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Abstract: Although high altitude training has been increasingly popular among endurance athletes,
the molecular and cellular bases of this adaptation remain poorly understood. We aimed to define
the underlying physiological changes and screen for potential biomarkers of adaptation using
transcriptional profiling of whole blood. Seven elite female speed skaters were profiled on the
18th day of high-altitude adaptation. Whole blood RNA-seq before and after an intense 1 h skating
bout was used to measure gene expression changes associated with exercise. In order to identify
the genes specifically regulated at high altitudes, we have leveraged the data from eight previously
published microarray datasets studying blood expression changes after exercise at sea level. Using cell
type-specific signatures, we were able to deconvolute changes of cell type abundance from individual
gene expression changes. Among these were PHOSPHO1, with a known role in erythropoiesis, and
MARC1 with a role in endogenic NO metabolism. We find that platelet and erythrocyte counts
uniquely respond to altitude exercise, while changes in neutrophils represent a more generic marker
of intense exercise. Publicly available data from both single cell atlases and exercise-related blood
profiling dramatically increases the value of whole blood RNA-seq for the dynamic evaluation of
physiological changes in an athlete’s body.

Keywords: RNA-seq; RNA sequencing; exercise; expression profiling; whole blood; elite athletes;
speed skating; high altitude adaptation; live high; train high (LHTH); platelets

1. Introduction

Systemic effects of exercise have drawn substantial interest from researchers in medical,
public health, and athletic fields for over a century [1–3]. In one of the earliest publications
on the subject, Larrabee in 1902 described leukocytosis (a decrease in white blood cell count)
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in runners tested after The Boston Marathon [4]. With medical advances of the 20th century,
it quickly became apparent that physical activity and sufficient exercise is the single most
significant predictor of general population health and wellbeing [5]. At the same time,
biological reasons for this remained elusive, and key molecular drivers of adaptation to
physical exercise are yet to be defined on the systemic level. The worldwide epidemic of
obesity, and the general shift towards a sedentary lifestyle, especially aggravated during
the current SARS-CoV-2 pandemic, make these goals ever more important [5]. With an
onslaught of the omics methods of the 21st century, we gained access to incredibly valuable
genome-wide datasets, characterizing gene expression, proteome, and metabolic changes
associated with exercise. However, as often happens with revolutionary methods, our
understanding of the data still lags far behind.

Among the omics approaches used to characterize the effect of physical exertion on the
human body, gene expression measurement has become the most popular. This happened
for several reasons. Since first microarray experiments, and then with RNA sequencing
(RNA-seq), gene expression methods have reached relative maturity, currently allowing
the measurement of all expressed human genes in a particular tissue with high accuracy
and reproducibility [6,7]. They require a modest amount of biological material that can
be effectively preserved without freezing, which becomes critical in many environments.
Finally, both microarray and RNA-seq experiments can be performed at a reasonable cost,
making them accessible to many laboratories. Not all of these criteria are satisfied in the
case of unbiased proteomic or metabolomic profiling, both of which are still in the phase of
active method development [8,9].

The choice of the profiled tissue is often defined by the biological questions posed.
While obesity-focused studies have often used adipose tissue biopsies [10], studies in
athletes preferably profiled muscle tissue [11–13]. Both of these approaches, however,
include relatively traumatic biopsies, making them hard to perform outside of medical
facilities. Peripheral blood sampling, on the other hand, has many advantages—such as
well-established collection, storage, and transportation protocols, relatively minor effects
on the subject’s well-being, and the presence of many valuable biomarkers. Blood also
represents a very diverse mixture of cells, giving access to an intriguing interface between
metabolic and immune functions. Indeed, it is well documented that blood composition
dynamically reacts to both physical and immunological challenges [14]. Because of these
factors, gene expression of peripheral blood is used extremely widely, currently listing
thousands of published studies. Depending on the study goals, researchers have profiled
whole blood, white blood cells (WBCs), peripheral blood mononuclear cells (PBMCs), or
sorted subpopulations of leukocytes [15].

More specifically, the effects of short- and long-term exercise on peripheral blood
gene expression have been reported in over 50 different studies, with 20+ using whole-
transcriptome profiling methods reviewed in [1]. The vast majority of the published
blood whole-transcriptome datasets were generated using microarray technology. The
experimental designs vary substantially; time of study changes from immediately after
a bout of moderate or strenuous exercise to weeks or months of regular activity; the
participants also varied in level of preparation, age, and sex. We have summarized all the
relevant datasets available in the literature in Supplementary Table S1, only including the
studies for which the data are openly available via databases, such as Gene Expression
Omnibus (GEO) or ArrayExpress. It is worth noting that no RNA sequencing datasets were
available at the time of our search, and no studies involved high altitude adaptation.

In our study, we applied whole blood RNA-seq to seven elite female skaters, in order to
assess the immunological and metabolic effects of high-altitude adaptation (Supplementary
Figure S1). To our knowledge, this is the first such attempt. We also put our results in
the context of the previously published gene expression studies, and identified candidate
genes driving the adaptation, as well as general physiological changes inferred from
gene expression.
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2. Materials and Methods
2.1. Subjects and Study Protocol

The study was conducted during the pre-season period, and each participant un-
derwent medical evaluations including the collection of medical history. Seven female
elite speed skaters were enrolled and gave their informed written consent to participate
in this study. All participants underwent a medical examination and were deemed fit for
training and competitive activity; none had a history of cardiovascular, pulmonary, or
metabolic diseases. Height, weight, and several physiological parameters were recorded
for each athlete. The average participant age was 25.0 ± 7.0 years. All patients were of
Russian ethnicity. The study was cleared by the Saint Petersburg State University Ethics
Review Board for human studies (decision #40 from 7 March 2012) and was performed in
accordance with the Declaration of Helsinki.

Physiological measurements and sample collections were carried out during an alti-
tude training camp that was carried out 1850 m above sea level (Font Romeu, France, 1850 m
above sea level, 21 days of stay). The study was conducted during the period after the first
part of the adaptation period (after 18 days from the beginning of the altitude exposure).
Pre- and post-exercise data collections were carried out in the morning between 08:00 and
11:00. Key physiological and biochemical parameters are given in Supplementary Table S2.

2.2. Blood Sample Collection and RNA Isolation

For each participant, a 2.5 mL whole blood sample was collected before and after the
exercise using the RNAgard Blood Tubes (Biomatrica, San Diego, CA, USA) according
to the manufacturer’s protocol and then stored at −20 ◦C until further processing. Total
RNA was extracted from blood using PureLink RNA Mini Kit (Thermo Fisher Scientific,
Inc., Waltham, MA, USA) and «BioMaxi™ Precipitation Buffer» (Biomatrica, San Diego,
CA, USA), according to the manufacturer’s protocol. RNA concentration was measured
using Quantus Fluorometer TM with QuantiFluor RNA System kit (Promega, Madison,
WI, USA). RNA quality control was performed using capillary gel electrophoresis on a
QIAxcel Advanced System (Qiagen, Dusseldorf, Germany). Total RNA was depleted of
globin mRNA with GLOBINclear—Human Kit (Invitrogen, Waltham, MA, USA) according
to the manufacturer’s protocol.

2.3. Library Preparation and Illumina RNA Sequencing

Fourteen samples of globin-depleted whole blood (seven skaters, before and af-
ter exercise) were sequenced using strand-specific RNA-seq with polyA selection. Li-
braries were prepared using TruSeq Stranded mRNA Library Prep Kit (Illumina, Inc., San
Diego, CA, USA) according to the TruSeq Stranded mRNA Sample Preparation Guide #
15,031,047 E (Illumina, San Diego, CA, USA). Validation of the libraries was performed
on the QIAxcel Advanced System (Qiagen, Hilden, Germany). Library quantification was
performed using Quantus Fluorometer with QuantiFluor dsDNA System kit (Promega,
Madison, WI, USA). Paired-end sequencing of the libraries was performed on HiSeq 4000
System with a reading length of 2 × 150 bp using HiSeq 3000/4000 PE Cluster Kit and
HiSeq 3000/4000 SBS Kit (300 cycles) (Illumina, San Diego, CA, USA). The number of reads
obtained per sample varied from 12.4 to 40.8 M, with a mean of 31.3 M, and a median of
32.2 M per sample. Raw reads and processed data were deposited in the Gene Expression
Omnibus database under study ID GSE164890.

2.4. Alignment and Quantification

Assessment of raw read quality was performed using FastQC v0.11.6. Paired-end reads
were aligned using STAR v2.5.3a [16] to the primary assembly of the human genome (ver-
sion GRCh38.p10), with GENCODE v26 annotation [17] with pseudoautosomal (PAR) gene
copies removed. STAR options “–outSAMtype BAM SortedByCoordinate –quantMode
TranscriptomeSAM” were enabled, thus generating alignments to both genome and tran-
scriptome. Overall, 94.5–98.6% reads (median 96.0%) were successfully aligned, with
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2.5–11.5% overall reads (median 2.7%) aligning to rRNA. Genome BAM files were used to
generate TDF files using igvtools v2.3.93 and visualized using IGV v2.4.11 [18]. Transcrip-
tomic BAM files were used for quantification with RSEM v1.2.31 [19], with “–strandedness
reverse” option enabled, according to the strand-specific library preparation type, and
generating expression tables in raw counts, TPM, and FPKM on a transcript and gene level.
After quantification, 67.6–82.5% (median 81.9%) of the original reads were successfully
assigned to the genes present in Gencode v26 annotation. A detailed pipeline for read
quality control, alignment, and quantification is available at https://github.com/apredeus/
rnaquant, accessed on 17 January 2022.

2.5. Differential Expression and Pathway Enrichment Analysis

Differential expression and overrepresentation pathway enrichment analysis, as well
as all other bioinformatic analyses from this section on, was performed in R v4.0.4. Per-
gene expression table generated by RSEM was used for differential gene expression with
DESeq2 R package v1.18.1 [20], retaining genes with FDR < 0.1. Variance-stabilizing rlog
transformation from the DESeq2 package was used to normalize the expression data for
diagnostic plotting. Donor effect correction was performed on the rlog-transformed matrix
using the comBat function from the sva R package [21]. Pathway enrichment was performed
using hallmark (H) and canonical (CP) gene set collections from MsigDB [22,23] and
packages clusterProfiler [24] and fGSEA [25].

2.6. Public Single Cell RNA-Seq Dataset Processing

Publicly available single cell RNA-seq datasets (GSE149938 and 10k PBMC cells from
10X Genomics) were downloaded locally and processed using the Seurat package [26]. Each
dataset was filtered, normalized, clustered to generate coarse-grained cellular populations,
and markers defining each cell type were generated.

2.7. Microarray Dataset Reanalysis

Eight selected microarray studies were uniformly re-processed using the GEOquery [27]
and limma [28] packages. Each dataset was visualized (Supplementary Figures S3–S10),
and a list of differentially expressed genes was generated using a pairwise limma linear
model that included both donor and exercise. Detailed scripts for all performed analysis
and figure generation are freely available at https://github.com/apredeus/skater_rnaseq,
accessed on 17 January 2022.

3. Results
3.1. Blood Panel and Physiological Measurements

Biochemical blood parameters (see Supplementary Table S2 for the full list) and physi-
ological measurements (fat mass and percentage, muscle mass and percentage, total fluid,
phase angle, tHb-mass, total circulating blood volume (TCBV), hemoglobin, hematocrit,
and percent recovery index in each microcycle) were measured throughout the adaptation
period and were found to be in line with previously reported values. Due to logistic
restrictions, daily physiological measurements detailing the adaptation process were not
performed; instead, testing was performed on several select days. At the same time, many
reports detailing biochemical and physiological adaptation to high altitude have been
published previously and were not the aim of this study [29,30].

Whole blood gene expression was measured in samples collected before and after
a morning bout of strenuous exercise on day 18 of adaptation. The mean running time
in the exercise tests was 39.0 ± 14.8 min. Heart rate was 182 ± 3 bpm at the end of the
exercise. At the end of the exercise, lactate concentrations were significantly increased
(3.4 ± 0.7 vs. 1.1 ± 0.2 mmol/L; t-test p < 0.05). Biochemical parameters immediately
before and after the exercise were taken for six markers: total phosphate, cortisol, growth
hormone, total testosterone, total T4 hormone, and CPK. Using paired Wilcoxon test we
have evaluated the significance of the observed changes. We have found that cortisol and

https://github.com/apredeus/rnaquant
https://github.com/apredeus/rnaquant
https://github.com/apredeus/skater_rnaseq
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phosphate significantly decreased after the exercise, while CPK and growth hormone have
increased; total T4 and testosterone remained unchanged (Supplementary Figure S2).

3.2. Differential Gene Expression Analysis

After read alignment and quantification (see Methods), we have performed the initial
evaluation of the dataset. Using 18,000 most expressed genes and principal components
analysis (PCA) plot (Figure 1a), we have assessed the difference between samples collected
before and after exercise. A clear donor effect was visible from the plot, with samples
belonging to the same donor being closer to each other than to samples of the same
group. Thus, we have applied linear donor correction using the comBat function of the
sva R package. The PCA plot after the correction (Figure 1b) has shown a much clearer
separation of groups. This is common in studies of human blood in particular because
blood composition varies notably between individuals. From this analysis, we conclude
that it is beneficial to include donor covariate in all subsequent analyses.
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Figure 1. Overall assessment and differential expression analysis of whole blood RNA-seq from
seven altitude-adapted female skaters before and after exercise. Differential expression analysis
was performed using DESeq2 and “donor + exercise” design. Differentially expressed genes were
reported at 10% FDR. “Up-regulated” indicates genes whose expression increased after the exercise.
(a,b) PCA plot of the 14 studied samples, before and after donor-effect correction using comBat. Top
18,000 genes were used. Read counts were normalized using the rlog function from the DESeq2
package. (c) Log ratio—mean expression (MA) plot, with marked differentially expressed genes.
(d) Number of differentially expressed genes depending on mean expression cutoff; TPM, transcripts
per million. (e) Volcano plot of differentially expressed genes. Point size is scaled proportionally to
mean gene expression.

Differential expression analysis has uncovered substantial changes in gene expression,
with 2516 genes up- and 1542 down-regulated (see Supplementary Table S3 for a full list of
genes). The difference between the up- and down-regulated gene numbers becomes more
pronounced when looking at highly expressed genes; for example, when only genes with
a mean TPM of 100 or more were considered, 582 up-regulated and 55 down-regulated
genes remained (Figure 1d). For most differentially expressed genes, expression change
magnitude was modest (Figure 1c,e): only 104 up-regulated and 58 down-regulated genes
changed their expression more than twofold.
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3.3. Pathway and Functional Category Analysis

After the initial assessment of differentially expressed genes, we aimed to dissect the
functional and molecular pathways regulated by the exercise. To this end, we used the
molecular signature database (MsigDB) pathway collection of annotated pathways relevant
to human biology, immunology, metabolism, and disease [22,23]. We used overrepresenta-
tion analysis with hallmark (H) and canonical pathways (CP) gene set collections to define
the major biological categories of interest. Figure 2a–c shows the top 10 representative path-
ways ranked by significance. Overall, inflammatory and immune pathways dominated the
observed changes, with TNFa/Nf-kB, complement, interferon, IL6/JAK/STAT3 and other
pathways showing strong up-regulation. On a cellular level, neutrophil degranulation
and platelet activation account for a substantial fraction of up-regulated genes. Finally,
hypoxia-related genes and angiogenesis via VEGFA/EGFR2 are also strongly up-regulated
in response to exercise.
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Figure 2. Gene overrepresentation and gene set enrichment (GSEA) analysis of the differentially
expressed genes. Molecular signature database (MsigDB) H and CP collections were used to func-
tionally characterize expression changes. Letter following the pathway name denotes its source: R,
Reactome; K, KEGG; W, WikiPathways. (a–c) Top 10 significantly up- and down-regulated pathways,
according to Fisher’s exact test, calculated with clusterProfiler. Down-regulated hallmark pathways
only included one significant gene set (HALLMARK MYC TARGETS V2), and were omitted from the
plot. (d–f) Top 10 significantly up- and down-regulated pathways according to GSEA, calculated with
fGSEA. Down-regulated hallmark pathways only included one significant gene set (HALLMARK
MYC TARGETS V2) and were omitted from the plot. Gene overlap indicates the number of genes in
the leading edge.

Among the down-regulated genes, only one hallmark gene set (HALLMARK MYC
TARGETS V2) was determined to be significant. MYC is a well-known blood oncogene that
is particularly important in lymphomas [31] and has a crucial influence on cell survival
and proliferation. MYC gene itself was also significantly down-regulated after the exercise
(Supplementary Table S3). Together with the up-regulation of the apoptosis pathway
(Figure 2a), we can hypothesize that a fraction of blood cells undergo apoptosis in response
to vigorous exercise, which has been described before [32]. The majority of other pathways
enriched among the down-regulated genes were related to ribosomal proteins and other
components of transcriptional and translational machinery (Figure 2c). An interesting
standout is the DNA repair pathway, which also appears to be down-regulated alongside
its most famous member, TP53.
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Since most of the observed gene expression changes were modest, gene set enrichment
analysis (GSEA) may have offered additional insights, potentially highlighting metabolic
processes obscured by more pronounced immune gene changes [33]. To our surprise,
however, GSEA analysis results were in exceptional agreement with the simple overrepre-
sentation analysis (Figure 2d–f). The inclusion of broader reference gene sets, such as C2 or
C7, also contributed little new biological information that was not discovered using H or
CP pathways (Supplementary Table S4).

3.4. Analysis of Cell Type Composition Changes Based on Expression Signatures

While whole blood is a very rich source of metabolic and immune markers, it repre-
sents a complex tissue that is composed of numerous cell types. It is thus hard to separate
effects of changes in blood cellular composition and gene expression changes within the
individual cell types, both of which influence the observed differential gene expression
in the bulk sample. In order to separate the two effects, we decided to leverage publicly
available single cell RNA-seq datasets, generating unique expression signatures for main
cell types present in whole blood. Many published datasets use human peripheral blood
mononuclear cells (PBMCs). These cells, however, represent only a minor fraction of whole
blood, which contains a large number of erythrocytes, platelets, and granulocytes.

Thus, we have used a publicly available scRNA-seq dataset that profiled whole blood,
GSE149938 [34], to define unique cell type markers for erythrocytes and neutrophils. Addi-
tionally, we have used the 10 k PBMC cells dataset from 10× Genomics [35] to define cell
type markers of coarse-grained immune cell populations. Overall, we have defined markers
of 12 cell types: erythrocytes, platelets, neutrophils, natural killer cells, plasmacytoid and
myeloid dendritic cells, B cells, CD4+ memory T cells, CD4+ naive T cells, CD8+ (cytotoxic)
T cells, CD14+ monocytes, and CD16+ monocytes. We have then leveraged the top 20 most
discriminating markers of each cell type as a proxy allowing us to estimate the changes in a
particular cell type population from the bulk RNA-seq expression profile (Figure 3). A full
list of all markers is available in Supplementary Table S5.

The approach was surprisingly successful, clearly identifying putative changes in
individual cell type populations. Three cell types remained relatively constant: non-
classical (CD16+) monocytes, naive CD4+ T cells, and myeloid dendritic cells (Figure 3b).
Populations of memory CD4+ T cells, cytotoxic CD8+ T cells, natural killer (NK), B cells,
and plasmacytoid dendritic cells (pDC) were decreased, albeit the latter could be defined
with the least confidence due to the extreme rarity of pDCs in peripheral blood. On the other
hand, populations of neutrophils, CD14+ monocytes, erythrocytes, and platelets notably
increased after exercise. This agrees with neutrophil and platelet activation pathways
up-regulation in our gene set analysis (Figure 2b,e).

3.5. Context of Other Exercise Expression Datasets

In our experiments, we have compared whole blood transcriptome profiles before
and after exercise, at the expected peak of high-altitude adaptation, 18 days since the
beginning of the training camp. In order to assess the influence of high-altitude adaptation,
it would have been necessary to conduct similar experiments after a similar training camp
at low altitudes. Unfortunately, such a comparison could not be performed due to logistic
restrictions. In order to find the genes uniquely regulated at high altitude, and to put our
data in the context of the previously published expression datasets, we have compiled
a collection of relevant publicly available data (Supplementary Table S1). The following
criteria had to be satisfied for inclusion: (1) whole transcriptome profiling using microarray
or RNA-seq; (2) dataset is publicly available; (3) whole blood, white blood cells, or PBMCs
profiled; (4) samples from the same donor before and after a period of intense exercise were
available. We have selected eight such datasets [36–43]. The full list of considered datasets
is provided in Supplementary Table S1.
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Figure 3. Using single cell markers to infer changes of the cell types from the whole blood RNA-seq
data. Twenty markers specific to the 12 listed blood cell types were derived using two public single
cell RNA-seq datasets (Methods). Donor-corrected, rlog-transformed expression matrix was used
for all heatmap plots. Wilcoxon ranked sum p-value notation: ***, p < 0.001; **, p < 0.01; -, p ≥ 0.05.
(a) Observed gene expression of 20 cell type markers in all seven profiled donors. (b) Cell types that
increase after the exercise: neutrophils, CD14+ monocytes, platelets, and erythrocytes. (c) Cell types
that decrease after the exercise: CD4+ memory T cells, CD8+ T cells, natural killer cells, B cells, and
plasmacytoid dendritic cells. (d) Cell types that did not display concerted change in markers: CD4+
naive T cells, CD16+ monocytes, and myeloid dendritic cells.

We have then re-analyzed the selected datasets using the GEOquery and limma
packages (see Methods). All but one of the reprocessed datasets have shown pronounced
donor effects, which had to be accounted for in the fitted linear model, and significant
separation of before- and after- exercise groups was observed after the donor correction
(Supplementary Figures S3–S10). The outlier dataset [42] was removed from further
analysis. We have then filtered the differentially expressed genes identified in at least
one of seven datasets from our analysis, in order to identify the genes specific to the
high-altitude adaptation. Taking a conservative approach, we removed all genes deemed
significant in previous studies using the unadjusted p-value. This filtering removed 65%
of the differentially expressed RNA-seq genes, leaving 685 up-regulated and 795 down-
regulated genes (Figure 4a).
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Figure 4. Analysis of genes uniquely up- or down-regulated in our dataset, as compared to seven
public microarray datasets. Full list of datasets is given in Supplementary Table S1. (a) Volcano plot
of genes uniquely regulated in the whole blood of altitude-adapted skaters. Light blue points indicate
differentially expressed genes previously seen in at least one other exercise dataset. Point size is
scaled proportionally to mean gene expression. (b) A circle plot representing the enrichment of cell
type markers among all differentially expressed genes and altitude-specific differentially expressed
genes. The size of the circle is proportional to the percentage of marker genes in the target set, and
the fill of the circle corresponds to the significance levels of Fisher’s exact test. (c) Heatmap of highly
expressed (TPM > 10) and regulated (absolute log fold change > 0.5) genes unique to our dataset.
Breakdown by cell type is conducted based on single cell markers defined earlier. Rows are sorted by
cell type and then by log fold change.

We next tested whether the genes uniquely up- or down- regulated in our dataset
have significant enrichment of marker genes for individual blood cell types explored in
the previous section. We utilized Fisher’s exact test to compare the proportion of cell
type markers among all DEGs and among the uniquely regulated DEGs. We discovered
a dramatic enrichment of platelet marker genes in the set of altitude-specific DEGs, with
up to 90% of all differentially expressed platelet markers being uniquely regulated in our
dataset (p-value = 4 × 10−22) (Figure 4b). Erythrocytes were the only other cell type that
showed a significant enrichment, though to a much lower extent (p-value = 4 × 10−12).
Neutrophil marker genes, on the other hand, were not enriched among the unique DEGs
despite a very strong enrichment of neutrophil markers among all DEGs (Figure 4b). These
results suggest that platelets and (to a lesser extent) erythrocytes are the two major cell
types that uniquely respond to altitude exercise, while neutrophils are a more generic
marker of intense exercise.
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All of the used published transcriptomic datasets were microarray experiments, which
are known to have a lower dynamic range and sensitivity than RNA-seq [7]. Thus, to reli-
ably define a gene signature of exercise in high-altitude adaptation and provide additional
validation of enrichment results, we have additionally prioritized differential genes by
expression (TPM ≥ 10) and magnitude of the regulation (absolute log2FC ≥ 0.5). This
resulted in a list of 72 genes (53 up- and 19 down-regulated). We were satisfied to discover
that gene expression of cell-specific markers perfectly segregated with directions of cell
populations changes defined above (Figure 3). Concordantly with our earlier observa-
tions, platelet marker genes (including the canonical PPBP marker) were also significantly
enriched among the highly expressed altitude-specific DEGs (p-value = 2 × 10−4). In
addition to platelets, the biggest cell-type specific changes were associated with increases
in neutrophils, CD14+ macrophages, and a decrease in natural killer cells (Figure 4c). Aside
from these, 27 genes (18 up- and 9 down-regulated) were not directly attributable to any
specific cell type.

Several genes specific to high-altitude exercise (Figure 4c) stand out upon closer
examination of available literature. One of the most up-regulated genes, MARC1, is a
mitochondrial enzyme catalyzing the reduction of N-oxygenated molecules [44] that was
postulated to influence the levels of endogenous nitric oxide (NO) [45]. Given the extremely
broad and important role of NO in cardiovascular physiology in general [46], and in ery-
throcyte adaptation to hypoxia specifically [47], it seems very possible that this gene plays
a key role in high altitude adaptation. Human protein atlas (proteinatlas.org, [48], accessed
on 29 April 2021) show that MARC1 mRNA is enriched in sorted granulocytes and mono-
cytes. Thus, since up-regulation of this gene was never detected in previously published
exercise studies, we can hypothesize that increased MARC1 expression in these cell types,
together with a general increase in granulocyte and CD14+ monocyte populations, can
serve as a basis for physiological adaptation at high altitude.

Another gene of great interest is PHOSPHO1, a phosphatase that is expressed in
neutrophils and eosinophils according to the Human Protein Atlas, and in neutrophils
and erythrocytes according to the markers we derived from scRNAseq. Transcription of
PHOSPHO1, which mediates the hydrolysis of phosphocholine to choline, was recently
shown to be strongly upregulated during the terminal stages of erythropoiesis [49]. Up-
regulation of PHOSPHO1 caused the increased catabolism of phosphatidylcholine and
phosphocholine during the terminal erythropoiesis, and its depletion caused impaired
differentiation of fetal mouse and human erythroblasts. The fact that up-regulation of this
gene was never detected in previous studies makes it an excellent candidate to be a key
dynamic regulator of high-altitude adaptation to hypoxia.

4. Discussion

Sports medicine has historically been conservative and lagged behind mainstream
medicine in the translation of scientific findings, often relying on “coach wisdom” or
similar practices instead. This, however, has changed dramatically during the last several
decades [50]. There is currently a great interest in applying modern analytical techniques
to athlete health surveillance, training guidance [51], and even prohibited substances use
monitoring [52]. One of the debated questions is training at high elevation. There are
currently numerous strategies, such as “live high, train high” (LHTH), “live high, train
low” (LHTL), and many others; however, the molecular basis of this adaptation is far
from understood.

In this study, we have evaluated the results of whole blood RNA sequencing of elite
female athletes and identified a significant number (over 4000) genes that are up- or down-
regulated as a result of vigorous exercise after high-altitude adaptation. Given the complex
cellular composition of the whole blood, biological and physiological interpretation of such
profound expression changes presents a formidable task. At the same time, the progress
of modern gene expression profiling methods together with the growing culture of open
data sharing has allowed us to make significant strides in the interpretation of the observed
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changes on a cellular level. The results demonstrate that the major changes associated
with altitude exercise are related to innate immune response (inflammation), hypoxic
stress response, and platelet activity. Using the marker genes of different blood cell types
derived from public single-cell RNA sequencing data we dissected the alterations in blood
cell composition and discovered that the proportions of neutrophils, erythrocytes, CD14+
monocytes, and platelets are increased in response to exercise at altitude.

We have also leveraged a rich collection of exercise-related blood expression profil-
ing experiments from public sources to define genes that were uniquely up- and down-
regulated in our dataset. We find several notable genes that are highly expressed in blood
cells and could serve as key regulatory elements responding to exercise in hypoxic condi-
tions. These genes include PHOSPHO1, MARC1, and a number of others, including several
platelet marker genes. Our analysis suggests that the majority of such platelet markers are
uniquely associated with altitude exercise and are not differentially expressed in any other
conditions according to published studies.

Our results provide a potential molecular link between hypoxia, platelet activity, and
thrombosis. It has been long known that prolonged stay at high elevations is associated
with an increased risk of thrombosis [53]. Perhaps the most surprising parallel here could
be related to COVID-19, which is also associated with both hypoxia and increased risk
of thrombosis. It has recently been shown that physical activity influences the outcome
of COVID-19 [54]. Given that thromboses are one of the dominant causes of death in
COVID-19 patients, it can be hypothesized that physical activity, especially at high alti-
tude, may serve as the pre-conditioning factor that might alleviate the relative effects of
COVID-19 and prevent the negative systemic impact of platelet hyperactivity.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes13040574/s1, PDF file containing Supplementary Figures S1–S10.
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before and after exercise (Tonevitsky 2013). Figure S5. Microarray comparison of 5 adult athletes
before and after exercise (Buttner 2007). Figure S6. Microarray comparison of 5 adult athletes before
and after exercise (Connoly 2004). Figure S7. Microarray comparison of 19 adult athletes before
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