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Abstract: Endometrial carcinoma (EC), a common female reproductive system malignant tumor,
affects thousands of people with high morbidity and mortality worldwide. This study was aimed at
developing a prediction model for the diagnosis of EC in the general population. First, we obtained
datasets GSE63678, GSE106191, and GSE115810 from the Gene Expression Omnibus (GEO) database,
dataset GSE17025 from the GEO database, and the RNA sequence of EC from The Cancer Genome At-
las (TCGA) database to constitute the training, test, and validation groups, respectively. Subsequently,
the 96 most significantly differentially expressed genes (DEGs) were identified and analyzed for
function and pathway enrichment in the training group. Next, we acquired the disease-specific genes
by random forest and established an artificial neural network for the diagnosis. Receiver operating
characteristic (ROC) curves were utilized to identify the signature across the three groups. Finally,
immune infiltration was analyzed to reveal tumor-immune microenvironment (TIME) alterations
in EC. The top 96 DEGs (77 down-regulated and 19 up-regulated genes) were primarily enriched
in the interleukin-17 signaling pathway, protein digestion and absorption, and transcriptional mis-
regulation in cancer. Subsequently, 14 characterizing genes of EC were identified by random forest.
In the training, test, and validation groups, the artificial neural network was constructed with high
diagnostic accuracies of 0.882, 0.864, and 0.839, respectively, and areas under the ROC curve (AUCs)
of 0.928, 0.921, and 0.782, respectively. Finally, resting and activated mast cells were found to have
increased in TIME. We constructed an artificial diagnostic model with excellent reliability for EC
and uncovered variations in the immunological ecosystem of EC through integrated bioinformatics
approaches, which might be potential diagnostic targets for EC.

Keywords: endometrial carcinoma; GEO; TCGA; random forest; receiver operating characteris-
tic curve
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1. Introduction

Endometrial carcinoma (EC), a malignancy of the inner epithelial lining of the uterus,
is a common neoplasm in women worldwide, with increasing rates of incidence and
disease-associated mortality in recent years [1,2], seriously threatening women’s physical
and mental health. Most cases of early EC are cured by surgery alone or with adjuvant
therapy. However, many cases of EC are diagnosed in the advanced stage at the first
consultation and are associated with a poor prognosis. Although the survival rate of
patients has increased, owing to molecular targeted therapy, no targeted gene mutations
have been explored in advanced EC [3–5].

Currently, EC is diagnosed mainly based on clinical symptoms; physical findings;
results of laboratory investigations, transvaginal ultrasound, pelvic ultrasonography, en-
dometrial biopsy with hysteroscopy, and imaging (computed tomography, positron emis-
sion tomography/computed tomography, and magnetic resonance imaging); and some
biomarkers (e.g., CA125 and HE4) [6–9]. The purpose of these investigations is to examine
the endometrial cells, determine the disease extent, and detect the presence/absence of
metastasis. Although these methods have good sensitivity for the diagnosis of EC, they
have disadvantages, such as poor specificity (particularly transvaginal ultrasound), inva-
siveness, pain, and high cost. Therefore, improved examination techniques are urgently
required, and target genes seem to be appropriate candidates.

Owing to advancements in computer technology and the introduction of sequencing
technology, studies have promoted our understanding of cellular and genetic changes dur-
ing oncogenesis and yielded more targeted and individualized treatment choices [10–12].
Machine learning, a component of artificial intelligence, using computer technology to
simulate human intellect, can make predictions using mathematical algorithms after be-
ing trained with data. Deep learning, a branch of machine learning, focuses on making
forecasts using a multilayer neural network algorithm and can expand model predictions
exponentially with increased data volume and dimension, making it suitable for large-scale
data analyses. Thus, deep learning can generate meaningful insights and discern relevant
traits from genomic data. Genomic analyses have revealed novel biological targets for EC.
The genetic bases of cancer progression and therapeutic response have been extensively
studied, and the developments of next-generation sequencing and machine learning have
yielded opportunities to systematically assess differentially expressed genes (DEGs) [11–13].
Moreover, large public databases, such as the Gene Expression Omnibus (GEO) and The
Cancer Genome Atlas (TCGA), have provided abundant cancer genome sequencing data,
which have improved our understanding of molecular changes in oncogenesis. However,
due to the lack of multi-omics data, studies on the genomic analysis of EC focusing on gene
expression or immune response are few. Since RNA sequencing of tumor tissues is usually
performed to characterize gene expression and tumor immune microenvironment (TIME)
cells, many datasets have estimated the abundance of DEGs and TIME cells in neoplastic
tissue [13–16].

This study was aimed at identifying the signature genes in EC using machine learning,
constructing a diagnostic model using an artificial neural network, and verifying the model
in three EC cohorts. Finally, the changes in TIME during EC were confirmed.

2. Materials and Methods
2.1. Data Collection and Pre-Processing

Table 1 demonstrates the datasets utilized in this study. The gene expression datasets
GSE63678, GSE106191, and GSE115810 were obtained from GEO (https://www.ncbi.nlm.
nih.gov/geo/) (accessed on 3 March 2022), merged, and corrected for the batch effect to
constitute the training group. The dataset GSE17025 from GEO and the gene expression
of EC from TCGA (https://www.cancer.gov/) (accessed on 3 March 2022) were accessed
to constitute the test and validation groups, respectively. Our study complied with the
publication guidelines laid down by GEO and TCGA. No ethics committee approval
was required.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.cancer.gov/
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Table 1. Composition of the datasets and component of patients enrolled in this study.

Train Group Test Group Validation
Group

GSE106191 GSE115810 GSE63678 GSE17025 TCGA

Sample Count 97 27 35 103 583

Normal 64 3 5 12 35

Cancer 33 24 7 91 548

Enrollment 97 27 12 103 583

2.2. Exploration of DEGs and Functional Enrichment

The 96 DEGs across the EC and para-cancer samples in the training group were
calculated using the R package “limma”, which employed the empirical Bayesian method
and the moderated Wilcox test to assess differences in gene expression. Subsequently,
heatmaps and volcanic maps were drawn using the R package with an absolute log2
fold change ≥0.8 and an adjusted p-value < 0.05. For the next functional analysis of the
96 DEGs in EC, the R package “clusterProfiler” was used to perform the Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGGs) enrichment analyses. The
GO analysis mainly comprised the biological process, cellular component, and molecular
function. For the functional enrichment analysis, statistical significance was set at p < 0.05,
and the R packages “enrichplot” and “ggplot2” were used.

2.3. Construction of Metascape and the Protein-Protein Interaction (PPI) Network

In addition, we also analyzed gene sets using the online toolkit WebGestalt (http:
//www.webgestalt.org/) (accessed on 3 March 2022); performed enrichment analyses
using Metascape (http://metascape.org/) (accessed on 3 March 2022), Reactome, and
WikipathwayCancer; and investigated a protein–protein interaction (PPI) network using
the STRING (https://cn.string-db.org/) (accessed on 3 March 2022) database.

2.4. Selection of the Signature Genes and Construction of the Diagnostic Prediction Model

Random forest analyses were performed, and characteristic DEGs were selected based
on the point at which the error of cross validation was the least. The setting seed was
123,456, and the ntree was 500. Subsequently, the characteristic genes were assigned a
gene importance score, and those with a score >0.9 were selected and visualized by the
R packages “limma” and “pheatmap”. Next, we clustered the samples according to the
expression of DEGs in the training group and found that the samples were divided into
two clusters, similar to carcinoma and paraneoplastic samples.

Subsequently, we assigned scores to the specific DEGs to eliminate batch effects in
samples. Up-regulated genes greater than the median value were scored 1, whereas the
rest were scored 0; similarly, down-regulated genes lesser than the median value were
scored 1, whereas the rest were scored 0. The artificial neural network model for the EC
diagnosis was constructed from three types of layers: the input layer, with the scores of
14 genes; the hidden layers, with the scores and weights of genes; and the output layer, with
the results for control and experimental samples. The R package “NeuralNetTools” was
applied for the procedure with a seed of 12,345,678. Similarly, the selected DEGs and the
constructed artificial neural network were applied to the test and validation groups. Unlike
the other two groups, the control samples enrolled in the test group comprised tissues of
other uterine pathologic types, whereas the samples in the experimental group comprised
tissues of early EC. In addition, we constructed a receiver operating characteristic (ROC)
curve using the R package “pROC” and assessed the area under the ROC curve (AUC) for
the diagnostic model across the three cohorts.

http://www.webgestalt.org/
http://www.webgestalt.org/
http://metascape.org/
https://cn.string-db.org/
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2.5. Identification of TIME

In the analysis of immune cell infiltration, a total of 22 immune cells were identified by
the CIBERSORT algorithm and screened using the R packages “e1071”, “preprocessCore”,
and “CIBERSORT.R” at p < 0.05. The correlation between the immune cells was calculated
using the R package “corrplot.” Moreover, the different distribution of immune cells
between EC and normal tissues was measured and presented as a violin plot.

3. Results
3.1. DEGs and Functional Enrichment Analysis Results in EC

Based on the filer criteria, a total of 96 DEGs were found between EC and normal
samples in the training group and analyzed. There were 19 up-regulated (e.g., MMP12
and CCL20) and 77 down-regulated (e.g., SFP4, OGN, OSR2, FOXL2, and IGFBP4) genes
(Figure 1A,B). The top 10 GO terms revealed that the DEGs were mainly involved in
collagen-containing extracellular matrix organization and signaling receptor activator
activity (Figure 1C). KEGG terms demonstrated that the 96 DEGs were mainly involved
in the interleukin-17 (IL-17) signaling pathway, protein digestion and absorption, and
transcriptional misregulation in cancer (Figure 1D); thereby playing important roles in
inflammatory and immune processes and the occurrence and development of tumors. All
enrichment analysis results were closely related to TIME.

1 

 

 
Figure 1. Identification of 96 DEGs in EC in the training group. (A) Heatmap of DEGs. The columns
represent samples, and rows represent genes. The red color represents up-regulation, and the blue
color represents down-regulation. |log2FC| > 0.8, p-value < 0.05. (B) Volcanic map of DEGs. The
red, blue, and black colors represent up-regulated, down-regulated, and undifferentiated genes,
respectively. |log2FC| > 0.8, p-value < 0.05. (C) Top 10 biological processes, cellular components, and
molecular functions with the most significant p-value. (D) All KEGG enrichment results of DEGs.
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3.2. Metascape and PPI Network Analysis Results

A network diagram was created based on Metascape analysis. Spots represented
functions or pathways. Larger and connected points represented the presence of more simi-
lar genes between the functions or pathways. The NABA_CORE_MATRISOME gene set
contained many genes encoding extracellular matrix organization and extracellular matrix-
associated proteins activated in EC, while the NABA_MATRISOME_ASSPCIATED gene set
contained many genes encoding vascular development, tissue morphogenesis, and growth
regulation (Figure 2A). Figure 2B shows the top 50 function enrichments. Subsequently, the
enrichment analyses of DisGeNET and PaGenBase revealed that the DEGs were primarily
specialized in endometrial neoplasms and the uterus (Figure 2C,D), consistent with this
study. During the pathogenesis of EC, epigenetic changes in pathogenic genes were mainly
regulated by transcription factors EP300, RELA, JUN, SP1, NFKB1, ERG, HDAC1, CEBPA,
FOS, and HIF1A (Figure 2E), which play important roles in inflammation, cell proliferation,
transformation, differentiation, apoptosis, and immune response. In addition, the PPI
network showed a relationship between different genes and proteins in the three sub-
modules (Figure 2F). The NABA_CORE_MATRISOME sub-module included COL21A1,
COL5A1, COL6A2, COL3A1, and COL15A1, which can identify the structural components
of the extracellular matrix to provide tensile strength; the extracellular matrix organiza-
tion sub-module included SPP1, IGFBP4, GAS6, MXRA8, and SPARCL1, which could
enable proteins and/or the extracellular matrix; the NABA_MATRISOME_ASSOCIATED
sub-module included P2RY14, CXCL8, CCL20, CXCL3, and CXCL12, which could enable
protein binding and chemokine activity.

1 

 

 

Figure 2. PPI network based on Metascape. (A) Network diagrams of the enrichment pathway and
process of EC. (B) Bar plot of the enrichment pathway and process of EC. (C) Bar plot of enrichment
on DisGeNET. (D) Bar plot of enrichment on PaGenBase. (E) Bar chart of enrichment on TRRUST.
(F) Three sub-modules of PPI.
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3.3. Exploration of Characteristic DEGs and Diagnostic Prediction Model of EC

We conducted a random forest analysis to identify the characteristic DEGs. The
black line and horizontal and vertical axes represented the error value of the samples,
number of trees, and cross-validation error, respectively (Figure 3A). Figure 3B shows the
importance of genes. After re-validating DEGs, all 14 EC-signature DEGs with a score >0.9
were enrolled, including three up-regulated (MMP12, MMP9, and ADAMDEC1) and 11
down-regulated (OGN, FOXL2, IGFBP4, DCHS1, ENPP2, ALDH1A2, ADAMTS5, MXRA8,
EFEMP1, EFS, and ENPEP genes (Figures 3C and 4). In the diagnostic prediction model, the
control and experimental samples were aggregated, which signified that the expression of
the pathogenic genes was distinguished between the normal and EC samples (Figure 3D). In
addition, for the training, test, and validation groups, the AUCs were 0.928, 0921, and 0.782,
respectively, and the accuracies were 0.882, 0.864 and 0.839, respectively (Figure 5A–C,
Table 2); implying that the EC diagnostic prediction model could be used as an independent
diagnostic predictor of EC.

1 

 

 
Figure 3. Selection of signature genes by machine learning and construction of a diagnostic prediction
model by artificial neural network. (A) Construction of random forest. (B) Exploring signature genes
of EC based on gene importance scores. (C) Heatmap of 14 characteristic DEGs. (D) Process of
constructing artificial neural network.



Genes 2022, 13, 935 7 of 13

1 

 

 
Figure 4. Box diagram of 14 characteristic genes in EC and healthy controls with p-value < 0.01.
(A–N) ADAMDEC1, ADAMTS5, ALDH1A2, DCHS1, EFEMP1, EFS, ENPEP, ENPP2, FOXL2, IGFBP4,
MMP9, MMP12, MXRA8, and OGN. The red color represents EC, and the black color represents
healthy controls. * means p-value < 0.01.

1 

 

 
Figure 5. ROC curves of the three groups. (A) Training group. (B) Test group. (C) Validation group.
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Table 2. Neural Diagnostic for the training, test and validation cohorts.

Training Group Test Group Validation Group

Normal Cancer Normal Cancer Normal Cancer

Prediction
results

Normal 32 7 12 14 26 85
Cancer 9 88 0 77 9 463

Normal Accuracy 0.780 1.000 0.743
Cancer Accuracy 0.926 0.846 0.845

Accuracy 0.882 0.864 0.839

3.4. TIME of EC

Figure 6A shows the 22 categories of immunocytes in each sample. Resting and
activated mast cells, neutrophils, macrophage M1s, activated NK cells, and eosinophils
were relatively abundant in EC. Figure 6B shows the correlation in infiltration of immune
cells. The greater the absolute value of the number, the stronger the correlation coefficients,
with red and blue colors representing positive and negative correlations, respectively.
Activated and resting mast cells showed a strong negative correlation, with a correlation
coefficient of −0.54. Activated mast cells and NK cells showed a negative correlation, with
a correlation coefficient of −0.43. The activated T cells CD4 and CD8 showed a strong
positive correlation, with a correlation coefficient of 0.36 (Figure 6B). In summary, resting
and activated mast cells, neutrophils, macrophage M1s, activated NK cells, and eosinophils
in EC and normal samples were significantly different (Figure 6A–C); high expressions of
activated mast cells, macrophage M1, and neutrophils and low expressions of resting mast
cells, activated NK cells, and eosinophils were found in EC.

1 

 

 
Figure 6. Tumor-immune microenvironment of EC. (A) Histogram of 22 types of immune cells in EC
and healthy controls. (B) Correlation of immune cells in EC. (C) Violin image of immune cells.

4. Discussion

At present, EC is diagnosed mainly based on clinical symptoms, physical findings,
results of laboratory investigations, and imaging examination. Endometrial biopsy un-
der hysteroscopy seems to be the best method for the diagnosis of benign EC [17,18].
Fertility retention technology can effectively improve the quality of life of gynecological
cancer patients, and has become the goal and hope for cancer survivors to live a better
life [19]. Studies based on systems biology proteomics have highlighted the exact po-
tential molecular mechanisms associated with SLN and EC grades [20,21]. The aim of
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these investigations is to examine the endometrial cells, determine the disease extent, and
detect the presence/absence of metastasis. Although the accuracy of the diagnosis and
treatment of EC has made great progress in recent years, the molecular mechanism remains
unknown. Abnormal gene expression and immune response in TIME play active roles in
tumor occurrence, development, invasion, metastasis, and recurrence and are key consid-
erations influencing tumor prognosis [16,22–24]. Endometrial biopsy under hysteroscopy
seems to be the best method for the diagnosis of benign EC. In this study, we focused
on transcriptional data from GEO and TCGA to identify the complex correlations of the
signature genes for EC with a diagnosis and to build a diagnostic prediction model of
EC, involving 14 signature genes by random forest and artificial neural network analyses,
which distinguished patients with EC from the general population to guide diagnosis
and treatment.

We obtained 96 DEGs, including 19 up-regulated and 77 down-regulated genes,
and investigated sophisticated biological functions using GO and KEGG analyses in the
training group. The outcome indicated that the DEGs were mainly enriched in extra-
cellular matrix and structure organizations, and involved in the IL-17 signaling path-
way, protein digestion and absorption, and transcriptional mis-regulation in TIME. These
results indicated that changes in gene expression could be conducive to tumor remod-
eling and promote chronic inflammation, tumor progression, metastasis, and immune
escape. We also obtained ten transcription factors, including EP300, RELA, JUN, SP1,
NFKB1, ERG, HDAC1, CEBPA, FOS, and HIF1A, which regulated gene expression and
played important roles in inflammation, cell proliferation, transformation, differentia-
tion, apoptosis, and immune response [25–30]. In addition, the PPI network mainly
showed a relationship between different genes and proteins among the three sub-modules.
The NABA_CORE_MATRISOME sub-module comprised COL21A1, COL5A1, COL6A2,
COL3A1, and COL15A1, which could identify structural components of the extracellu-
lar matrix to provide tensile strength. The extracellular matrix organization sub-module
comprised SPP1, IGFBP4, GAS6, MXRA8, and SPARCL1, which could enable proteins
and extracellular matrix. The NABA_MATRISOME_ASSOCIATED sub-module comprised
P2RY14, CXCL8, CCL20, CXCL3, and CXCL12, which could enable protein binding and
chemokine activity.

To obtain a good neural network model, we found 14 characteristic genes for EC
by the machine learning method random forest. A diagnostic prediction model for EC
was constructed using the artificial neural network, which may be widely applied to
the formulation of diagnosis and treatment models for EC. In the model, expressions
of MMP12, MMP9, and ADAMDEC1 were increased in EC, and those of OGN, FOXL2,
IGFBP4, DCHS1, ENPP2, ALDH1A2, ADAMTS5, MXRA8, EFEMP1, EFS, and ENPEP were
decreased in EC. MMP12 and MMP9 were related to cancer development, progression,
and survival through various pathological processes and play essential roles in tumor
invasion and metastasis [31–34]. Therefore, MMP12 knockdown inhibited proliferation
and invasion of nasopharyngeal and lung cancers. Overexpression of ADAMDEC1 is
correlated with tumor progression, inflammation, immunotherapeutic response, and a
poor prognosis in many cancers [35–37]. Under-expressed OGN and EFS, compared to the
normal samples, improved survival, reduced tumor recurrence, and reversed the epithelial
to mesenchymal transition by inhibiting EGFR/AKT/Zeb-1 in tumors [38,39]. In a previous
study, FOXL2 was considered for molecular diagnostic testing in ovarian adult granulosa
cell and microcystic stromal cancers [40]. IGFBP-4 plays an important role in tumor growth
regulation by inhibiting IGF actions [41]. Although these feature genes are widely expressed
in tumors, according to previous reports, further research is required to clarify the gene
function in the pathology of carcinoma, particularly EC. According to the traditional model,
EC is divided into types 1 and 2, with certain classic mutations between the two types.
Type 1 has mutations in PTEN, ARID1A, PIK3CA, and KRAS, while type 2 has mutations
in TP53. Currently, EC is mainly diagnosed based on uterine curettage or biopsy findings.
Some data suggest that the susceptibility of endometrial biopsy for EC is 52–94% [42–46].
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The accuracy of differentiation of EC in other studies was slightly lower than our model
(Table 2) [21,47,48]. Particularly, the test group comprised non-cancerous uterine pathologic
types and early EC. The diagnostic rate of 100% in the non-cancerous group confirmed
the efficacy of our diagnostic model for early EC in the test group. Thus, the model in the
training and test groups showed a good effect, while that in the validation group showed
an average effect. The 14 feature genes were key potential biomarkers of EC, but further
studies are required to verify the results.

In addition, we also focused on TIME of EC and found that high expressions of
activated mast cells, macrophage M1s, and neutrophils, and low expressions of resting mast
cells, NK cells, and activated eosinophils played vital roles in EC. Multiple studies have
documented that mast cells, neutrophils, macrophage M1s, NK cells, and eosinophils play
a protective role during cancer progression, such as inflammatory responses, development
of blood vessels, apoptosis, proliferation, invasion, and immune evasion [49–56].

However, this study has some limitations. First, the RNA sequencing data were only
obtained from public databases. Second, although we validated the predictive performance
of the EC diagnosis, further investigation is required for accurate validation. Further basic
and clinical studies should be performed to validate the outcome and find a simpler, faster,
and more economic approach.

5. Conclusions

In our study, we identified 14 genes involved in EC, verified them, based on GEO
and TCGA, and established a robust diagnostic prediction model for EC through an
artificial neural network, which was promising for the exploration of new diagnostic tools.
The diagnostic model possessed excellent sensitivity and specificity, demonstrating the
capability of diagnosing early EC. We also discovered that activated and resting mast cells
were important and inversely correlated in EC. These results could serve as a basis for
extensive cohorts in the future.

Author Contributions: All authors made important contributions to the study design, data acquisi-
tion, and data analysis; formal analysis, D.Z. and Z.W.; investigation, D.Z. and Z.W.; writing—original
draft preparation, D.Z. and Z.Z.; writing—review and editing, D.Z. and Z.D.; visualization, M.W.,
T.Z. and J.Z.; supervision W.Z. and Y.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Endometrial Carcinoma: EC; Gene Expression Omnibus: GEO; The Cancer Genome Atlas:
TCGA; Differentially Expressed Genes: DEGs; Tumor Immune Microenvironment: TIME; Support
Vector Machine: SVM; Protein–Protein Interaction: PPI; Gene Ontology: GO; Kyoto Encyclopedia of
Genes and Genomes: KEGG Receiver Operating Characteristic: ROC; Area Under Curve: AUC.

References
1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

2. Koh, W.J.; Abu-Rustum, N.R.; Bean, S.; Bradley, K.; Campos, S.M.; Cho, K.R.; Chon, H.S.; Chu, C.; Cohn, D.; Crispens, M.A.;
et al. Uterine Neoplasms, Version 1.2018, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2018, 16,
170–199. [CrossRef] [PubMed]

http://doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/33538338
http://doi.org/10.6004/jnccn.2018.0006
http://www.ncbi.nlm.nih.gov/pubmed/29439178


Genes 2022, 13, 935 11 of 13

3. Brooks, R.A.; Fleming, G.F.; Lastra, R.R.; Lee, N.K.; Moroney, J.W.; Son, C.H.; Tatebe, K.; Veneris, J.L. Current recommendations
and recent progress in endometrial cancer. CA Cancer J. Clin. 2019, 69, 258–279. [CrossRef] [PubMed]

4. Bolivar, A.M.; Luthra, R.; Mehrotra, M.; Chen, W.; Barkoh, B.A.; Hu, P.; Zhang, W.; Broaddus, R.R. Targeted next-generation
sequencing of endometrial cancer and matched circulating tumor DNA: Identification of plasma-based, tumor-associated
mutations in early stage patients. Mod. Pathol. 2019, 32, 405–414. [CrossRef]

5. Bell, D.W.; Ellenson, L.H. Molecular Genetics of Endometrial Carcinoma. Annu. Rev. Pathol. 2019, 14, 339–367. [CrossRef]
6. McKenney, J.K.; Longacre, T.A. Low-grade endometrial adenocarcinoma: A diagnostic algorithm for distinguishing atypical

endometrial hyperplasia and other benign (and malignant) mimics. Adv. Anat. Pathol. 2009, 16, 1–22. [CrossRef] [PubMed]
7. Gimpelson, R.J.; Rappold, H.O. A comparative study between panoramic hysteroscopy with directed biopsies and dilatation and

curettage. A review of 276 cases. Am. J. Obstet. Gynecol. 1988, 158, 489–492. [CrossRef]
8. Antonsen, S.L.; Jensen, L.N.; Loft, A.; Berthelsen, A.K.; Costa, J.; Tabor, A.; Qvist, I.; Hansen, M.R.; Fisker, R.; Andersen, E.S.; et al.

MRI, PET/CT and ultrasound in the preoperative staging of endometrial cancer—A multicenter prospective comparative study.
Gynecol. Oncol. 2013, 128, 300–308. [CrossRef]

9. Duk, J.M.; Aalders, J.G.; Fleuren, G.J.; de Bruijn, H.W. CA 125: A useful marker in endometrial carcinoma. Am. J. Obstet. Gynecol.
1986, 155, 1097–1102. [CrossRef]

10. Sone, K.; Toyohara, Y.; Taguchi, A.; Miyamoto, Y.; Tanikawa, M.; Uchino-Mori, M.; Iriyama, T.; Tsuruga, T.; Osuga, Y. Application
of artificial intelligence in gynecologic malignancies: A review. J. Obstet. Gynaecol. Res. 2021, 47, 2577–2585. [CrossRef]

11. Hamamoto, R. Application of Artificial Intelligence for Medical Research. Biomolecules 2021, 11, 90. [CrossRef] [PubMed]
12. Hamamoto, R.; Komatsu, M.; Takasawa, K.; Asada, K.; Kaneko, S. Epigenetics Analysis and Integrated Analysis of Multiomics

Data, Including Epigenetic Data, Using Artificial Intelligence in the Era of Precision Medicine. Biomolecules 2019, 10, 62. [CrossRef]
[PubMed]

13. Welford, S.M.; Gregg, J.; Chen, E.; Garrison, D.; Sorensen, P.H.; Denny, C.T.; Nelson, S.F. Detection of differentially expressed
genes in primary tumor tissues using representational differences analysis coupled to microarray hybridization. Nucleic Acids Res.
1998, 26, 3059–3065. [CrossRef] [PubMed]

14. Albaradei, S.; Thafar, M.; Alsaedi, A.; Van Neste, C.; Gojobori, T.; Essack, M.; Gao, X. Machine learning and deep learning
methods that use omics data for metastasis prediction. Comput. Struct. Biotechnol. J. 2021, 19, 5008–5018. [CrossRef]

15. Jiménez-Sánchez, D.; Ariz, M.; Chang, H.; Matias-Guiu, X.; de Andrea, C.E.; Ortiz-de-Solórzano, C. NaroNet: Discovery of tumor
microenvironment elements from highly multiplexed images. Med. Image Anal. 2022, 78, 102384. [CrossRef]

16. Ruan, T.; Wan, J.; Song, Q.; Chen, P.; Li, X. Identification of a Novel Epithelial-Mesenchymal Transition-Related Gene Signature
for Endometrial Carcinoma Prognosis. Genes 2022, 13, 216. [CrossRef]

17. Vitale, S.G.; Riemma, G.; Carugno, J.; Chiofalo, B.; Vilos, G.A.; Cianci, S.; Budak, M.S.; Lasmar, B.P.; Raffone, A.; Kahramanoglu, I.
Hysteroscopy in the management of endometrial hyperplasia and cancer in reproductive aged women: New developments and
current perspectives. Transl. Cancer Res. 2020, 9, 7767–7777. [CrossRef]

18. Prip, C.M.; Stentebjerg, M.; Bennetsen, M.H.; Petersen, L.K.; Bor, P. Risk of atypical hyperplasia and endometrial carcinoma after
initial diagnosis of non-atypical endometrial hyperplasia: A long-term follow-up study. PLoS ONE 2022, 17, e0266339. [CrossRef]

19. La Rosa, V.L.; Garzon, S.; Gullo, G.; Fichera, M.; Sisti, G.; Gallo, P.; Riemma, G.; Schiattarella, A. Fertility preservation in women
affected by gynaecological cancer: The importance of an integrated gynaecological and psychological approach. Ecancermedi-
calscience 2020, 14, 1035. [CrossRef]

20. Aboulouard, S.; Wisztorski, M.; Duhamel, M.; Saudemont, P.; Cardon, T.; Narducci, F.; Lemaire, A.S.; Kobeissy, F.; Leblanc, E.;
Fournier, I.; et al. In-depth proteomics analysis of sentinel lymph nodes from individuals with endometrial cancer. Cell Rep. Med.
2021, 2, 100318. [CrossRef]

21. Della Corte, L.; Giampaolino, P.; Mercorio, A.; Riemma, G.; Schiattarella, A.; De Franciscis, P.; Bifulco, G. Sentinel lymph node
biopsy in endometrial cancer: State of the art. Transl. Cancer Res. 2020, 9, 7725–7733. [CrossRef] [PubMed]

22. Rousset-Rouviere, S.; Rochigneux, P.; Chrétien, A.S.; Fattori, S.; Gorvel, L.; Provansal, M.; Lambaudie, E.; Olive, D.; Sabatier, R.
Endometrial Carcinoma: Immune Microenvironment and Emerging Treatments in Immuno-Oncology. Biomedicines 2021, 9, 632.
[CrossRef] [PubMed]

23. Zheng, M.; Hu, Y.; Gou, R.; Li, S.; Nie, X.; Li, X.; Lin, B. Development of a seven-gene tumor immune microenvironment
prognostic signature for high-risk grade III endometrial cancer. Mol. Ther. Oncolytics 2021, 22, 294–306. [CrossRef]

24. Chen, Y.; Lee, K.; Liang, Y.; Qin, S.; Zhu, Y.; Liu, J.; Yao, S. A Cholesterol Homeostasis-Related Gene Signature Predicts Prognosis
of Endometrial Cancer and Correlates With Immune Infiltration. Front. Genet. 2021, 12, 763537. [CrossRef] [PubMed]

25. Ahn, S.H.; Edwards, A.K.; Singh, S.S.; Young, S.L.; Lessey, B.A.; Tayade, C. IL-17A Contributes to the Pathogenesis of En-
dometriosis by Triggering Proinflammatory Cytokines and Angiogenic Growth Factors. J. Immunol. 2015, 195, 2591–2600.
[CrossRef]

26. Miossec, P.; Korn, T.; Kuchroo, V.K. Interleukin-17 and type 17 helper T cells. N. Engl. J. Med. 2009, 361, 888–898. [CrossRef]
27. Cornelius, D.C.; Lamarca, B. TH17- and IL-17- mediated autoantibodies and placental oxidative stress play a role in the

pathophysiology of pre-eclampsia. Minerva Ginecol. 2014, 66, 243–249.
28. Liu, L.; Chen, F.; Xiu, A.; Du, B.; Ai, H.; Xie, W. Identification of Key Candidate Genes and Pathways in Endometrial Cancer by

Integrated Bioinformatical Analysis. Asian Pac. J. Cancer Prev. 2018, 19, 969–975.
29. Gorczynski, R.M. IL-17 Signaling in the Tumor Microenvironment. Adv. Exp. Med. Biol. 2020, 1240, 47–58.

http://doi.org/10.3322/caac.21561
http://www.ncbi.nlm.nih.gov/pubmed/31074865
http://doi.org/10.1038/s41379-018-0158-8
http://doi.org/10.1146/annurev-pathol-020117-043609
http://doi.org/10.1097/PAP.0b013e3181919e15
http://www.ncbi.nlm.nih.gov/pubmed/19098463
http://doi.org/10.1016/0002-9378(88)90011-7
http://doi.org/10.1016/j.ygyno.2012.11.025
http://doi.org/10.1016/0002-9378(86)90358-3
http://doi.org/10.1111/jog.14818
http://doi.org/10.3390/biom11010090
http://www.ncbi.nlm.nih.gov/pubmed/33445802
http://doi.org/10.3390/biom10010062
http://www.ncbi.nlm.nih.gov/pubmed/31905969
http://doi.org/10.1093/nar/26.12.3059
http://www.ncbi.nlm.nih.gov/pubmed/9611255
http://doi.org/10.1016/j.csbj.2021.09.001
http://doi.org/10.1016/j.media.2022.102384
http://doi.org/10.3390/genes13020216
http://doi.org/10.21037/tcr-20-2092
http://doi.org/10.1371/journal.pone.0266339
http://doi.org/10.3332/ecancer.2020.1035
http://doi.org/10.1016/j.xcrm.2021.100318
http://doi.org/10.21037/tcr.2020.04.21
http://www.ncbi.nlm.nih.gov/pubmed/35117375
http://doi.org/10.3390/biomedicines9060632
http://www.ncbi.nlm.nih.gov/pubmed/34199461
http://doi.org/10.1016/j.omto.2021.07.002
http://doi.org/10.3389/fgene.2021.763537
http://www.ncbi.nlm.nih.gov/pubmed/34790227
http://doi.org/10.4049/jimmunol.1501138
http://doi.org/10.1056/NEJMra0707449


Genes 2022, 13, 935 12 of 13

30. Lee, T.I.; Young, R.A. Transcriptional regulation and its misregulation in disease. Cell 2013, 152, 1237–1251. [CrossRef]
31. Gialeli, C.; Theocharis, A.D.; Karamanos, N.K. Roles of matrix metalloproteinases in cancer progression and their pharmacological

targeting. FEBS J. 2011, 278, 16–27. [CrossRef] [PubMed]
32. Zheng, J.; Chu, D.; Wang, D.; Zhu, Y.; Zhang, X.; Ji, G.; Zhao, H.; Wu, G.; Du, J.; Zhao, Q. Matrix metalloproteinase-12 is associated

with overall survival in Chinese patients with gastric cancer. J. Surg. Oncol. 2013, 107, 746–751. [CrossRef]
33. Brun, J.L.; Cortez, A.; Lesieur, B.; Uzan, S.; Rouzier, R.; Daraï, E. Expression of MMP-2, -7, -9, MT1-MMP and TIMP-1 and -2

has no prognostic relevance in patients with advanced epithelial ovarian cancer. Oncol. Rep. 2012, 27, 1049–1057. [CrossRef]
[PubMed]

34. Wang, X.; Chen, T. CUL4A regulates endometrial cancer cell proliferation, invasion and migration by interacting with CSN6. Mol.
Med. Rep. 2021, 23, 23. [CrossRef] [PubMed]

35. Liu, X.; Huang, H.; Li, X.; Zheng, X.; Zhou, C.; Xue, B.; He, J.; Zhang, Y.; Liu, L. Knockdown of ADAMDEC1 inhibits the
progression of glioma in vitro. Histol. Histopathol. 2020, 35, 997–1005. [PubMed]

36. Zhu, W.; Shi, L.; Gong, Y.; Zhuo, L.; Wang, S.; Chen, S.; Zhang, B.; Ke, B. Upregulation of ADAMDEC1 correlates with tumor
progression and predicts poor prognosis in non-small cell lung cancer (NSCLC) via the PI3K/AKT pathway. Thorac. Cancer 2022,
13, 1027–1039. [CrossRef]

37. Ahn, S.B.; Sharma, S.; Mohamedali, A.; Mahboob, S.; Redmond, W.J.; Pascovici, D.; Wu, J.X.; Zaw, T.; Adhikari, S.; Vaibhav, V.;
et al. Potential early clinical stage colorectal cancer diagnosis using a proteomics blood test panel. Clin. Proteom. 2019, 16, 34.
[CrossRef]

38. Lomnytska, M.I.; Becker, S.; Hellman, K.; Hellström, A.C.; Souchelnytskyi, S.; Mints, M.; Hellman, U.; Andersson, S.; Auer, G.
Diagnostic protein marker patterns in squamous cervical cancer. Proteom. Clin. Appl. 2010, 4, 17–31. [CrossRef]

39. Hu, X.; Li, Y.Q.; Li, Q.G.; Ma, Y.L.; Peng, J.J.; Cai, S.J. Osteoglycin (OGN) reverses epithelial to mesenchymal transition and
invasiveness in colorectal cancer via EGFR/Akt pathway. J. Exp. Clin. Cancer Res. CR 2018, 37, 41. [CrossRef]

40. Rabban, J.T.; Karnezis, A.N.; Devine, W.P. Practical roles for molecular diagnostic testing in ovarian adult granulosa cell tumour,
Sertoli-Leydig cell tumour, microcystic stromal tumour and their mimics. Histopathology 2020, 76, 11–24. [CrossRef]

41. Baxter, R.C. IGF binding proteins in cancer: Mechanistic and clinical insights. Nat. Rev. Cancer 2014, 14, 329–341. [CrossRef]
[PubMed]

42. Long, S. Endometrial Biopsy: Indications and Technique. Primary care 2021, 48, 555–567. [CrossRef] [PubMed]
43. Reijnen, C.; Visser, N.C.M.; Bulten, J.; Massuger, L.; van der Putten, L.J.M.; Pijnenborg, J.M.A. Diagnostic accuracy of endometrial

biopsy in relation to the amount of tissue. J. Clin. Pathol. 2017, 70, 941–946. [CrossRef] [PubMed]
44. Kunaviktikul, K.; Suprasert, P.; Khunamornpong, S.; Settakorn, J.; Natpratan, A. Accuracy of the Wallach Endocell endometrial

cell sampler in diagnosing endometrial carcinoma and hyperplasia. J. Obstet. Gynaecol. Res. 2011, 37, 483–488. [CrossRef]
[PubMed]

45. Guido, R.S.; Kanbour-Shakir, A.; Rulin, M.C.; Christopherson, W.A. Pipelle endometrial sampling. Sensitivity in the detection of
endometrial cancer. J. Reprod. Med. 1995, 40, 553–555.

46. Laban, M.; Nassar, S.; Elsayed, J.; Hassanin, A.S. Correlation between pre-operative diagnosis and final pathological diagnosis
of endometrial malignancies; impact on primary surgical treatment. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 263, 100–105.
[CrossRef]

47. Della Corte, L.; Vitale, S.G.; Foreste, V.; Riemma, G.; Ferrari, F.; Noventa, M.; Liberto, A.; De Franciscis, P.; Tesarik, J. Novel
diagnostic approaches to intrauterine neoplasm in fertile age: Sonography and hysteroscopy. Off. J. Soc. Minim. Invasive Ther.
2021, 30, 288–295. [CrossRef]

48. Heremans, R.; Van den Bosch, T.; Valentin, L.; Wynants, L.; Pascual, M.A.; Fruscio, R.; Testa, A.C.; Buonomo, F.; Guerriero, S.;
Epstein, E.; et al. Ultrasound features of endometrial pathology in women without abnormal uterine bleeding: Results from the
International Endometrial Tumor Analysis Study (IETA3). Ultrasound Obstet. Gynecol. 2022. [CrossRef]

49. Johansson, A.; Rudolfsson, S.; Hammarsten, P.; Halin, S.; Pietras, K.; Jones, J.; Stattin, P.; Egevad, L.; Granfors, T.; Wikström, P.;
et al. Mast cells are novel independent prognostic markers in prostate cancer and represent a target for therapy. Am. J. Pathol.
2010, 177, 1031–1041. [CrossRef]

50. Sinnamon, M.J.; Carter, K.J.; Sims, L.P.; Lafleur, B.; Fingleton, B.; Matrisian, L.M. A protective role of mast cells in intestinal
tumorigenesis. Carcinogenesis 2008, 29, 880–886. [CrossRef]

51. Fleischmann, A.; Schlomm, T.; Köllermann, J.; Sekulic, N.; Huland, H.; Mirlacher, M.; Sauter, G.; Simon, R.; Erbersdobler, A.
Immunological microenvironment in prostate cancer: High mast cell densities are associated with favorable tumor characteristics
and good prognosis. Prostate 2009, 69, 976–981. [CrossRef] [PubMed]

52. Coffelt, S.B.; Wellenstein, M.D.; de Visser, K.E. Neutrophils in cancer: Neutral no more. Nat. Rev. Cancer 2016, 16, 431–446.
[CrossRef] [PubMed]

53. Shojaei, F.; Singh, M.; Thompson, J.D.; Ferrara, N. Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of
cancer progression. Proc. Natl. Acad. Sci. USA 2008, 105, 2640–2645. [CrossRef] [PubMed]

54. Spiegel, A.; Brooks, M.W.; Houshyar, S.; Reinhardt, F.; Ardolino, M.; Fessler, E.; Chen, M.B.; Krall, J.A.; DeCock, J.; Zervan-
tonakis, I.K.; et al. Neutrophils Suppress Intraluminal NK Cell-Mediated Tumor Cell Clearance and Enhance Extravasation of
Disseminated Carcinoma Cells. Cancer Discov. 2016, 6, 630–649. [CrossRef]

http://doi.org/10.1016/j.cell.2013.02.014
http://doi.org/10.1111/j.1742-4658.2010.07919.x
http://www.ncbi.nlm.nih.gov/pubmed/21087457
http://doi.org/10.1002/jso.23302
http://doi.org/10.3892/or.2011.1608
http://www.ncbi.nlm.nih.gov/pubmed/22200690
http://doi.org/10.1007/s00894-016-3198-3
http://www.ncbi.nlm.nih.gov/pubmed/33179082
http://www.ncbi.nlm.nih.gov/pubmed/32378728
http://doi.org/10.1111/1759-7714.14354
http://doi.org/10.1186/s12014-019-9255-z
http://doi.org/10.1002/prca.200900086
http://doi.org/10.1186/s13046-018-0718-2
http://doi.org/10.1111/his.13978
http://doi.org/10.1038/nrc3720
http://www.ncbi.nlm.nih.gov/pubmed/24722429
http://doi.org/10.1016/j.pop.2021.07.003
http://www.ncbi.nlm.nih.gov/pubmed/34752269
http://doi.org/10.1136/jclinpath-2017-204338
http://www.ncbi.nlm.nih.gov/pubmed/28389441
http://doi.org/10.1111/j.1447-0756.2010.01376.x
http://www.ncbi.nlm.nih.gov/pubmed/21114579
http://doi.org/10.1016/j.ejogrb.2021.06.008
http://doi.org/10.1080/13645706.2021.1941119
http://doi.org/10.1002/uog.24910
http://doi.org/10.2353/ajpath.2010.100070
http://doi.org/10.1093/carcin/bgn040
http://doi.org/10.1002/pros.20948
http://www.ncbi.nlm.nih.gov/pubmed/19274666
http://doi.org/10.1038/nrc.2016.52
http://www.ncbi.nlm.nih.gov/pubmed/27282249
http://doi.org/10.1073/pnas.0712185105
http://www.ncbi.nlm.nih.gov/pubmed/18268320
http://doi.org/10.1158/2159-8290.CD-15-1157


Genes 2022, 13, 935 13 of 13

55. Boutilier, A.J.; Elsawa, S.F. Macrophage Polarization States in the Tumor Microenvironment. Int. J. Mol. Sci. 2021, 22, 6995.
[CrossRef]

56. Jhunjhunwala, S.; Hammer, C.; Delamarre, L. Antigen presentation in cancer: Insights into tumour immunogenicity and immune
evasion. Nat. Rev. Cancer 2021, 21, 298–312. [CrossRef]

http://doi.org/10.3390/ijms22136995
http://doi.org/10.1038/s41568-021-00339-z

	Introduction 
	Materials and Methods 
	Data Collection and Pre-Processing 
	Exploration of DEGs and Functional Enrichment 
	Construction of Metascape and the Protein-Protein Interaction (PPI) Network 
	Selection of the Signature Genes and Construction of the Diagnostic Prediction Model 
	Identification of TIME 

	Results 
	DEGs and Functional Enrichment Analysis Results in EC 
	Metascape and PPI Network Analysis Results 
	Exploration of Characteristic DEGs and Diagnostic Prediction Model of EC 
	TIME of EC 

	Discussion 
	Conclusions 
	References

