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Abstract: The GluN2B subunit of N-methyl-D-aspartate receptors plays an important role in the
physiology of different neurodevelopmental diseases. Genetic variations in the GluN2B coding
gene (GRIN2B) have consistently been linked to West syndrome, intellectual impairment with focal
epilepsy, developmental delay, macrocephaly, corticogenesis, brain plasticity, as well as infantile
spasms and Lennox–Gastaut syndrome. It is unknown, however, how GRIN2B genetic variation
impacts protein function. We determined the cumulative pathogenic impact of GRIN2B variations
on healthy participants using a computational approach. We looked at all of the known mutations
and calculated the impact of single nucleotide polymorphisms on GRIN2B, which encodes the
GluN2B protein. The pathogenic effect, functional impact, conservation analysis, post-translation
alterations, their driving residues, and dynamic behaviors of deleterious nsSNPs on protein models
were then examined. Four polymorphisms were identified as phylogenetically conserved PTM
drivers and were related to structural and functional impact: rs869312669 (p.Thr685Pro), rs387906636
(p.Arg682Cys), rs672601377 (p.Asn615Ile), and rs1131691702 (p.Ser526Pro). The combined impact of
protein function is accounted for by the calculated stability, compactness, and total globularity score.
GluN2B hydrogen occupancy was positively associated with protein stability, and solvent-accessible
surface area was positively related to globularity. Furthermore, there was a link between GluN2B
protein folding, movement, and function, indicating that both putative high and low local movements
were linked to protein function. Multiple GRIN2B genetic variations are linked to gene expression,
phylogenetic conservation, PTMs, and protein instability behavior in neurodevelopmental diseases.
These findings suggest the relevance of GRIN2B genetic variations in neurodevelopmental problems.

Keywords: GRIN2B; neurodevelopmental disorders; molecular dynamics simulation; developmental
delay; Lennox–Gastaut syndrome; SNPs

1. Introduction

N-methyl-D-aspartate receptors (NMDARs or GluNRs), which are excitatory gluta-
mate receptors expressed widely in the brain, perform crucial roles in neuronal processes
such as neurodevelopment, synaptogenesis, plasticity, learning, and memory [1]. This
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larger heteromeric complex is made up of seven GRIN genes (GRIN1, GRIN2A-D, and
GRIN3A-B) encoding subunits for N-methyl-D-aspartate-type glutamate receptors, respec-
tively. One among these is GRIN2B, which provides instructions for making a protein
called GluN2B [2]. This gene is involved in a variety of neurodevelopmental diseases
such as West syndrome and intellectual impairment with focal epilepsy [3] and may be
linked to infantile spasms and Lennox–Gastaut syndrome [4]. GRIN2B variations have
been identified in GRIN2B-related neurodevelopmental disorders, such as ID [5], ASD [6,7],
Atypical Rett Syndrome & intractable epilepsy [8], encephalopathy [9], developmental
delay or macrocephaly [10], schizophrenia [11], obsessive compulsive disorder [12], and
cerebral visual impairment [13], causing cells to create an inactive GluN2B protein or
prevent them from making any GluN2B protein. Researchers are uncertain how improper
NMDA receptor activation compromises typical brain growth and development or why
excessive or inadequate activity manifests in neurological complications in people with
GRIN2B-related neurodevelopmental disorders.

The three-dimensional structure of GluN2B includes conserved domains of the NR2B
subunit, i.e., signal peptide (SP) from the residue (1–28), amino-terminal domain (ATD)
(28–393) that is involved in receptor assembly, S1 (458–547), S2 (681–798) that forms the
ligand-binding domain, re-entrant pore-forming and transmembrane spanning domains
(Pore) (556–681) and the C-terminus PDZ domain-binding motif (PDZ) (840–1484), respec-
tively. Disease associated GRIN2B variants have been reported in N-terminal domain
(NTD), membrane-proximal ligand binding domain (LBD), transmembrane domain that
forms the ion pore containing three transmembrane (TM) spanning domains followed by
an intracellular C-terminal PDZ-binding domain (CTD) of variable length [14]. Mutations
arising due to West syndrome were found in the re-entrant pore-forming domain, while
ID and focal epilepsy mutations were found in the glutamate-binding domain S1 [3]. In
recent times, SNPs in coding and regulatory areas were employed as markers in associa-
tion and linkage studies to determine the region of the genome associated with a certain
disease [15–19]. Because each variation has the potential to modify a protein’s function
or structure, SNP detection studies and mutagenesis analysis are carried out together to
uncover amino acid variations in protein-coding domains [20]. Understanding a major
proportion of disease-causing genetic mutations is a key aim in today’s genetics [21]. A
characterization of variations based on their nature, large-scale investigations of SNPs, and
in-depth association studies are all necessary for linking a gene to a certain disease [22].
More sophisticated computational approaches are being developed these days to aid in
the development of a high-throughput, practical method for detecting changes in protein
structure, capacity, and strength as a consequence of a change [23–25].

The current study sought to identify and forecast pathogenic nsSNPs in the GRIN2B
gene, as well as their associations with disease and the influence of deleterious nsSNPs on
protein structural behavior. Different bioinformatics tools such as SIFT [23], Polyphen2 [26],
SNAP2, SNPs&GO [27], PhD-SNP [28], I-Mutant [29], and Mu-Pro [30] were used to predict
pathogenic nsSNPs in the GRIN2B gene. In addition, ConSurf [31] was used to detect
amino acid residue conservation. Along with these, MusiteDeep and Findmod were used
to identify the protein’s post-translational modification sites [32]. AlphaFold2 [33] was
used to generate three-dimensional structures of mutant and natural PDS proteins, which
were further refined using ModRefiner [34]. To explore the structural variety and changes
in interaction behaviors of natural and mutant proteins, the COACH server was used to
predict ligand-binding sites [35]. Through protein-ligand docking, PyMOL [36] was used
to examine how natural and mutant proteins interact with their environment. Schrodinger
was used to execute molecular dynamics simulations and visualize structural variations
over time. The detailed visualization analysis was done using PyMol [36].
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2. Materials and Methods
2.1. Data Collection

NCBI (http://www.ncbi.nlm.nih.gov, accessed on 1 April 2022) was used to get the nu-
cleotide sequence in FASTA format [37], as well as the Glutamate receptor ionotropic protein
amino acid sequence (Q13224) from the UniprotKB database (https://www.uniprot.org/,
accessed on 01 April 2022) [38]. SNPs of the GRIN2B gene were found in the NCBI database
of SNPs (dbSNP (http://www.ncbi.nlm.nih.gov/snp, accessed on 1 April 2022) [39], and
Ensemble genome browser (https://www.ensembl.org, accessed on 1 April 2022) [40].
OMIM database (http://www.omim.org, accessed on 1 April 2022) was used to find
information on the Glutamate receptor ionotropic gene and protein [41].

2.2. Prediction of SNP Functional Effect

SIFT [23], Polyphen2 [42], and SNAP2 (https://www.rostlab.org/servces/snap, ac-
cessed on 5 April 2022) [43] online tools and servers were used to anticipate the effects of
SNPs. Both servers consider a variety of inputs and categorize potential SNPs based on
their respective confidence ratings. SIFT assigns a tolerance index score to each mutation,
with a value of 0.05 deemed detrimental. The PolyPhen2 score, on the other hand, ranges
from 0 to 1, with zero suggesting that amino acid alterations do not affect protein function
and 1 indicating the most harmful behavior. SNAP2 allows for genome-wide comparisons
and predicts the functional impact of amino acid alterations. The common nsSNPs from
both servers were chosen for further study.

2.3. Prediction of Disease Association of SNPs

PhD-SNP (http://snps.biofold.org/phd-snp/phd-snp, accessed on 6 April 2022) [28]
and SNPS&GO (http://snps-andgo.biocomp.unibo.it/snps-andgo/snps-andgo/snps-andgo,
accessed on 6 April 2022) [27] were used to assess the association of filtered SNPs with
disease pathogenesis. PhD-SNP is an online program that predicts the association between
illnesses and SNPs with a 78 percent accuracy rate. SNPs are categorized as illness-related
or neutral and graded from 0 to 9. SNPs & GO is a dependable approach that predicts
disease-related amino acid changes in protein and functional categories at a single site,
with an overall prediction accuracy of 82%. SNPs & GO was given the UniProt accession
number (Q13224) of Glutamate receptor ionotropic protein as well as the mutation site of
both native and changed amino acids as inputs. CADD [44], REVEL [45], MetaLR, and
Mutation Assessor [26] were employed concurrently to validate the pathogenic effect of
these changes to prevent false positives in the data.

2.4. Impact on Protein Stability

SNPs affect protein strength, which may either reduce or improve protein stability.
Several strategies were used to boost the confidence in the changes produced to foresee
these impacts. I-Mutant3 (http://folding.biofold.org/i-mutant/i-mutant3.0, accessed
on 10 April 2022) [29] is software that predicts how SNPs will affect the stability of a
protein. The tool’s accuracy might reach 77%. I-Mutant was fed the GluN2B protein amino
acid sequence as well as mutations of residues and their positions. MUpro, a machine
learning system collection, identifies changes in protein states and strength caused by
amino acid mutations [30]. The inputs for MUpro were identical to those for I-Mutant,
with the exception that MUpro supports substitution positions in addition to original and
changed residues.

2.5. Sequence Conservation Analysis

ConSurf, an online software (http://ConSurf.tau.ac.il/, accessed on 10 April 2022),
was used to analyze GRIN2B protein conservation. ConSurf is a useful software for
predicting protein target area high-throughput functions [31]. For each protein residue of
relevance, the conservation analysis is shown on a scale of 1 to 9. On the scale, 1–3 represent

http://www.ncbi.nlm.nih.gov
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variable, 4–6 represent the average, and 7–9 represent highly preserved regions [31]. The
tool takes FASTA protein sequences as input.

2.6. Post-Translational Modifications Sites (PTMs) Prediction

A variety of amino acid alterations occur at post-translational modification sites,
resulting in the creation of a varied spectrum of proteins. PTM sites have been found,
including methylation, phosphorylation, acetylation, and ubiquitination. These sites play
important roles in cellular architecture, such as protein-protein interactions and disease-
related signaling cascades. As a consequence, projecting PTM data assists in assessing the
influence of polymorphisms on disease association or pathogenicity. The total PTMs were
predicted using MuSiteDeep (https://www.musite.net/, accessed on 16 April 2022) [32].
MuSiteDeep uses protein sequences to predict PTMs. It is made up of 34 strategic relapse
abstractions that were constructed individually from a set of 126,036 non-excess realistically
verified sites for 23 distinct varieties using accessible datasets. Later, Findmod was also
used to identify PTM-contributing peptides (http://www.expasy.ch/sprot/findmod.html,
accessed on 20 April 2022).

2.7. Homology Modelling

The structural stability of the original and mutant proteins was assessed using struc-
tural analysis. Because the full-length GluN2B protein structure has yet to be determined,
we predicted the native protein structure using the AlphaFold software [33], which is
a unique machine learning strategy that combines physical and biological knowledge
about protein structure into the construction of the deep learning algorithm by exploit-
ing multi-sequence alignments. SPDViewer was used for mending atoms nomenclature
and modeling sidechains [46], YASARA was used to obtain the lower energy minima of
the modeled structure [47], and the “swappaa” feature of UCSF Chimera was used for
mutant models production, steric clashes were removed and the mutant models were mini-
mized for 1500 steps (750 steepest descent and conjugate gradient) [48]. The SAVES server
(http://servicesn.mbi.ucla.edu/SAVES, accessed on 23 April 2022) was used to validate
protein models. It contains six integrated modules, one of which is the RAMACHAN-
DRAN plot, which is used for protein structural assessment and offers information on the
conformation of residues in authorized and banned positions.

2.8. Molecular Dynamics Simulations

The Desmond program of Schrödinger software 2021-2 (Schrödinger, LLC, New York,
NY, USA) [49] with the OPLS4 (Optimized Potentials for Liquid Simulation) [50] force field
was used for MD simulation to examine the conformational changes in proteins’ dynamic
movements. A simulated triclinic periodic boundary box with a 10 extension from each
direction was developed to solve the GluN2B protein structures, and an explicit solvation
model (Monte-Carlo equilibrated SPC, the transferable intermolecular potential of 3 points)
was utilized for each system. Lennard-Jones interactions (cut-off = 10) and the SHAKE
algorithm were employed to govern the mobility of all covalent bonds, including hydrogen
bonds [51]. During the solvation, additional counter ions (0.15 M Na + Cl) were used
to neutralize the whole system. At 300 K and 1 bar pressure, the protein models were
subjected to energy reduction until a gradient threshold of 25 kcal/mol/ was achieved
using the NPT ensemble class. Each system had a single MD run, and the trajectory was
recovered by setting the time period for all simulated trajectories to 20 ps. The Particle
Mesh Ewald (PME) algorithm was used to calculate long-range coulombic interactions,
and the RESPA integrator (a motion integration software) [52] was used to control all cova-
lent bonds coupled with hydrogen atoms, with an inner time step of 2 fs throughout the
simulation. For short-range electrostatic interactions, a cut-off of 9.0 was selected, whereas,
for long-range van der Waals (VDW) interactions, a uniform density approximation was
used. A Nosé–Hoover thermostat [53] with a relaxation duration of 12 ps was utilized
at 300 K and 1 atmospheric pressure. The Martyna–Tobias–Klein barostat approach [54]

https://www.musite.net/
http://www.expasy.ch/sprot/findmod.html
http://servicesn.mbi.ucla.edu/SAVES
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with a relaxation length of 12 ps was used to maintain the condition throughout the sim-
ulation. The stability of each system was then assessed using RMSD (Root Mean Square
Deviation), RMSF (Root Mean Square Fluctuation), Rg (Radius of gyration), H-bond occu-
pancies, and SSE (Secondary Structure Elements) using the MD simulation trajectories via
Schrödinger 2021-2.

2.9. Dynamic Cross-Correlation Map (DCCM)

A 3D matrix representation of the time-dependent migration of amino acid residues.
This approach compares C atoms throughout the correlation matrix for all complexes and
systems to discover the continuous correlations of domains. The DCCM investigation used
9800 images based on C carbon atoms. The displacements of the backbone C atoms in the
trajectories were found to be cross-correlated with the displacements of the C carbon atoms.
DCCM has a value between 1 and +1, where a value larger than zero denotes movement
with positive correlation (same direction) between two atoms, and a value less than zero
represents movement with negative correlation (opposite direction). ProDy was used to
evaluate the DCCM [55], and Matplotlib was used to plot the results [56]. The DCCM graph
illustrates two types of correlation: positive and negative correlation. A positive correlation
indicates that the ligand and protein movements are parallel, and that the system is stable
when they interact. A negative correlation, on the other hand, indicates that the ligand
is migrating out of the binding pocket, resulting in an anti-parallel correlation or that the
complex is unstable. Furthermore, the intensity of the colors in the DCCM map is related
to the strength of the positive and negative correlations. These connections are represented
by the colors red to light red and blue to light blue. The red color represents positive
correlation, while the blue color represents negative correlation; a deeper color suggests a
more meaningful link and vice versa.

2.10. PCA Analysis

PCA analysis using ProDy was used to analyze the major movements of high ampli-
tude [55]. The diagonalized covariance matrix was used to create the covariance matrix,
which was then used to analyze the eigenvalues and eigenvectors. The PCs, or eigenvectors,
reflect the direction of movement of the ligand and receptor atoms, while the associated
eigenvalues describe the complex’s mean square fluctuations. PC1 and PC2 were utilized
for calculating and graphing to verify their movements.

3. Results
3.1. Data Acquisition and SNP’s Annotation

The human GRIN2B gene has a total of 1963 single nucleotide polymorphisms that
were annotated based on mutation type and loci. There were 838 missense mutations,
623 synonymous mutations, 312 stop gain mutations, and 96 in the protein’s splice region.
There were 39 coding sequence SNPs identified, with 28 known to be frameshifts and 12
to be in-frame deletions, 7 splice donors, and 6 splice acceptor variations. The stop codon
was maintained in just two variants. Figure 1 displays the distribution of SNPs by category.
25 of the 39 nonsynonymous SNPs in the coding sequence were clinically significant.

3.2. Prediction of Nature of SNPs

To get high confidence findings, the SIFT and Polyphen2 servers were utilized concur-
rently to estimate the impact of SNPs. SIFT and Polyphen2 were fed a total of 25 clinically
important nsSNPs. According to SIFT indexing, 24 (96 percent) of the clinically significant
nsSNPs were projected to be deleterious with a confidence level of 0.00, while just one
SNP was indexed as tolerated. PolyPhen2 which is indexed based on Multiple Sequence
Alignment and structural information, classified 20 of the nsSNPs as “deleterious”, 3 as
“potentially deleterious”, and just two as “benign”, summing up 25 nsSNPs to be harmful.

To get the most confident findings, the servers SNAP2, CADD, REVEL, MetaLR, and
Mutation Assessor were utilized to filter out the most deleterious nsSNPs. These 25 nsSNPs
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were then sent to the SNAP2 server for validation. This study found that 24 of the nsSNPs
had an “impact” on protein function, whereas just one was anticipated to be “neutral”.
Table 1 is a depiction of the functional effects of nsSNPs. Six nsSNPs (p.Arg1111His,
p.Gly826Glu, p.Ser810Arg, p.Gly689Ser, p.Val558Ile, and p.Asn516Ser) were evaluated
as having no or little influence by two or more tools and were therefore removed from
further investigation.

Figure 1. Classification of the total number of variations in the GRIN2B based on their locus.

Table 1. Impact of changes in GRIN2B due to amino acid substitution predicted by SIFT, Polyphen2,
SNAP2, CADD, REVEL, MetaLR, and Mutation Assessor.

Variant ID Mutation SIFT Polyphen2 SNAP2 CADD REVEL MetaLR Mut.
Ass.

rs876661167 p.Arg1111His * deleterious benign neutral likely
benign

likely
benign tolerated medium

rs1064794979 p.Gly826Glu * tolerated possibly
damaging effect likely

benign
likely

benign tolerated medium

rs797044849 p.Gly820Val deleterious probably
damaging effect likely

benign

likely
disease-
causing

tolerated medium

rs797044849 p.Gly820Ala deleterious probably
damaging effect likely

benign

likely
disease-
causing

tolerated high

rs797044849 p.Gly820Glu deleterious probably
damaging effect likely

benign

likely
disease-
causing

tolerated high

rs1555103150 p.Gly820Arg deleterious probably
damaging effect likely

benign

likely
disease-
causing

tolerated high

rs864309560 p.Ser810Arg * deleterious probably
damaging effect likely

benign
likely

benign tolerated medium

rs876661055 p.Ile751Thr deleterious probably
damaging effect likely

benign

likely
disease-
causing

tolerated medium

rs1555103971 p.Arg696His deleterious probably
damaging effect likely

benign

likely
disease-
causing

tolerated medium
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Table 1. Cont.

Variant ID Mutation SIFT Polyphen2 SNAP2 CADD REVEL MetaLR Mut.
Ass.

rs876661219 p.Ile695Ser deleterious probably
damaging effect likely

deleterious

likely
disease-
causing

tolerated medium

rs876661219 p.Ile695Thr deleterious probably
damaging effect likely

benign

likely
disease-
causing

tolerated medium

rs869312868 p.Gly689Ser * deleterious probably
damaging effect likely

benign
likely

benign tolerated low

rs869312669 p.Thr685Pro deleterious probably
damaging effect likely

benign

likely
disease-
causing

tolerated high

rs387906636 p.Arg682Cys deleterious probably
damaging effect likely

deleterious

likely
disease-
causing

tolerated medium

rs876661151 p.Asp668Tyr deleterious probably
damaging effect likely

benign

likely
disease-
causing

damaging high

rs876661151 p.Asp668Asn deleterious probably
damaging effect likely

benign

likely
disease-
causing

damaging high

rs1555110812 p.Ala652Pro deleterious probably
damaging effect likely

benign

likely
disease-
causing

damaging high

rs797044930 p.Ala639Val deleterious probably
damaging effect likely

benign

likely
disease-
causing

tolerated medium

rs672601376 p.Val618Gly deleterious probably
damaging effect likely

benign

likely
disease-
causing

tolerated medium

rs672601377 p.Asn615Ile deleterious probably
damaging effect likely

benign

likely
disease-
causing

tolerated medium

rs1057518700 p.Trp607Cys deleterious probably
damaging effect likely

benign

likely
disease-
causing

damaging high

rs1057519004 p.Val558Ile * deleterious possibly
damaging effect likely

benign
likely

benign tolerated low

rs1131691702 p.Ser526Pro deleterious possibly
damaging effect likely

benign

likely
disease-
causing

tolerated medium

rs886041295 p.Asn516Ser * deleterious benign effect likely
benign

likely
benign tolerated low

rs527236034 p.Glu413Gly deleterious probably
damaging effect likely

deleterious

likely
disease-
causing

tolerated medium

Remarks: Asterisk (*): Mutations that were annotated as benign or likely tolerated by more than two tools. These
mutations are excluded from further study.
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3.3. Prediction of SNPs Associated with Disease

The filtered and decreased numbers of polymorphisms were then tested to see whether
they were disease-linked or not. The SNP & GO and PhD-SNP servers were then given
19 high-confidence nsSNPs. Each nsSNP was assigned a score to determine if it was neutral
or disease-related. To generate high-confidence findings, a cut-off value (p ≥ 0.80) for
PhD-SNP scores was used. Only four nsSNPs (p.Ile751Thr, p.Ilr695Thr, p.Asp668Asn,
and p.Glu413Gly) were determined to be neutral by PHD-SNP, whereas the remaining
15 nsSNPs were disease-causing, as predicted by SNPs and GO. The filtered results are
shown in Table 2.

Table 2. Disease association of the SNPs as predicted by PhD-SNP, SNPs & GO, I-Mutant, and MuPro.

Variant ID Mutation PhD-SNP SNPs & GO I-Mutant MUpro

rs797044849 p.Gly820Val Disease Disease −0.34 (Dec. Stab.) −0.86017491 (Dec. Stab.)

rs797044849 p.Gly820Ala Disease Disease −0.55 (Inc. Stab.) −1.2722781 (Dec. Stab.)

rs797044849 p.Gly820Glu Disease Disease −0.55 (Dec. Stab.) −0.96468908 (Dec. Stab.)

rs1555103150 p.Gly820Arg Disease Disease −0.41 (Dec. Stab.) −1.0760922 (Dec. Stab.)

rs876661055 p.Ile751Thr Neutral Disease −2.27 (Dec. Stab.) −2.8133707 (Dec. Stab.)

rs1555103971 p.Arg696His Disease Disease −1.27 (Dec. Stab.) −1.8584507 (Dec. Stab.)

rs876661219 p.Ile695Ser Disease Disease −2.16 (Dec. Stab.) −1.876043 (Dec. Stab.)

rs876661219 p.Ile695Thr Neutral Disease −2.11 (Dec. Stab.) −2.047267 (Dec. Stab.)

rs869312669 p.Thr685Pro Disease Disease −0.92 (Dec. Stab.) −1.1060293 (Dec. Stab.)

rs387906636 p.Arg682Cys Disease Disease −1.11 (Dec. Stab.) −0.790331 (Dec. Stab.)

rs876661151 p.Asp668Tyr Disease Disease −0.58 (Dec. Stab.) −0.84414843 (Dec. Stab.)

rs876661151 p.Asp668Asn Neutral Disease −1.42 (Dec. Stab.) −1.3280612 (Dec. Stab.)

rs1555110812 p.Ala652Pro Disease Disease −0.30 (Dec. Stab.) −1.8518457 (Dec. Stab.)

rs797044930 p.Ala639Val Disease Disease −0.16 (Dec. Stab.) −0.89362766 (Dec. Stab.)

rs672601376 p.Val618Gly Disease Disease −2.62 (Dec. Stab.) −2.1850285 (Dec. Stab.)

rs672601377 p.Asn615Ile Disease Disease 0.78 (Inc. Stab.) −0.5777985 (Dec. Stab.)

rs1057518700 p.Trp607Cys Disease Disease −1.73 (Dec. Stab.) −1.1378457 (Dec. Stab.)

rs1131691702 p.Ser526Pro Disease Disease −0.32 (Inc. Stab.) −1.5731478 (Dec. Stab.)

rs527236034 p.Glu413Gly Neutral Disease −1.25 (Dec. Stab.) −1.1247393 (Dec. Stab.)

3.4. Prediction of Effect of Stability of Protein

The I-Mutant and MuPro servers were used to estimate the structural impact of
19 potential nsSNPs, with I-Mutant predicting just three nsSNPs (p.Gly820Ala, p.Asn615Ile,
and p.Ser526Pro) enhancing protein stability and the other 16 nsSNPs reducing protein
activity by decreasing its stability. MuPro anticipated that none of the nsSNPs would
increase protein stability. Table 3 gives a depiction of the findings. Because none of the
nsSNPs were shown to be neutral by more than one technique, none of the SNPs were
removed from further study.

Table 3. Conservation Analysis, PTMs, predicted PTM sites, and peptides.

Variant ID Mutation ConSurf Musite Findmod Peptides Potential
Modification

rs797044849 p.Gly820Val 9, bur, str — — —

rs797044849 p.Gly820Ala 9, bur, str — — —

rs797044849 p.Gly820Glu 9, bur, str — — —



Genes 2022, 13, 1332 9 of 21

Table 3. Cont.

Variant ID Mutation ConSurf Musite Findmod Peptides Potential
Modification

rs1555103150 p.Gly820Arg 9, bur, str — — —

rs876661055 p.Ile751Thr 7, exp — — —

rs1555103971 p.Arg696His 7, exp — — —

rs876661219 p.Ile695Ser 9, bur, str — — —

rs876661219 p.Ile695Thr 9, bur, str — — —

rs869312669 p.Thr685Pro 8, exp, fun Phosphorylation — —

rs387906636 p.Arg682Cys 5, exp Methylation FQRPNDFSPPFR DHAS

rs876661151 p.Asp668Tyr 9, exp, fun — — —

rs876661151 p.Asp668Asn 9, exp, fun — — —

rs1555110812 p.Ala652Pro 9, bur, str — — —

rs797044930 p.Ala639Val 9, bur, str — — —

rs672601376 p.Val618Gly 8, bur — — —

rs672601377 p.Asn615Ile 8, exp, fun Glycosylation — —

rs1057518700 p.Trp607Cys 8, bur — — —

rs1131691702 p.Ser526Pro 9, bur, str — SEVVDFSVPFIETGISVMVSR BROM

rs527236034 p.Alu413Gly 8, exp, fun — — —

Abbreviations: DHAS; 2,3-didehydroalanine (Ser), BROM; Bromination: Light blue color: Potential Residues involved.

3.5. Sequence Conservation Analysis

Any disease-causing mutation is usually discovered in a gene’s highly conserved re-
gion. The ConSurf server was used to investigate the conserved behavior of the
25 nsSNPs. On the scale, 9 nsSNPs were highly conserved in addition to being struc-
tural and buried, two were conserved and only buried, and five were predicted to be highly
conserved in addition to being functional and exposed, while two were just exposed. The
one that survived (p.Arg682Cys) was well preserved and exposed. The ConSurf results
were represented as color codes ranging from blue to purple, with blue showing variability
and purple indicating a highly conserved location. As shown in Figure 2, ConSurf projected
that the variations would be buried (b) or revealed (e), as well as functional (f) or structural
(s). The functional and structural implications of the 19 high confidence nsSNPs, as well as
the PTM positions and phylogenetic conservation scores, are summarized in Table 3.

3.6. Prediction of PTMs (Post Translational Modifications) Sites

The MusiteDeep and FindMod servers predicted post-translational modifications
linked with our candidate nsSNPs by using the protein sequence as input and an extra
peptide mass as input for FindMod. The findings were obtained in .csv format, and all
19 nsSNPs were evaluated. Only three nsSNPs (p.Thr685Pro, p.Arg682Cys, and p.Asn615Ile)
were shown to contribute to methylation, phosphorylation, and glycosylation, respectively.
FindMod also discovered two nsSNPs (p.Arg682Cys and p.Asn526Pro) in peptides that
contribute to 2,3-didehydroalanine (Ser) and bromination. Table 3 has the descriptions
of the 19 SNPs that were either directly involved or contributed to the peptide that was
implicated in PTMs. Table 4 summarizes the specifics of the mutations that were exposed
to MD modeling.

3.7. Structure Prediction

Our findings show that mutations in the GluN2B protein at p.Thr685Pro, p.Arg682Cys,
p.Asn615Ile, and p.Ser526Pro induce pathogenicity. We picked these four highly conserved
mutations based on their prediction scores to investigate the protein structural changes
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they produce. Using AlphaFold, we obtained 10 templates, of which 7EU8.B exhibited
100 percent identity despite only covering 56 percent of the query sequence. This tem-
plate served as the foundation for our model’s backbone and structure prediction. The
comparison models were created using the Discrete Optimized Protein Energy (DOPE)
evaluation score to differentiate between “good” and “poor” models. Figure 3 depicts the
natural protein structure of GluN2B. After predicting the original protein structure using Al-
phaFold, mutant structures (GluN2Bp.Asn615Ile, GluN2Bp.Thr685Pro, GluN2Bp.Arg682Cys, and
GluN2Bp.Ser526Pro) were constructed with UCSF Chimera using the “aaswap” command-
line method. RAMACHANDRAN plot structure validation revealed that 93.32 percent of
the anticipated native structure’s residues occupy space in the most preferred area, while
4.77 percent occupy space in the additionally favored region. The verified structures were
subjected to molecular dynamics modeling.

Figure 2. Conservation analysis by ConSurf server.

Table 4. Summary of the most deleterious SNPs.

Variant ID Mutation Functional
Impact Conservation PTMs

(Residual) PTM Driver Peptides Pep.
Potential PTMs

rs869312669 p.Thr685Pro Disease 8, exp, fun Phosphorylation — —

rs387906636 p.Arg682Cys Disease 5, exp Methylation FQRPNDFSPPFR
2,3-

didehydroalanine
(Ser)

rs672601377 p.Asn615Ile Disease 8, exp, fun Glycosylation — —

rs1131691702 p.Ser526Pro Disease 9, bur, str — SEVVD
FSVPFIETGISVMVSR Bromination

Light blue color: Potential Residues involved.
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Figure 3. (A) The three-dimensional structure of GluN2B protein is classified by color-coded domains
and motifs. (B) Validation of the 3D structure using Ramachandran Plot. The red color indicates the
residues in unfavored region while blue color indicates residues in favored region.

3.8. Explicit Solvent Molecular Dynamics of Pathogenic Mutations
3.8.1. Stability Analysis

The disruptive effect of GluN2B upon undergoing mutations was revealed by molecu-
lar dynamics simulations of 100 ns. Major structural changes were embraced by GluN2BWT

for the first third of the simulation, however, the RMSD tends to converge at 12 Å for the
latter part. Detailed analysis of the three-dimensional structures revealed that during the
first 20 ns, the major contributor to the conformational shift was loops which changed
drastically during that period, while α-helices also contributed to the change in confor-
mation. On the other hand, GluN2Bp.Asn615Ile was more stable at 9 Å for the first half of
the simulation, undergoing some conformational changes before converging on the same.
GluN2Bp.Thr685Pro got stable after 50 ns and remained stable till the end of the simulation.
GluN2Bp.Arg682Cys embraced seasonal stability while exhibiting more fluctuation occasion-
ally. GluN2Bp.Ser526Pro remained unstable till the end of the simulation time. The overall
trend in the RMSD values was relatively more distant from the GluN2BWT, which shows
that upon point mutation, the GluN2B experiences a change in stability (Figure 4), however,
the changes were more prominent in all mutants except GluN2Bp.Asn615Ile, which showed
relatively comparable RMSD against GluN2BWT.

Figure 4. RMSD plot manifesting the collective conformational drifts in both GluN2BWT

and GluN2BMT models. RMSD comparison of native GluN2B with (A) GluN2Bp.Asn615Ile,
(B) GluN2Bp.Thr685Pro, (C) GluN2Bp.Arg682Cys, and (D) GluN2Bp.Ser526Pro.
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3.8.2. Flexibility Comparison of Native and Mutant GluN2B Structures

The collective flexibility of all the systems was inferred from residual fluctuations of
the GluN2BWT and GluN2BMT models. The RMSF scores of GluN2BWT protein’s residues;
Phe580 to Pro598 were noted above 10 Å with Asp591 exhibiting the highest of 13.41 Å, while
other most fluctuated peaks were Arg847 to Pro858 and Pro870 to Ile872 also exhibited RMSF
of more than 10 Å. Other small RMSF peaks were Asn444 (8.03 Å) and Thr626 (9.99 Å).

On the other hand, the RMSF of GluN2Bp.Asn615Ile suggested that Cys588-Pro595 and
His848- Ser865 exhibited more than 10 Å with Gly592 posing 11.92 Å and Val853 posing
13.94 Å. The other fluctuating peaks were Asp447 (6.69 Å), Thr626 (8.74 Å), and Asn806
(6.33 Å). The scores of GluN2Bp.Thr685Pro suggested that Phe577-Gly597 and His840-Ile872
exhibited more than 10 Å with Arg593 posing 14.68 Å and Cys854 posing 19.06 Å. The
other fluctuating peaks were Leu209 (7.96 Å), Asp447 (7.73 Å), and Gly626 (11.10 Å). The
RMSF of GluN2Bp.Arg682Cys suggested that Ser810 and Arg593 exhibited the highest RMSF
of 9.69 Å and 9.01 Å. The flexibility of GluN2Bp.Ser526Pro depicted that Gly592, Ile834, and
Thr544 exhibited 9.91 Å, 9.7, and 9.2 Å. The flexibility analysis depicted variable residues
within the Loop and C-terminal regions contributing more to the overall flexibility with
variable intensities (Figure 5).

Figure 5. RMSF plot manifesting the collective flexibility of GluN2BWT protein model with
(A) GluN2Bp.Asn615Ile, (B) GluN2Bp.Thr685Pro, (C) GluN2Bp.Arg682Cys, and (D) GluN2Bp.Ser526Pro. The
black color in the line graph represents the RMSF of GluN2BWT.

3.8.3. Gyration Analysis

The radius of gyration analysis was used to analyze parameters such as overall
dimensions and the compaction level of the molecules (Figure 6). The Rg value of the
natural protein was about 50 at the start of the simulation. During the experiment, this
number fluctuated between 43.5 Å and 52.4 Å, eventually reaching 48.2 Å at the conclusion.
The GluN2Bp.Thr685Pro and S526P mutations have considerably lower Rg values than the
natural protein. The Rg values of the GluN2Bp.Asn615Ile and GluN2Bp.Arg682Cys variants
were greater than the native protein values throughout the simulation period, except for
80–85 ns when the Rg value of GluN2Bp.Asn615Ile fluctuated lower than that of GluN2BWT.
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Furthermore, the Rg values of GluN2Bp.Asn615Ile and GluN2Bp.Arg682Cys exhibited similarly
convergent Rg scores throughout the trajectory. According to the Rg study, proteins with
the variations showed a greater amount of variable compaction than the wild-type protein.

Figure 6. Black-colored lines in all graphs show the plot of the native GluN2B. Rg graphs of
(A) GluN2Bp.Asn615Ile, (B) GluN2Bp.Thr685Pro, (C) GluN2Bp.Arg682Cys, and (D) GluN2Bp.Ser526Pro.

3.8.4. Intramolecular Hydrogen Bond Comparison of Wildtype and Mutant Variants

Hydrogen bond analysis is critical for understanding the intramolecular hydrogen
bond network of GluN2B protein, both natural and mutant. Figure 7 depicts the hydrogen
bond network of all systems in detail. A careful examination of the number of hydrogen
bonds found that the number of hydrogen bonds greatly changed amongst all of the systems
after point mutation. The number of hydrogen bonds in GluN2BWT was 728 at the start of
the simulation and decreased to 710 at the conclusion. In contrast, the GluN2Bp.Asn615Ile

protein had 722 at the start and grew to 734 at the end of the simulation period. At the
start of the simulation, GluN2Bp.Thr685Pro had 729 hydrogen bonds, which fell to 692 at
the conclusion. GluN2Bp.Arg682Cys showed 749 at the start and 708 at the conclusion of the
simulation, while GluN2Bp.Ser526Pro showed 732 at the start and 739 at the end. The average
number of hydrogen bonds varied across all systems. GluN2BWT and GluN2Bp.Asn615Ile,
GluN2Bp.Thr685Pro, GluN2Bp.Arg682Cys, and GluN2Bp.Ser526Pro have 718.2, 729.9, 715.0, 711.0,
and 726.2 hydrogen bonds on average. This research reveals that the hydrogen bond
occupancy has shifted dramatically.

Figure 7. The number of hydrogen bonds in the three-dimensional structure displayed versus
the amount of time spent running the simulation. The GluN2BWT is shown in comparison with
(A) GluN2Bp.Asn615Ile, (B) GluN2Bp.Thr685Pro, (C) GluN2Bp.Arg682Cys, and (D) GluN2Bp.Ser526Pro.

3.8.5. Secondary Structure Elements Comparison over the Trajectory

Secondary structure elements (SSE) that contribute to the overall protein stability were
also analyzed for both systems, and it was discovered that the GluN2BWT complex was
maintaining an average of approximately 48.82 percent SSE. The majority of the secondary
structure elements were composed of helices (33.66%), rather than strands (15.17%). On the
other hand, the p.Asn615Ile displayed an overall percentage of SSE that was 49.93 percent,
with helices making up 34.56 percent and strands making up 15.36 percent. p.Thr685Pro
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exhibited a total SSE of 49.19% with helix 34.24% and strand 14.95%, while p.Arg682Cys
exhibited 48.32% SSE with helices counting for 33.17% and strands contributing 15.16%.
p.Ser526Pro has 50.05% of SSE with helices counting for 35.29% and strands accounting
for 14.76%. When we further investigated why the GluN2B variant posed less stable and
variable conformations, we discovered that the GluN2B residues at the end of the SSE graph
(Figure 8) were transitioning from strands to loops. This resulted in the loss of GluN2B SSE
elements, which likely harmed its overall stability and conformational condition.

Figure 8. The graphic highlights the SSE composition for each trajectory frame during the simulation
and displays SSE distribution by residue index across the protein structure. Over a 100 ns simulation
duration, the graphic tracks each residue and its SSE assignment. (A) GluN2BWT residue index and
SSE with the y-axis, (B) GluN2Bp.Asn615Ile SSE, (C) GluN2Bp.Thr685Pro SSE, (D) GluN2Bp.Arg682Cys SSE,
and (E) GluN2Bp.Ser526Pro SSE. The red color represents α-helices while cyan color depicts β-strands.

3.9. Comparison of GluN2BWT and GluN2BMT

The four polymorphisms that were previously indicated as harmful by all of the pre-
diction algorithms demonstrated that the structure of the native protein changes when com-
pared to the native protein. Furthermore, Figure 9 depicts GluN2BWT and four variations,
GluN2Bp.Asn615Ile, GluN2Bp.Thr685Pro, GluN2Bp.Arg682Cys, and GluN2Bp.Ser526Pro, overlaid at
various timelines. Mutations alter the creation of coiling and the angles between folding,
resulting in a change in the overall structure of proteins. To determine the modifications,
the mutant structures were overlaid on the original structures using a structural alignment
tool, which demonstrated the change in 3D domain development at the location of the
mutation (Figure 9). The superimposition caused major structural changes in the loop and
C-terminal regions. The different overlapping structures may be observed clearly, while
the mutational alteration contributes to the overall structural behavior of the protein. The
change in structure also causes a change in function, which may influence the protein’s
active sites, ion channels, and binding sites.
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Figure 9. The RMSDs of GluN2BWT and GluN2BMTs at different simulation periods. The GluN2BWT

behaves very differently from the GluN2BMTs. The mutant models (GluN2Bp.Asn615Ile, GluN2Bp.Thr685Pro,
GluN2Bp.Arg682Cys, and GluN2Bp.Ser526Pro) are shown in (A), (B), (C), (D) and (E) respectively.

3.10. Functional Displacement of GluN2B and Mutant Models

We used the dynamics cross-correlation matrix (DCCM) approach to determine
the functional displacement of all systems as a function of time. The findings demon-
strate that the GluN2B residues at the N and C terminals correlated positively. Mutant
GluN2Bp.Arg682Cys exhibited a similar correlation to the GluN2BWT, confirming that the
positive correlation may be attributable to the adopted confirmation of these two pro-
teins. Furthermore, additional mutants such as GluN2Bp.Asn615Ile, GluN2Bp.Thr685Pro, and
GluN2Bp.Ser526Pro demonstrated a stronger positive association than GluN2BWT (Figure 10).
Overall, the DCCM data reveal that the natural protein and mutant protein exhibit distinct
patterns of significant positive association. The deep blue tint shows a high negative asso-
ciation among the residues, whereas the red color suggests a strong positive correlation.
Positively connected residues migrate in the same direction, whereas negatively correlated
residues move oppositely.

Figure 10. DCCM of the native protein GluN2BWT (A) and four variants GluN2Bp.Asn615Ile (B),
GluN2Bp.Thr685Pro (C), GluN2Bp.Arg682Cys (D), and GluN2Bp.Ser526Pro (E).
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3.11. Dimensionality Reduction Using PCA

Motion mode analysis was used to investigate dynamically favorable conforma-
tional changes in the chemistry of GluN2BWT and four variations, GluN2Bp.Asn615Ile,
GluN2Bp.Thr685Pro, GluN2Bp.Arg682Cys, and GluN2Bp.Ser526Pro. The coordinate covariance
matrix computed from the time series of 3D positional coordinates of distinct vari-
ant models during the 100 ns MD simulation duration was chosen as the input for
principal component analysis (PCA). The findings demonstrate that all of the systems,
GluN2BWT and four variations, GluN2Bp.Asn615Ile, GluN2Bp.Thr685Pro, GluN2Bp.Arg682Cys,
and GluN2Bp.Ser526Pro, had diverse patterns and did not converge from one energy state
to another, indicating that the mutant states of the GluN2B protein had an unstable
pattern of conformations (Figure 11).

Figure 11. PCA of the native protein GluN2BWT (A) and four variants GluN2Bp.Asn615Ile (B),
GluN2Bp.Thr685Pro (C), GluN2Bp.Arg682Cys (D), and GluN2Bp.Ser526Pro (E).

4. Discussion

Conventional strategies for finding nucleotide changes in genes and their influence
on the associated protein in vitro are not only difficult but also slow and arduous to apply.
To make things easier, investigations based on computational biology may be carried
out [57,58]. SNP stands for single nucleotide polymorphism, and it is the foundation of
genetic diversity [24,25,59]. The vast majority of SNPs are unimportant. However, certain
so-called nonsynonymous SNPs (nsSNPs) may affect a gene, predisposing humans to a
variety of disorders. Since its discovery, genetic variations in the GRIN2B translating into
GluN2B protein have consistently been linked to West syndrome, intellectual impairment
with focal epilepsy, developmental delay, macrocephaly, corticogenesis, brain plasticity, as
well as infantile spasms and Lennox–Gastaut syndrome [5,60–63]. It is unknown, however,
how GRIN2B genetic variation impacts protein function.

The goal of this computational research is to use prediction methods to examine the
effects of nonsynonymous SNPs on protein structure and function. The dbSNP database
was used to gather nsSNPs. These were put through thirteen prediction algorithms. At least
9 different computer programs found that 19 mutations in the GRIN2B encoding protein
(p.Gly820Val, p.Gly820Ala, p.Gly820Glu, p.Gly820Arg, p.Ile751Thr, p.Arg696His, p.Ile695Ser,
p.Ile695Thr, p.Thr685Pro, p.Arg682Cys, p.Asp668Tyr, p.Asp668Asn, p.Ala652Pro, p.Ala639Val,
p.Val618Gly, p.Asn615Ile, p.Trp607Cys, p.Ser526Pro, and p.Alu413Gly) were the most harmful
nsSNPs. The disparity in the findings of the prediction software employed in this work
highlighted the need to employ more than one method to evaluate the influence of alterations
on the structure and function of the protein [64].
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The conservation analysis findings revealed that all these nsSNPs were found in
protected areas. Indeed, the highly conserved amino acids, according to Miller and Kumar,
are found in physiologically active places. The biological activities are changed when
these residues are replaced [65]. After YASARA software visualization, the eleven SNPs
identified as pathogenic revealed a loss of hydrogen and hydrophobic bonds compared
to the wild-type protein. Indeed, Wang and Moult demonstrated that nearly 80% of their
nsSNP-related diseases generated a destabilization protein [66].

It should be highlighted that the p.Ser526Pro variant was found in the S1 domain,
p.Asn615Ile in pore while p.Arg682Cys and p.Thr685Pro were found in the S2 domain; S1
and S2 form the ligand-binding domain, pore; re-entrant pore-forming and transmembrane
spanning domains, which consequently may account for the change in spatial conformation
and, as a result, instability of the “GluN2B subunit of N-methyl-D-aspartate receptors”
complex, which may be a beneficial risk factor for neurodevelopmental disorders. As a
result of harmful SNPs, loss or gain of hydrogen bonds, hydrophobic interactions, and salt
bridges may change how proteins are built and how they work [24,67,68].

Bioinformatics techniques now use simulation to investigate the various effects of
protein mutations [24]. Molecular dynamics models reproduce the genuine behavior of
molecules in their surroundings [69]. This computational platform gives more specific
information on particle motion, stability, flexibility, and overall protein dimensions as they
change over time [70]. Furthermore, this powerful analysis has the strongest association
with experimental investigations [71,72]. In reality, these characteristics are interconnected;
when investigating protein structure, they must be investigated concurrently, and variations
that impair one property of a protein may have a direct impact on the other [73–75].

RMSD analysis showed that the changes to the proteins GluN2Bp.Asn615Ile, GluN2Bp.Thr685Pro,
GluN2Bp.Arg682Cys, and GluN2Bp.Ser526Pro contributed more variable instability to the GluN2B
native protein.

These harmful SNPs may cause the most damage to protein stability. According to
Yue and Moult, 25% of pathogenic SNPs in the human population may affect protein
function via protein stability changes [76,77]. Furthermore, several investigations have
demonstrated that decreased protein stability causes an increase in protein breakdown, ag-
gregation, and misfolding [25,78]. The stability of the protein was altered by the mutations
GluN2Bp.Asn615Ile, GluN2Bp.Thr685Pro, GluN2Bp.Arg682Cys, and GluN2Bp.Ser526Pro. Studies of
evolutionary stability and mutations that affect genes that code for proteins have shown
that leucine, serine, and arginine are the amino acids that most affect the stability of proteins
in mutants [25,79].

The RMSF calculations in our research revealed that the 11 nsSNPs affect flexibility at
distinct levels. Flexibility is an important feature of protein function. It enables proteins to
respond to environmental and chemical changes. Molecular flexibility regulates various
processes, including enzymatic catalysis and protein activity regulation. Indeed, a change
that impacts protein flexibility has the potential to interfere with their function and, as a
result, disease development [80–82]. Rg represents the molecule’s overall spread and is
calculated as the root mean square distance of atoms collected from their common center
of gravity. Indeed, Lobanov et al. show that the radius of gyration is a good predictor of
protein structure compactness [83]. In this study, the Rg analysis showed that the variants
GluN2Bp.Asn615Ile, GluN2Bp.Thr685Pro, and GluN2Bp.Ser526Pro were more tightly packed than
the wild-type protein except for GluN2Bp.Arg682Cys. These results were further validated by
DCCM, PCA, and conformational analysis.

According to the following research, we discovered four pathogenic variants among
our findings that were shown to be involved in disease pathogenesis. Lemke et al. con-
ducted studies on two people with West syndrome and significant developmental delay, as
well as one person with ID and focal epilepsy. The ID patient had a missense mutation in the
extracellular glutamate-binding domain (p.Arg540His), while both West syndrome patients
had missense mutations in the NR2B ion channel-forming re-entrant loop (p.Asn615Ile,
p.Val618Gly). Subsequent testing of 47 individuals with unexplained infantile spasms
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revealed no new de novo mutations [3]. p.Thr685Pro is also linked with developmental
and epileptic encephalopathy, 27 as submitted to the NCBI by HudsonAlpha Institute for
Biotechnology, CSER-HudsonAlpha (Accession no: SCV000265519). p.Arg682Cys was
reported by multiple groups to be associated with autosomal dominant 6, intellectual
developmental disorder [84]. p.Ser526Pro was associated with the complex neurodevel-
opmental disorder as explained in the submission from Simons Searchlight facilitated by
GenomeConnect (Accession: SCV001443616.1). These results also reiterate the methodology
followed by our research to be impactful in identifying the most deleterious SNPs.

5. Conclusions

This is the first comprehensive in silico examination of functional SNPs in the GRIN2B
gene. Because of their presence in a highly conserved area and capacity to impact protein
stability, we identified 19 nsSNPs (p.Gly820Val, p.Gly820Ala, p.Gly820Glu, p.Gly820Arg,
p.Ile751Thr, p.Arg696His, p.Ile695Ser, p.Ile695Thr, p.Thr685Pro, p.Arg682Cys, p.Asp668Tyr,
p.Asp668Asn, p.Ala652Pro, p.Ala639Val, p.Val618Gly, p.Asn615Ile, p.Trp607Cys, p.Ser526Pro,
p.Alu413Gly) as potentially harmful that may change the structure and/or function of
the GRIN2B encoded N-methyl D-aspartate receptor subtype 2B protein. The detailed
analysis of our study’s findings highlighted the significance of variation at the Thr685,
Arg682, Asn615, and Ser526 positions involved in post-translational modifications directly
or indirectly, which may be at the root of the destabilization of the GluN2B and, as a result,
the occurrence of the disease. p.Thr685Pro, p.Arg682Cys, p.Asn615Ile, and p.Ser526Pro
were identified as pathogenic, with the potential to inflict significant functional and stability
impacts on the proteins. The outcomes of this research are succinct evidence that these
findings might serve as a baseline for possible diagnostic and therapeutic approaches.
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