesh Mesh

Original format
converted to 3D by the

utility software
(640 × 480)

Error in Geometry <0.2 mm <0.1 mm <0.1 mm N/A

Approximate Price

Prices start at USD
25,700 (each system is
costume-configured
and upgraded from
standard modules to
meet the customer’s

specific imaging
workflow requirements)

USD 11,000 ~USD 21,000 USD 25,000 to 55,000

Utilized by [119–124] [123–126] [125,126] [109,127]

Moreover, Vectra H1 can be purchased at the lowest price compared to the other two
devices (about half of their respective prices). On the other hand, the Artec Eva system is
a handheld device that requires rotation around the object while capturing the pictures;
thus, a great deal of time is required to capture a face (~4 min processing time per person).
It also requires more effort from the subject to stabilize their facial expression and the
person using the device to maintain a specific distance range from the subject to achieve an
adequate scan. Overall, the four scanners are suitable for capturing facial details. Selecting
the proper device depends on the nature of its application and the target price, resolution,
coverage, and accuracy. From the literature, the 3dMDhead scanner seems to be more
favorable among face-related studies due to its high speed with respect to capturing details
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and the consistency of the results between the collected data and the facial measurements
of the subjects. However, this scanner is costly and requires a high level of experience to
set up. Moreover, it requires a designated room to work at a high level of accuracy.

In the coming future, the use of phones to take 2D/3D photos could advance face–DNA
research in the forensic, anthropological, and medical fields. If accuracy and precision were
benchmarked against the discussed scanners, researchers would have practical options
with which to conduct their investigations, generating fewer expenses and smaller setup
areas. This option will positively impact the study of facial traits in the forensic field as it
has for the emerging genetic medical diagnosis tools.

4. Face Landmarks, Algorithms, and Analysis Tools
4.1. Face Landmarks

A face landmark can be defined as a prominent discriminative position on the face that
can be used as a reference point for facial comparison. The selection of landmarks depends
on the phenotype being investigated, but most of these landmarks lie in the oral-nasal region
of the face. Face landmarks were introduced in 1994 by the pioneer of modern craniofacial
research Leslie Farkas, who suggested modeling faces using 17 landmarks [128].

Face landmarks are grouped into either primary or secondary groups. The primary
(first-order) landmarks consist of the nose tip, corners of the mouth, corners of the eyes, etc.
They focus on forensic applications, including the major features used in human identifica-
tion. The localization of the primary landmarks can be carried out using tools such as the
histogram of gradient (HOG) and scale-invariant feature transform (SIFT) [129]. In addition,
the secondary (second-order) landmarks are guided by the primary landmarks because they
represent points that have more details regarding non-extremity points. These landmarks
usually represent features such as nose saddles, chin tips, and cheek curves, which are
typically used to understand facial expressions or when analyzing one-sided/incomplete
facial photos.

Some issues can be encountered when obtaining a high-quality facial scan, which
involve poses, expression, illumination, occlusions, etc. [129]. Landmarking approaches in-
clude manual, semi-automated, fully automated, and face masking using quasi-landmarks.
An overview of these methods is provided in this review.

4.2. Manual Landmarking

Measurements between the landmarks are obtained by taking anthropometric linear
measurements. Weinberg et al. compared direct anthropometry using calipers, 2D pho-
togrammetry from photos, and cephalometry of the skull using radiography techniques.
It was shown that these techniques could not accurately capture the details of 3D human
faces [128,130].

The placing of landmarks is usually performed by marking the face with points using
a marker and measuring distances between them or estimating landmark positions without
using a marker. This process can be performed manually using digital or ruled calipers.
These measurements can also be obtained by uploading the facial scans on software that
allows for 2D photo and 3D face mesh rotations [128]. It is preferable to use software to
obtain such measurements due to the uncontrollable nature of the manual identification of
landmarks and the possibility of a higher degree of error through operators’ intra- and inter-
variations [127,128,131–133]. Multiple statistical analyses have been performed in order to
investigate the precision of each technique (manual caliper vs. 3D image using a reference
of dots versus without dots). The mean absolute difference, relative error magnitude,
practical error of measurement, and the coefficient of consistency of each landmarking
technique were compared. The results showed higher accuracy when the 3D images were
marked using computer software [128].
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4.3. Semi-Automated Landmarking

The semi-automatic landmarking of facial features can be performed using MATLAB®

(Natick, MA, USA) and in-house developed software, including image analysis tools. Viola-
Jones is one of the tools that use object-detection algorithms to detect faces and eyes, while
an Active Appearance Model annotates the remaining landmarks. An operator supervises
this process and confirms the annotated landmarks created by the automated system [93].
Another approach to semi-automatic landmarking is to generate 500 points of uniformly
spread digitized landmarks using a sliding technique. The points are generated from a
template 3D mesh that initially contains 16 manually selected landmarks. The points then
radiate from the template landmarks to ensure a uniform spread on the facial surface
(approximately 1.5 mm radius). This sliding of landmarks is expected to increase the
accuracy of geometric analysis as it includes extra characteristics of the face, such as the
curves and Procrustes distance. This technique is performed using multiple programs
such as Viewbox (Kifissia, Greece) [134] and RStudio (Boston, MA, USA) packages (the
geomorph package) [135,136].

4.4. Automated Landmarking

Since manual landmarking is time-consuming and challenging to replicate, automating
the process can help deal with large databases and cover larger face areas. Therefore,
different statistical models and algorithms have been developed to detect facial features and
automatically place landmarks. Some techniques use the geometric properties of a face’s
surface by incorporating one or multiple of the following differential geometry techniques:
mean, Gaussian, principal curvatures, different shape indices, and curvedness [137]. One
method involved the use of a thresholding technique to examine the correlation between
the location of each landmark and the behavior of each predefined geometric descriptor on
the face [138]. These methods were effective in localizing/detecting segments of the face
without expressions or occlusion.

Moreover, landmarks were successfully extracted from 3D faces with standard, expres-
sive, and occluded mouth/eyes using MATLAB® algorithms [138,139]. The success rate
of the facial feature extraction algorithms was tested on available face databases such as
FRAV3D, FRGC 1.0 and FRGC 2.0, Face Warehouse, and GavabDB [140–143]. This study
demonstrated the possibility of building a reliable, automated landmarking method even
with faces with different expressions and occlusions. There are also multiple available
online datasets of 3D faces/scans used to evaluate the accuracy and efficiency of new
methods, as the performance of algorithms has been shown to decrease when a test is
performed with another dataset [129].

Another technique for automatic landmarking used a statistical ensemble approach
based on comparing magnitudes of complex Gabor wavelet coefficients to the dataset. The
algorithm improved the accuracy of landmarking facial scans by up to 22%. It was found
that the stacking generalization algorithm of facial features can decrease the average error
to 1.7 mm across 21 landmarks. The model was also successful in training the algorithm
using the minimal number of 3D facial images, and it was able to handle large cohort GWAS
studies [144,145]. It is important to note that most of these methods are under development
and have not been intensively used in genetic studies [146]. In one of the GWAS studies,
2D facial photographs were utilized by obtaining metric measurements after converting
the pixels from the photos of the faces into millimeters via different algorithms [146].

4.5. Estimation of 3D Face Landmarks Using Mobile Devices

Multiple solutions are available for the detection and estimation of 3D face landmarks
using 2D photos taken by phones operating on Android and IOS platforms. One of these
programs is named MediaPipe Face Mesh [147]. In real time, this application can estimate
468 LMs of the face. It can screen the position of the face through face transformation
within a space by bridging the gaps between the estimated LMs. The machine learning
pipeline is built based on a neural network model that detects the full-face image in order to



Genes 2023, 14, 136 11 of 35

align and connect the frames and another one that approximates a 3D face using regression
models [147].

4.6. Face Masking and Quasi-Landmarks

Some researchers have established a guide to map the 3D face meshes in question
to a template that resembles an anthropometric mask [148]. The open-source MeshMonk
tool is a script designed to automatically quantify the dense surfaces of the biological
phenotypes in question. It automates the orientation and resizing of the face, maps the face
using a non-rigid transformation to a spatially dense face anthropometry model, and then
uses the so-obtained modality in multivariate statistical analysis [149]. This mapping also
establishes correspondences between the quasi-landmarks from the model and mesh points
from the targeted faces. To account for changes in the orientation, positioning, and size scale
of the face, Generalized Procrustes Analysis (GPA) was used. This superimposition was
performed to combine the original and reflected configurations of the faces. This creates an
asymmetric and bilaterally symmetric component for each decomposed shape of the face.
The difference in asymmetry was determined from the average symmetrical component of
the reflected configuration. By using these steps, differences between facial asymmetries
were ignored, and the only components used were the symmetrical ones [150]. Multiple
researchers have confirmed that the accuracy of using 3D facial scans with automated
measurements was better than direct anthropometry [127,128]. Researchers have tested the
accuracy of the MeshMonk tool on 41 human faces and found it to be similar to the use of
19 manual landmarking placements with an average Euclidean distance error of 1.26 mm
and a range of 0.7–1.68 mm [151].

Some computer programs such as Cliniface include tools for the automatic extraction
of facial landmarks from 3D facial scans [100,149]. This software uses the MeshMonk
algorithms to landmark 69 points of a 3D face. In addition, linear and angular facial
measurements can also be obtained using the same software [100,149]. This tool is of great
use since it is available online for free and is designed for dysmorphological facial analysis
research. Furthermore, the software provides a high level of accuracy with respect to
extracting the measurements from 3D faces by comparing the results to manual extraction
performed by an expert [100].

Most researchers in forensic and anthropological fields use linear distance measure-
ments. These measurements can allow for greater collaboration between different study
groups, especially when 3D face datasets cannot be shared due to ethical research restric-
tions set to protect the volunteers [91].

5. Current advances in Approaching Genetically Based 3D Facial Shape Analysis

The nature of EVC inference using DNA is complex due to environmental factors
that can affect facial feature formation. Thus, larger 3D facial datasets are required to
begin exploiting the capabilities of this technology. Furthermore, FDP techniques and
analytical approaches are in their development stages, and greater agreement is required
among the scientific community concerning the best approaches [149,152]. Sero et al.
presented a framework for research on modeling facial features based on average faces,
and then retouched using DNA [124]. The framework consists of three stages: unraveling
genetic architectures, perceptual analysis and applications, and the predictive modeling
of faces. The model also lists the disciplines needed for each stage, mainly comprising
biologists, geneticists, bioinformaticians, image analysts, forensic scientists, lawyers, and
policymakers. There are currently two approaches to studying facial features using genetics:
the DNA-to-face approach and the face-to-DNA approach [124].

5.1. DNA to Face Approach

The DNA-to-face approach is a mode of investigation used by geneticists to under-
stand the phenotypic aspects of the face based on genetic mutations using DNA-genotyping
techniques [153]. The method is also investigated using enhancer activity detection by
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a reporter gene assay and RNA-seq assays in non-human models such as mice and ze-
brafish [154,155].

The GWAS investigated the association between SNPs and facial features, age, and
genomic ancestry. Forensic scientists have been focused on DNA-phenotyping research,
especially in the last ten years. Due to the abundantly generated data, multiple databases
have been established to organize the related research findings. For the purposes of this
study, The National Human Genome Research Institute–European Bioinformatics Institute
(NHGRI–EBI)’s GWAS Catalog database was used to report the SNPs that have been
significantly associated with facial features to date. This database is one of the main
resources of GWAS studies and its tools provided the bases to identify, exclude, and include
the studies of this review, as detailed in (Figure 1) [156].
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Figure 1. Literature review stages using PRISMA approach.

The results shown in the identification stage of (Figure 1) were obtained by first
searching the register “facial morphology measurement” trait in the GWAS Catalog on
30 April 2022. Facial morphology measurement was described as the “quantification of
some aspect of facial morphology” such as “lip thickness”, “forehead height”, or “chin
protrusion” [156]. The results included 1101 SNP associations with 109 traits in 19 pub-
lications (p-value 1 × 10−79–9 × 10−2) [91,146,154,157–172]. However, this search did
not reveal facial features regarding the nose area. As a result, another search was con-
ducted on the “nose morphology measurement” trait, which was described as the “quan-
tification of some aspect of nose morphology”, such as “nose wing breadth”, “nose tip
shape”, or “nose profile” [156]. A total of 250 associations resulted from this search, with
33 nose traits in 11 studies [146,154,157,158,160–163,165,168,169]. From these two searches,
a total of 1351 associations with 142 facial traits were reported in a total of 19 GWAS
studies [91,146,154,157–172]. A total of five papers were excluded [91,157,166,167,172].

Analysis of population backgrounds in these papers revealed that most of the studied
populations were of European ancestry (80%), followed by East Asians (10%), Hispanic or
Latin Americans (7%), Africans (2%), and those of Admixed ancestry (1%) (Figure 2). Such
results support the persistent European bias in GWAS data, which was previously reported
in 2016 [30].
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Figure 2. Population ancestries in 19 research studies investigating SNP-face
morphology [91,146,154,157–172]. These percentages include both discovery and
replication samples.

For the purposes of this review, the “facial attractiveness measurement” trait was
excluded due to its non-relevance to facial feature prediction using DNA. In addition, only
SNPs that met the GWAS p-value threshold of (5 × 10−8) or higher were reported. This
threshold was selected based on the Bonferroni correction method. This method accounts
for the p-value based on the assumption that every SNP is tested independently of an
array [173]. It considers the linkage disequilibrium (LD) that may present between SNPs of
the same array. As a result, the calculation considers that there are, based on the genome,
1,000,000 possible LD. Thus, 0.05/1,000,000 will yield this threshold (p < 5 × 10−8) [174].
This is considered one of the most conservative methods for selecting the p-value thresh-
old [174,175]. In addition, note that the database reports one p-value for the correlated
trait, which may be the p-value of discovery, replication, or meta-analysis. Therefore, the
database was used as a filtering tool for all SNPs that reached the genome-wide significance
threshold. A total of 614 associations with 98 traits (p-value 1 × 10−79–5 × 10−8) met our
inclusion criteria (Tables S1–S6). Figure 3 demonstrates the distribution of these associations
according to six facial regions (facial traits affecting multiple areas of the face, forehead,
nose, mouth, lip, and chin/lower face). Most of the associations were found in the mouth
area (29%), followed by the nose (21%), eye (20%), face (15%), chin/lower face (13%), and
forehead (2%).
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Figure 3. Percentage of SNPs that met the GWAS significance threshold in the GWAS Catalog
according to six facial regions (Face, forehead, nose, mouth, lip, and chin/lower face). “Face”
indicates traits that were associated with multiple facial regions. Numbers on each bar reflect the
number of the associations for each facial region.
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When assessing genes of two or more associations with facial features, inconsistent
patterns were observed within and between the population groups (Table 2). Some genes
were associated with features in the same facial region in different publications on the same
population group. For instance, the PABPC1L2A and PABPC1L2B genes were associated
with intercanthal width in two studies conducted on the European population [154,165].
PABPC1L2 encodes for binding protein cytoplasmic, and among its related pathways are
mRNA surveillance pathways and RNA transport [176]. Similarly, two studies conducted
on individuals of European ancestry reported associations of the NAV3 gene with mouth
morphology measurements [165,169]. The NAV3 gene is a member of the neuron navigator
family and is mainly expressed in the nervous system [177].

Table 2. Genes that demonstrated two or more associations with facial traits from the
Tables S1–S6 [146,154,158,160–163,165,169–171].

Number of
Associations

for Each Gene
Genes Facial Region Phenotypes Ancestry Reference

2 TRPC6 Face
Upper facial depth European [154]

Middle facial depth European [154]

2
LINC01470

Face
Facial width measurement European [165]

LINC01470, PRKAA1 Facial width measurement European [165]

2 ZRANB2-AS2 Face

Factor 13, vertical position of alar
curvature relative to upper lip European [165]

Factor 13, vertical position of alar
curvature relative to upper lip European [165]

2 TRPM1, LINC02352 Face
Facial width measurement European [165]

Middle facial depth European [154]

2 RERE Eye
Right eyelid peak position ratio East Asian [146]

Tangent line angle of er3 East Asian [146]

2 ATP8A1 Eye
Upper eyelid sagging severity European [170]

Upper eyelid sagging severity European [170]

2 PABPC1L2A, PABPC1L2B Eye
Factor 14, intercanthal width European [165]

Intercanthal width European [154]

2 ZNF385D Eye
Upper eyelid sagging severity European [170]

Upper eyelid sagging severity European [170]

2 CACNA2D3 Nose
Segment 52 African [163]

Nose size European [162]

2 GLI3 Nose
Segment 22 European [169]

Nose wing breadth Hispanic/Latin
American [158]

2 LINC00399, LINC00676 Nose
Nose protrusion Hispanic/Latin

American [161]

Nose size Hispanic/Latin
American [161]

2
LINC00676

Nose
Nose size European [162]

LINC00676, LINC00399 Segment 20 European [169]

2 LINC01121, SIX2 Nose
Columella size Hispanic/Latin

American [161]

Segment 44 European [169]

2 LINC01432 Nose
Nostril size Hispanic/Latin

American [161]

Segment 54 African [163]
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Table 2. Cont.

Number of
Associations

for Each Gene
Genes Facial Region Phenotypes Ancestry Reference

2
PAX3

Nose
Nasion position Hispanic/Latin

American [158]

PAX3, RPL23AP28 Segment 11 European [169]

2 PAX7 Nose
Columella inclination Hispanic/Latin

American [161]

Segment 11 European [169]

2
PKHD1

Nose
Segment 11 European [169]

PKHD1, FTH1P5 Segment 22 European [169]

2 PRDM16 Nose
Nose roundness 1 Hispanic/Latin

American [161]

Nose size Hispanic/Latin
American [161]

2 RUNX2, SUPT3H Nose
Nose bridge breadth Hispanic/Latin

American [158]

Nose morphology measurement East Asian [160]

2 LINC00620 Mouth
Mouth morphology measurement European [165]

Lower lip height European [154]

2 LINC02820, RASSF9 Mouth
Segment 30 African [163]

Segment 9 European [169]

2 NAPB Mouth
Factor 15, philtrum width European [165]

Factor 15, philtrum width European [165]

2 PCCA Mouth

Factor 5, width of mouth relative to
central midface European [165]

Factor 5, width of mouth relative to
central midface European [165]

2 NAV3 Mouth
Mouth morphology measurement European [165]

Segment 35 European [169]

2 NHP2P2, HOXA1 Mouth
Segment 9 European [169]

Philtrum width European [171]

2 SACM1L Mouth

Factor 5, width of mouth relative to
central midface European [165]

Labial fissure width European [154]

2 SDK1 Mouth

Factor 5, width of mouth relative to
central midface European [165]

Factor 5, width of mouth relative to
central midface European [165]

2 STXBP5-AS1 Mouth
Lip protrusion Hispanic/Latin

American [161]

Lower lip protrusion Hispanic/Latin
American [161]

2 LINC01117 Chin/Lower face
Chin dimples European [162]

Segment 24 European [169]

2
LINC01965

Chin/Lower face
Chin dimples European [162]

LINC01965, AHCYP3 Jaw slope 2 Hispanic/Latin
American [161]

2
CPED1

Chin/Lower face
Jaw protrusion 2 Hispanic/Latin

American [161]

CPED1 Jaw protrusion 5 Hispanic/Latin
American [161]
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Table 2. Cont.

Number of
Associations

for Each Gene
Genes Facial Region Phenotypes Ancestry Reference

2 RNU7-147P, PLCL1 Chin/Lower face
Chin dimples European [162]

Segment 53 European [169]

2 TNFSF12,
TNFSF12-TNFSF13

Chin/Lower face
Segment 26 European [169]

Chin dimples European [162]

2 SEM1 Chin/Lower face
Chin dimples European [162]

Segment 54 European [169]

2 ADAM15
Forehead Segment 41 African [163]

Chin/Lower face Chin dimples European [162]

2 ADGRL4
Face Factor 9, facial height related to vertical

position of nasion European [165]

Mouth Factor 5, width of mouth relative to
central midface European [165]

2 CLYBL
Eye Segment 59 African [163]

Mouth Factor 5, width of mouth relative to
central midface European [165]

2 DENND1B
Face Factor 4, facial height related to vertical

position of gnathion European [165]

Chin/Lower face Chin morphology East Asian [160]

2 HDAC9
Nose Columella inclination Hispanic/Latin

American [161]

Mouth Mouth morphology measurement European [165]

2
KCNQ1 Face Factor 13, vertical position of alar

curvature relative to upper lip European [165]

KCNQ1, KCNQ1OT1 Mouth Segment 9 European [169]

2
LINC01376 Nose Segment 22 European [169]

LINC01376 Chin/Lower face Segment 24 European [169]

2 MN1
Face Middle facial depth European [154]

Eye Factor 8, orbital inclination due to vertical
and horizontal position of exocanthion European [165]

2
PRRX1, GORAB Chin/Lower face Segment 51 European [169]

PRRX1, MROH9 Mouth Segment 9 European [169]

2
RAD51B Nose Nose size European [162]

RAD51B Mouth Segment 17 European [169]

2 RN7SL720P, BNC2 Nose Columella size Hispanic/Latin
American [161]

Chin/Lower face Chin dimples European [162]

2 RPS27AP14, DMRT2 Face Factor 9, facial height related to vertical
position of nasion European [165]

Nose Nose size European [162]

2 TBX3, UBA52P7 Eye Segment 14 African [163]

Nose Segment 5 European [169]

2
TMEM74 Mouth Factor 6, height of vermillion Lower lip European [165]

TMEM74, EMC2 Nose Segment 10 European [169]

3 VPS13B Nose

Columella size Hispanic/Latin
American [161]

East Asian [160]

Nasolabial angle East Asian [146]
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Table 2. Cont.

Number of
Associations

for Each Gene
Genes Facial Region Phenotypes Ancestry Reference

3 LSP1 Mouth

Lip thickness 1 Hispanic/Latin
American [161]

Lower lip thickness 1 Hispanic/Latin
American [161]

Lower lip thickness 2 Hispanic/Latin
American [161]

3 WARS2 Mouth

Lower lip thickness 2 Hispanic/Latin
American [161]

Lip thickness ratio 1 Hispanic/Latin
American [161]

Lip thickness ratio 2 Hispanic/Latin
American [161]

3 BMP7

Nose Segment 23 European [169]

Nose Nose size European [162]

Mouth Factor 5, width of mouth relative to
central midface European [165]

3

C17orf67 Face Lower facial depth European [154]

C17orf67 Eye Factor 8, orbital inclination due to vertical
and horizontal position of exocanthion European [165]

C17orf67, NOG Mouth Segment 38 European [169]

3

CRYGFP, MEAF6P1 Mouth Factor 17, height of vermillion upper lip European [165]

CRYGGP Face Cheek morphology partial-least-square
model

East Asian
+Admixed
Ancestry

[168]

CRYGGP Eye Factor 8, orbital inclination due to vertical
and horizontal position of exocanthion European [165]

3 DLGAP1

Eye Upper eyelid sagging severity European [170]

Eye Upper eyelid sagging severity European [170]

Mouth Factor 6, height of vermillion Lower lip European [165]

3 MAGEF1, EPHB3

Eye Upper eyelid sagging severity European [170]

Nose Segment 5 European [169]

Nose Nose size European [162]

3 SMG6

Forehead Forehead protrusion 1 Hispanic/Latin
American [161]

Forehead (Upper forehead slant angle) East Asian [146]

Chin/Lower face Segment 51 European [169]

3 THSD4

Eye Right eye tail length East Asian [146]

Eye Outercanthal width East Asian [146]

Chin/Lower face Segment 24 European [169]

5

Y_RNA Face Factor 13, vertical position of alar
curvature relative to upper lip European [165]

Y_RNA, ARHGAP15 Chin/Lower face Chin dimples European [162]

Y_RNA, CFAP20 Eye Factor 14, intercanthal width European [165]

Y_RNA, MED13 Face Factor 4, facial height related to vertical
position of gnathion European [165]

Y_RNA, RPL35AP3 Mouth Factor 6, height of vermillion Lower lip European [165]
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Table 2. Cont.

Number of
Associations

for Each Gene
Genes Facial Region Phenotypes Ancestry Reference

5 SFRP2, DCHS2 Nose

Nose roundness 1 Hispanic/Latin
American [161]

Nose roundness 3 Hispanic/Latin
American [161]

Nostril size Hispanic/Latin
American [161]

Segment 27 African [163]

5

SLC24A2, MLLT3 Nose Segment 48 African [163]

SLC24A5 Nose Nose roundness 3 Hispanic/Latin
American [161]

SLC24A5 Mouth Lip thickness 1 Hispanic/Latin
American [161]

SLC24A5 Mouth Lower lip thickness 1 Hispanic/Latin
American [161]

SLC24A5 Mouth Lower lip thickness 2 Hispanic/Latin
American [161]

5

SUPT3H Forehead Forehead protrusion 1 Hispanic/Latin
American [161]

SUPT3H Nose Nose morphology measurement East Asian [160]

SUPT3H Nose Nose morphology measurement East Asian [160]

SUPT3H Chin/Lower face Chin dimples European [162]

SUPT3H, CDC5L Nose Segment 23 European [169]

6 CRB1

Face Factor 4, facial height related to vertical
position of gnathion European [165]

Mouth Lip protrusion Hispanic/Latin
American [161]

Mouth Lower lip protrusion Hispanic/Latin
American [161]

Chin/Lower face Chin protrusion 1 Hispanic/Latin
American [161]

Chin/Lower face Chin protrusion 2 Hispanic/Latin
American [161]

Chin/Lower face Chin dimples European [162]

6 GCC2

Mouth Lip protrusion Hispanic/Latin
American [161]

Mouth Lower lip protrusion Hispanic/Latin
American [161]

Chin/Lower face Jaw protrusion 2 Hispanic/Latin
American [161]

Chin/Lower face Jaw protrusion 5 Hispanic/Latin
American [161]

Chin/Lower face Jaw slope 2 Hispanic/Latin
American [161]

Chin/Lower face Lower face flatness Hispanic/Latin
American [161]
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Table 2. Cont.

Number of
Associations

for Each Gene
Genes Facial Region Phenotypes Ancestry Reference

7 CASC17

Nose Columella inclination Hispanic/Latin
American [161]

Nose Nose roundness 1 Hispanic/Latin
American [161]

Nose Nose size Hispanic/Latin
American [161]

Nose Segment 5 European [169]

Nose Nasal tip protrusion East Asian [146]

Nose Profile nasal area East Asian [146]

Chin/Lower face Chin dimples European [162]

8

ROCR Nose Profile nasal angle East Asian [146]

ROCR Nose Profile nasal angle East Asian [146]

ROCR Nose Nasal tip protrusion East Asian [146]

ROCR Nose Nasolabial angle East Asian [146]

ROCR Nose Nasal tip protrusion East Asian [146]

ROCR Nose Nasolabial angle East Asian [146]

ROCR Nose Nose size European [162]

ROCR, LINC01152 Nose Segment 44 European [169]

9 MTX2, RPSAP25

Eye Right eye tail length East Asian [146]

Eye Eye morphology East Asian [160]

Eye Tangent line angle of er4 East Asian [146]

Eye Right eyelid peak position ratio East Asian [146]

Eye Tangent line angle of el3 East Asian [146]

Eye Tangent line angle of el4 East Asian [146]

Eye Tangent line angle of el6 East Asian [146]

Eye Tangent line angle of er3 East Asian [146]

Mouth Mouth morphology East Asian [160]

In contrast, some genes showed associations with different facial features within
the same population group. For example, the transmembrane 74 (TMEM74) gene was
associated with the height of the vermillion lower lip in the European population [165].
This gene was also associated with features in the nose segment in another study conducted
on the same population group [169]. In addition, several studies suggest the involvement
of the TMEM74 gene in tumor cell survival through the induction of autophagy in multiple
tumor cell lines [178,179].

When investigating the associations between different population groups, some genes
showed consistent associations with features in the same facial region, while others showed
inconsistent findings. For instance, the PAX3 gene was associated with nasion position in
the Hispanic/Latin American individuals [158] and with features in the nose segment in the
European population [169]. The PAX3 gene plays a critical role during fetal development
and is involved in normal bone development in the skull and face [180]. Similarly, the
regulator of chondrogenesis RNA (ROCR) gene was associated with five nose traits in
different population groups, such as profile nasal angle, nasal tip protrusion, and nasolabial
angle in East Asians [146], and nose size and traits in the nose segment in two studies
conducted on Europeans, respectively [162,169]. The ROCR gene has a biased expressed
mainly in the salivary gland [181].
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Other findings suggest the association of genes in different face areas among differ-
ent population groups. The SUPT3H gene was associated with forehead protrusion in
Hispanic/Latin Americans [161], nose morphology measurements in East Asians [160],
and chin dimples and the nose segment in Europeans [162,169]. The SUPT3H gene is
related to pathways involved in transcriptional misregulation in cancer and chromatin-
folding patterns [182]. It is also associated with several diseases, including Cleidocranial
Dysplasia, which is a rare genetic disorder that affects tooth and bone development [183].
Another gene, HDAC9, was associated with an indication of columella in Hispanic/Latin
Americans [161], while it was associated with mouth morphology measurement in Euro-
peans [165]. HDAC9 (Histone deacetyltransferase 9) is an enzyme engaged in regulating
gene expression. Although HDAC9 is not expressed in the craniofacial tissues of developing
mice, it is proposed that it regulates the expression of TWIST1, a neighboring gene affecting
limb and craniofacial development in mice [161].

The above observations suggest the involvement of multiple genes in face morphology.
In addition, some of these genes affect traits in the same facial region within and between
population groups, while others have inconsistent patterns. These findings indicate the
complex interaction in gene–face morphology, and it is essential to conduct additional
studies to understand such associations and how other anatomical and developmental
factors affect variations between different ancestries.

5.2. Face to DNA Approach

Naturally, a person can distinguish between feminine and muscular facial features. In
addition to the symmetry characteristics between male and female faces, the differences are
statistically significant [184]. Moreover, face-shape differences between phylogenetically
related populations were shown to be statistically significant [185]. The phenotype-to-
genotype approach, also known as the face-to-DNA approach, uses the average face.
It is generated based on each gender and genomic ancestry. The face is then remod-
eled/modified based on multiple SNPs that have previously been associated with specific
facial features. The modifications on the faces are performed using machine learning
tools, 3D facial scan databases, genetic traits, and other human biometric authentication
measures [168].

Another investigated aspect in this approach constitutes face-to-DNA classifiers, which
is a labeling approach that categorizes given faces into different classes based on molecular
features. The algorithm used by the authors of [124] generates 7150 QLs based on wrapping
a templated average face over the given face. Afterward, a squared similarity matrix
is constructed using the RV coefficient between each pair of QLs configurations. First,
the segments are arranged hierarchically using hierarchical spectral clustering. Then,
these segments are divided multiple times until the total number of facial areas reaches
63 face segments. This dense surface registration tool targets specific 3D facial features
to aid the performance of statistical analysis, classification, regression, score fusion, and
biometric evaluations, as well as the discovery of new associations between phenotypes
and genotypes. Using samples grouped into two primary study cohorts (Global and
European), full, 3D faces were segregated into 63 segments/modules based on the ethnicity
of the cohort. The preselected SNPs were generated from the GWAS 9.5 million SNPs, in
which 1932 SNPs were positioned at 38 separate markers. Using this approach, the authors
demonstrated 83% and 80% verified matches in the global and European cohorts [124].

Other researchers have also studied the approach of phenotype-based genomics. They
were able to compare different models to test the effects of including some SNPs and
genetic factors related to age, ethnicity, gender, height, body mass index (BMI), vocal
pitches, and other parameters in the prediction algorithms used for identification. The
prediction accuracy with respect to facial structure was enhanced when BMI and age were
considered. Facial features were predicted using multiple types of algorithms, such as PC,
linear discriminant, neural networks, sparse representation, and the local presentation of
facial features. Their approach was mainly to deform the face and map it against a template
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and calculate the displacements between them to overcome the challenge regarding data
privacy in personalized medicine. Using 1000 ancestry PC data, the algorithm predicts
the face’s PC value based on ridge regression and multiple covariates such as sex, age,
and BMI. This algorithm was developed based on maximum entropy in order to combine
phenotypic features and GWAS. Future studies shall include populations of different ethnic
groups in order to validate the current research outcomes and explore facial traits that are
less common among individuals of European ancestry [186].

Considering the differences between the two approaches, the authors of [187] tested
the possible improvement in predicting hair structure, freckles, and the color of hair, skin,
and eyes using trait-prevalence-informed priors. The model of the priors was based on
including biogeographical ancestry groups in a Bayesian framework. They compared this
model to the previously proposed DNA-based (prior-free) EVC-predicting models. The
priors model showed minimal effect on the prediction of some facial features, while it did
not affect others. This study suggests that using prevalence priors, similar to the face-to-
DNA approach, may not be the right approach to understanding the EVC. The researchers
recommend focusing on the genetic factors directly affecting the facial traits independently
from the population’s genetic factors [187]. However, considering the difference between
the well-established pigmentation prediction method and the complex genetic architecture
of facial feature prediction, additional traits ought to be assessed by the trait-prevalence-
informed priors model. These features include nose protrusion, nose length, eye curvature,
chin depression, etc.

5.3. Statistical Approaches

Considering the complexity of the process of facial prediction, applying the power
of machine learning techniques, algorithms, and other statistical models to the big data
available can alter the approaches to the challenge at hand. Although simple, linear models
are considered great classifiers when aiming to avoid overfitting. There are regularized
linear models, such as maximum likelihood, and those with less regularization using
variable selection simultaneously, such as lasso, which is a preferred model for increasing
accuracy in high-dimensional data [188,189]. Using the right training data based on a
known variable, the supervised learning model can be targeted for each type of trait.
In general, quantitative traits that involve measurements are usually approached using
regression. On the other hand, when analyzing categorical traits that involve pigmentation
(more than two categories), the multi-class classification supervised learning model is
considered [190]. As an example, the polygenic score model—employing weighted allele
sums of multiple SNPs—was used to predict height-related features [189]. The area under
the receiver operating characteristic curve (AUC) and R2 were used to calculate the general
performance or the accuracy of prediction models [189].

In addition, researchers have used partial-least-squares regression (PLSR) for pre-
dicting face-related features based on genomic ancestry, sex, and 24 SNPs [80]. Others
used ridge regression of 1000 genomic principal components along with ancestry and sex
genomic factors, which were coupled with age and BMI, to increase accuracy [187]. In
addition, a shape-similarity statistic that used the shape space angle between 3D faces was
used in PCA and PLSA models with 277 SNPs [168]. There are also other models that are
considered black-box models which utilize ensemble, decision trees, and neural networks
methods. Most of these networks are deep and have hidden layers of combined signals
that are trained mostly by gradient or back-propagation algorithms [190]. Choosing the
right features regarding the learning rate of neural networks, their layers, and the neurons
available within them can help optimize such algorithms for prediction. Since the face is
considered a complex, non-linear, continuous model, continuous latent features are better
approached using variational autoencoders. In these methods, building a cost-effective
prediction model is dependent on selecting the effective features of the target variable.
Some of the methods that are used to filter redundancies and connect variables—even in a
non-linear manner—are the information theory models [190].
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6. Challenges in Forensic DNA Phenotyping

Multiple challenges need to be addressed before applying FDP in forensic cases. First,
the accuracy of FDP needs to be assessed, mainly when the result of this evidence is used
for exclusion or conviction. Second, FDP raises ethical concerns by revealing medical
information that the suspects/victims may not wish to know/have released. Third, FDP
has been legislated in only a few countries, and the legal terms need to be updated in
others. Fourth, some individuals make cosmetic or surgical alterations to their facial
features, making FDP more challenging. Lastly, the generated FDP data and their analytical
procedures need to be further assessed by forensic and research laboratories worldwide to
obtain a valid scientific basis before using FDP as legal evidence in forensic cases.

6.1. Accuracy

The success of FDP can be measured by validating the accuracy of predicted facial
features in real forensic cases. However, the current research on FDP focuses on associating
genes with face-related phenotypes, which predicts a class of phenotypes but does not yet
individualize one face from another [191]. Moreover, several aspects need to be addressed
before using the technology in forensic cases, including its accuracy and the standardization
of validation testing [192]. The accuracy of FDP can be advanced by identifying more gene-
related phenotypes and conducting studies on larger population groups from different
ethnicities [186,193].

6.2. Ethical Issues

As the research on FDP progresses, more information can be predicted using DNA.
Initially, DNA was used to generate profiles for identification in forensic cases. These
STR profiles were thought to be uninformative and were mainly used for identification
purposes. However, research has shown that these genetic markers have a regulatory role
in gene expression. For instance, Bañuelos, M., et al. demonstrated correlations between
genotypes in the Combined DNA Index System (CODIS) loci and expression variations of
the neighboring gene and, possibly, medical information [194]. Therefore, genetic privacy
has become one of the major challenges for FDP because of the continuous improvements
and advances in this technology [193]. Another aspect of privacy is the availability of the
FDP data to third parties, thereby granting them power due to holding such information
while making the individual vulnerable from a “knowledge is power” perspective [186,195].

Not all characteristics revealed by FDP have the same level of sensitivity. For instance,
some characteristics are trivial and are not private, such as the external features of a subject,
which includes voice type or right-handedness. In addition, police and law enforcement
agencies have access to portrait photographs on drivers’ licenses and ID cards. On the
other hand, medical history is characterized as a sensitive trait. If this trait is revealed to the
public, it can be used as a filter criterion in the employment process. Moreover, it is argued
that the advantages of the limited use of these features in criminal investigations do not
override the privacy risks faced by the individual [195]. It is significant to note that although
the same gene can code for both pathological and physical variations, the mutation causing
the variation is different. For instance, the OCA2 gene codes for oculocutaneous albinism
type 2. It also codes for variations in eye, skin, and hair color. However, the SNPs associated
with each variation are different [1].

FDP can potentially reveal information regarding genetic diseases that individuals
may not wish to be informed about, thus violating the “right not to know” principle.
Regarding the human genome, United Nations Educational, Scientific and Cultural Orga-
nization (UNESCO), in Article 5c, declared that “The right of every individual to decide
whether or not to be informed of the results of the genetic examination and the resulting
consequences should be respected” [196]. Similar statements were declared in the Rights
of the Patient approved by the World Medical Association, Patients’ rights in French law,
the European Convention, the Human Genetics Advisory Commission (HGAC) in the
United Kingdom, the Dutch Medical Treatment Act of 1994, the Hungarian Health Act of
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1997, and the Belgian Patient’s Rights Act of 2002 [196]. Generally, it is believed that the
advantages of identifying criminals and preventing them from committing more crimes
exceed the benefits of preventing patient discrimination. This argument has affected the
legal legislation of FDP in Texas state, which legalized the use of FDP, including in testing
for diseases. On the other hand, other countries, such as the Netherlands, disallowed the
use of disease-related information in forensic investigations in 2003 [1].

From another perspective, some argue that the weight of the right to maintain igno-
rance is dependent on the value of information revealed by FDP. For example, some traits
do not reveal medical information and do not necessarily violate privacy rights, such as
left-handedness, the tendency to smoke, voice type, or geographic origin. These traits are
mostly previously known by the individual and will not raise an issue if confirmed by
FDP [5,47–52]. In addition to the possibility of violating the “right not to know principle,” it
is important to identify the circumstances of the collection and storage of FDP data, e.g., the
decision of whether FDP analysis will be implemented in all forensic cases or whether it
will be restricted to cases where a DNA match has not been found [197].

To address the data protection and privacy issues raised by individuals, it is suggested
that FDP data are destroyed following the criminal investigation or when a match is
found. This option ensures that the collected data are used for their original purpose,
which is identification, and potentially eliminates the use of such information for other
purposes. However, destroying FDP information may violate the Universal Declaration
on the Human Genome, which gives the individual the right to know/be unaware of the
result of a genetic test [196,198]. Further FDP-related ethical concerns include the storage
of such data during and after investigations and access to FDP information, which need
to be addressed by the scientific community before using this information as evidence in
forensic investigations [199].

6.3. Bias

There is evidence of bias in the research into FDP. This bias mainly stems from the
researchers or the machines used. Researchers may use easier-to-access populations to
conduct their research, and they may try to obtain specific grants based on the population of
interest. Accordingly, some populations, such as Europeans, are more prone to be included
in human genetics research. In addition, since most researchers are from universities and
research centers in well-developed countries, it will be easier to target populations around
them rather than collect samples from other areas, which invokes logistical bias.

Moreover, it is easier for researchers to compare and use pre-established databases
such as the GWAS Catalog. However, this will create persistent bias throughout the years
because machine learning and the verification of the results are easier when using more
data from the same subjects’ ancestry. Hence, there are many variables to control when
introducing a new population and more to correct for before learning from novel popula-
tions. In addition, some machines that have already been developed may find it harder
to compare and provide accurate results since the ancestry information available (geno-
types) and phenotypic information—such as lifestyle, facial characteristics, and diet—vary
between populations.

Hence, some technologies may not accurately present complete perspectives of phe-
notypic information if this bias is not considered. For example, light, shades of darker
colors, and reflection are not well-considered by scanning machines that have already been
developed using lighter skin-color populations. It is necessary to optimize these machines
to gather the full potential of the data in order to reach higher levels of accuracy.

Some researchers have shown that GWAS is a great tool for discovering the genetic
factors involved in complex diseases. Hundreds of thousands of significantly associated
biological characteristics and genetic loci have been found. These associations have been
of high value as they helped understand the biological mechanisms of diseases and other
phenotypes. However, admixed populations or those of non-European ancestry are under-
represented in the GWAS Catalog. Hispanic and Latin American ancestry, Pacific Islanders,
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Native Peoples, and Arab and Middle Eastern subjects comprised less than 1% of the
catalog in the year of 2016. Arab and Middle Eastern populations have contributed to
only about 0.08% of the whole GWAS dataset as of 2016. This continuation of bias will
create many implications for research, such as (1) impairing the accuracy of findings if
direct associations are used across populations, (2) hindering the discovery of novel genetic
associations, and (3) limiting the understanding of the face-related genomics in the forensic,
anthropological, and medical research on unexplored populations [30].

6.4. Legal Issues

FDP was recently introduced in forensic investigations. Therefore, some countries
are still updating their laws regarding the use of FDP in forensic cases. Netherlands,
Slovakia, and Germany are the only countries that legalized FDP for forensic purposes,
while Belgium, Greece, France, Luxembourg, and Ireland prohibited the use of FDP [54,200].
While some argue that FDP acts as an eyewitness and thus does not require any legislation,
others have restrictive views on the application of FDP in forensic investigations. For
instance, some countries, such as South Africa, restricted FDP to non-coding markers, as
most SNPs associated with facial features are located in the intronic region [1,195]. As an
example, the rs2045145 SNP is intronic and is associated with the female European second
PC extreme profile [121]. In addition, an intron of the PARK2 gene (SNP rs9456748) was
found to be significantly associated with the height of the midface [158]. Additionally, the
intronic variant of COL23A1 (collagen type 23 α 1) (SNP rs118078182) is associated with
variations in the nasal shape of individuals across Eurasia [95].

As FDP technology advances, another approach to legislating the use of FDP in
forensic investigations is to specify the forensic purpose, i.e., identification or 3D facial
prediction, rather than restricting the use of certain markers [1]. Overall, most current DNA
regulations are related to traditional DNA profiling, which is based on comparisons of DNA
profiles obtained from reference and evidence samples. Consequently, FDP technology
requires new legal considerations that are different from those applied to traditional DNA
typing [201].

6.5. Facial Cosmetic Changes

The number of plastic surgeries and cosmetic procedures has exponentially increased
worldwide. This causes a limitation that needs to be addressed, especially for technologies
that are based on face recognition algorithms [202]. Cosmetic changes can be minor, such
as fillers, skin lifts and OnabotulinumtoxinA injections, as well as plastic surgeries of the
eyelids and those involving the reshaping of the nose. The effect of these procedures can be
minor such as changes in skin texture or major such as changes in the natural measurements
of facial features [203]. An evaluation of the current facial recognition algorithms showed
lower performance when applied to faces that underwent plastic surgery [204]. This might
be even more challenging for FDP studies as the genetic components cannot be accurately
associated with the natural landmark positions or face measurements. Other temporary
modifications include the application of hair dye, wearing colored contact lenses, and the
use of tanning products. Such modifications are also expected from fugitives who try to
avoid being recognized by law enforcement agencies.

Consequently, caution must be taken in FDP-guided investigations to avoid falsified
appearances [1,205]. The common changes that people make to their natural appearance
indicate that new FDP technologies need to be robust and accurate, even towards cosmetic
changes. A new aspect of FDP research is the study of the extent of such modifications and
their effects on the accuracy of newly developed techniques [206]. Overall, overcoming the
limitations of facial 3D prediction using DNA can be achieved by increasing the volume of
the EVC-related studies [5,47–52].
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6.6. Evaluation and Validation

The evaluated research studies demonstrated that the prediction of ancestry and
pigmentation traits such as skin, eye, and hair color is more developed than the prediction
of facial features, indicating the need for additional research before accepting the use of
this technology in forensic fields [62,193,200]. Extensive research is needed to precisely
identify the genes associated with variations of each trait. The collaboration of research
institutions, governments, private organizations, commercial companies, and the forensic
laboratories of law enforcement agencies around the world is needed to conduct massive
genome-wide association studies. In addition, intensive research is essential in order to
establish a database of candidate genes associated with facial features. It is of high value to
understand that a comprehensive database can greatly enhance the current state-of-the-art
technologies used in forensic laboratories by supporting the transition of DNA profiling
databases to a new technology that can potentially generate evidence without the need
for reference samples. The use of these databases can be efficient by including many
subjects, a wide age range, different facial expressions, and various ethnic groups [1,206].
Some available 3D face databases include FaceBase, Stirling ESRC 3D Face Database,
Bosphorus Database, etc. [207–210]. In 2017, scientists developed the VISible Attributes
Through GEnomics (VISAGE) Consortium to validate and enhance the application of FDP
in forensic cases. This consortium brings together eight working groups to cover multiple
disciplines related to FDP, such as the confirmation of genetic markers and statistical
tools, cooperation with face-sketchers, the training of individuals of interest, the setting
of policies, and the acquirement of required ethical approval. This collaboration aims to
predict individuals’ ancestry, facial features, and age using the massive parallel sequencing
of a large number of data [211,212].

Face base also serves as a hub for collaborators/researchers interested in craniofacial
research. FaceBase has criteria for accepting and sharing facial data from different models
(animals and humans) [213]. In addition, the European DNA Profiling Group (EDNAP)
aims to assess the reliability and consistency of the currently available technologies used in
forensic science by establishing meetings and comparing the data of laboratories around the
world. Moreover, the reproducibility of the IrisPlex System has been validated by EDNAP
across 21 laboratories, which has revealed its potential for success. However, since most
genetic associations with face morphology are determined from homogeneous populations,
additional studies are needed to validate such associations in admixed populations [52].

Although the promising results of FDP indicate that it could replace the current STR-
profiling techniques, this replacement may not be feasible in the near future due to the
large amount of money spent on the existing STR profiles and infrastructure in place in
developed national databases worldwide. As a result, future genetic markers used for
FDP will likely be added to the core STR markers without replacing the existing STR
technology [92].

7. Discussion and Conclusions

The current state of the art regarding DNA-phenotyping techniques has been high-
lighted in this paper. Multiple technologies (scanning tools, software, algorithms, etc.) are
available for acquiring facial feature measurements, which vary with respect to their ease
of use and data accuracy. In the meantime, new technologies are evolving fast, reflecting
the importance of revisiting the literature to remain informed of the latest technologies and
algorithms developed in such research areas.

Most scientists believe that it is too early for DNA technologies to be fully employed
in face prediction. Nevertheless, genetic studies have cleared the picture of the influence
of genetics on facial morphology. With the use of GWAS on limited population groups,
researchers have been able to identify some associations between genetic markers and facial
features. However, facial analysis based on DNA differs from Mendelian diseases due to
the multiple and complex factors affecting facial morphology. Thus, other approaches or
combinations of them need to be considered.
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Some challenges FDP encountered by include those related to assessing its accuracy
before implementing it in forensic cases. In addition, applying practices to maintain FDP
data privacy is fundamental, especially if such data reveals medical information. The
regulation of access to FDP data and storage methods are essential in order to avoid infor-
mation exploitation by third parties/less scientifically sophisticated police officers. Limited
efforts have been made to address these concerns, which is understandable considering
that it is an emerging technology, and its extent and validity are not fully established [211].
Moreover, the fitness of face inference algorithms or statistical tests can be improved by
increasing the number of investigated individuals, conducting studies on underrepresented
population groups, and identifying more face-related genetic markers. Lately, the discovery
of homogeneous populations has been a challenge, as the migration of individuals has
become easier, and intermarriage is more common across the world. For example, the
percentage of intermarriage of newlyweds in the USA was 3% in 1967. The same percentage
in 2015 has increased 4.7 times to reach 17% [213]. These admixed populations could affect
the outcomes of prediction models and could increase the error rate if not corrected for
via population stratification. Moreover, it is recommended that researchers investigate
faces globally and locally by correlating grouped features or measurements with individual
or multiple genetic factors [167]. Other factors to be included in FDP analysis include
epigenetics, telomere lengths, and non-genetic factors [214,215].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14010136/s1: Table S1: Summary of data obtained from NHGRI-
EBI GWAS Catalog for SNPs that met the genome-wide significance p-value threshold of (5 × 10−8)
for the face region, which include traits affecting multiple face areas. RAF = risk allele frequency.
OR = Odd ratio. CI = Confidence interval. NR: Not reported [154,165,168]. Table S2: Summary of data
obtained from NHGRI-EBI GWAS Catalog for SNPs that met the genome-wide significance p-value
threshold of (5 × 10−8) for traits in the forehead region. RAF = risk allele frequency. OR = Odd ratio.
CI = Confidence interval. NR: Not reported [146,161,163]. Table S3: Summary of data obtained from
NHGRI-EBI GWAS Catalog for SNPs that met the genome-wide significance p-value threshold of
(5 × 10−8) for traits in the eye region. RAF = risk allele frequency. OR = Odd ratio. CI = Confidence
interval. NR: Not reported [144–161,163,168]. Table S4: Summary of data obtained from NHGRI-EBI
GWAS Catalog for SNPs that met the genome-wide significance p-value threshold of (5 × 10−8) for
traits in the nose region. RAF = risk allele frequency. OR = Odd ratio. CI = Confidence interval. NR: Not
reported [146,158,160–163,165,168,169]. Table S5: Summary of data obtained from NHGRI-EBI GWAS
Catalog for SNPs that met the genome-wide significance p-value threshold of (5 × 10−8) for traits in
the mouth region. RAF = risk allele frequency. OR = Odd ratio. CI = Confidence interval. NR: Not
reported [146,154,156,160,161,163,165,168,169]. Table S6: Summary of data obtained from NHGRI-EBI
GWAS Catalog for SNPs that met the genome-wide significance p-value threshold of (5 × 10−8) for
traits in the chin/lower face region. RAF = risk allele frequency. OR = Odd ratio.
CI = Confidence interval. NR: Not reported [158,160–163,169].
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W. Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Sci. Int. Genet. 2015,
17, 173–179. [CrossRef]

25. Sun, Q.; Jiang, L.; Zhang, G.; Liu, J.; Zhao, L.; Zhao, W.; Li, C. Twenty-seven continental ancestry-informative SNP analysis of
bone remains to resolve a forensic case. Forensic Sci. Res. 2019, 4, 364–366. [CrossRef]

26. Xia, X.; Chen, X.; Wu, G.; Li, F.; Wang, Y.; Chen, Y.; Chen, M.; Wang, X.; Chen, W.; Xian, B.; et al. Three-dimensional facial-image
analysis to predict heterogeneity of the human ageing rate and the impact of lifestyle. Nat. Metab. 2020, 2, 946–957. [CrossRef]
[PubMed]

http://doi.org/10.1016/0002-9416(79)90274-4
http://www.ncbi.nlm.nih.gov/pubmed/285609
http://doi.org/10.3389/fgene.2018.00462
http://www.ncbi.nlm.nih.gov/pubmed/30386375
http://doi.org/10.1016/j.fsigen.2015.02.003
http://www.ncbi.nlm.nih.gov/pubmed/25716572
http://doi.org/10.3238/arztebl.2019.0873
http://www.ncbi.nlm.nih.gov/pubmed/31941575
http://doi.org/10.1117/1.JMI.4.4.044008
http://doi.org/10.2174/2352092209666150212001256
http://doi.org/10.1016/j.fsigen.2017.02.009
http://doi.org/10.1371/journal.pone.0196770
http://doi.org/10.1016/j.fsigen.2017.04.006
http://doi.org/10.1159/000486239
http://doi.org/10.1016/j.fsigss.2017.09.095
http://doi.org/10.1016/j.fsigen.2018.09.010
http://doi.org/10.1038/ng.3406
http://doi.org/10.1038/nature17671
http://doi.org/10.1038/s41598-019-55175-x
http://doi.org/10.1051/orthodfr/2009033
http://doi.org/10.1002/9781119289999.ch6
http://doi.org/10.1002/wfs2.1369
http://doi.org/10.1016/j.fsigen.2015.05.001
http://doi.org/10.1080/20961790.2017.1306431
http://doi.org/10.1038/s42255-020-00270-x
http://www.ncbi.nlm.nih.gov/pubmed/32895578


Genes 2023, 14, 136 28 of 35

27. Kidd, K.K.; Speed, W.C.; Pakstis, A.J.; Furtado, M.R.; Fang, R.; Madbouly, A.; Maiers, M.; Middha, M.; Friedlaender, F.R.; Kidd, J.R.
Progress toward an efficient panel of SNPs for ancestry inference. Forensic Sci. Int. Genet. 2014, 10, 23–32. [CrossRef] [PubMed]

28. AncestryDNA®. 2020. Available online: https://www.ancestry.com/dna/ (accessed on 30 September 2020).
29. Roosenboom, J.; Hens, G.; Mattern, B.C.; Shriver, M.D.; Claes, P. Exploring the Underlying Genetics of Craniofacial Morphology

through Various Sources of Knowledge. BioMed Res. Int. 2016, 2016, 3054578. [CrossRef] [PubMed]
30. Popejoy, A.B.; Fullerton, S.M. Genomics is failing on diversity. Nature 2016, 538, 161–164. [CrossRef] [PubMed]
31. Peterson, R.E.; Kuchenbaecker, K.; Walters, R.K.; Chen, C.Y.; Popejoy, A.B.; Periyasamy, S.; Lam, M.; Iyegbe, C.; Strawbridge,

R.J.; Brick, L.; et al. Genome-wide Association Studies in Ancestrally Diverse Populations: Opportunities, Methods, Pitfalls, and
Recommendations. Cell 2019, 179, 589–603. [CrossRef]

32. 23andMe DNA Genetic Testing & Analysis—23andMe AU, DE, FR & EU. 2020. Available online: https://www.23andme.com/
en-int/ (accessed on 30 September 2020).

33. Geno DNA Ancestry Kit. National Geographic. 2020. Available online: https://helpcenter.nationalgeographic.com/s/article/
Genographic-DNA-Ancestry-Project-and-Kit-Discontinuation (accessed on 1 October 2022).

34. Butler, K.; Peck, J.M.; Hart, M. Schanfield, and D. Podini Molecular ‘eyewitness’: Forensic prediction of phenotype and ancestry.
Forensic Sci. Int. Genet. Suppl. Ser. 2011, 3, e498–e499. [CrossRef]

35. Jin, X.-Y.; Guo, Y.-X.; Chen, C.; Cui, W.; Liu, Y.-F.; Tai, Y.-C.; Zhu, B.-F. Ancestry Prediction Comparisons of Different AISNPs for
Five Continental Populations and Population Structure Dissection of the Xinjiang Hui Group via a Self-Developed Panel. Genes
2020, 11, 505. [CrossRef]

36. Budowle, B.; van Daal, A. Forensically relevant SNP classes. Biotechniques 2008, 44, 603–608. [CrossRef]
37. Phillips, C.; Salas, A.; Sánchez, J.; Fondevila, M.; Tato, A.G.; Alvarez-Dios, J.A.; Calaza, M.; de Cal, M.C.; Ballard, D.;

Lareu, M.; et al. Inferring ancestral origin using a single multiplex assay of ancestry-informative marker SNPs. Forensic Sci. Int.
Genet. 2007, 1, 273–280. [CrossRef]

38. José, A. Alvarez Dios, Antonio Gómez Tato, y María de los Ángeles Casares de Cal. Departamento de Matemática Aplicada,
Classification of individuals using AIMs. Available online: http://mathgene.usc.es/index.php (accessed on 1 October 2022).

39. Guo, Y.-X.; Jin, X.-Y.; Xia, Z.-Y.; Chen, C.; Cui, W.; Zhu, B.-F. A small NGS-SNP panel of ancestry inference designed to distinguish
African, European, East, and South Asian populations. Electrophoresis 2020, 41, 649–656. [CrossRef]

40. Lan, Q.; Fang, Y.; Mei, S.; Xie, T.; Liu, Y.; Jin, X.; Yang, G.; Zhu, B. Next generation sequencing of a set of ancestry-informative
SNPs: Ancestry assignment of three continental populations and estimating ancestry composition for Mongolians. Mol. Genet.
Genom. 2020, 295, 1027–1038. [CrossRef]
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