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Abstract: The paper contains a discussion on mathematical modifying and redesigning DNA with
the use of Markov chains. We give a simple mathematical technique for overwriting missing parts
of DNA. With a certain probability (without even knowing the function of the missing codon)
we can find a synonymous codon, so that there is no frequency change in amino acid sequences
of proteins. We use Markov Chain to analyze the dependencies in DNA sequence of the human
gene Alpha 1,3-Galactosyltransfe rase 2. We include a theoretical introduction which facilitates the
understanding of the paper for non-mathematicians, especially for biologists not familiar with the
theory of Markov chains.
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1. Introduction
1.1. Motivation and Methods

Modeling and analyzing DNA sequences using statistical methods have been a chal-
lenge for statisticians and biologists for many years. For many years, the most common
approach was based on the theory of Markov chains. Well known simple models ap-
peared in the mid-1980s in the papers by B.E. Blaisdell [1] and V. Brendel, J.S. Beckmann,
E.N. Trifonov [2]. This was later followed by more advanced models developed to study
different biological aspects of DNA (see [3–5]) that have been also using Markov chains
(both homogeneous and non-homogeneous ones, possibly of higher orders). There are
some statistical results showing that first-order Markov chains are not an adequate model
for DNA sequences (see, e.g., [6]). Moreover, the latest comparison studies (see [7]) show
that in general DNA sequencing by models based on even higher order Markov chains does
not fit perfectly. Thus the latest research in DNA sequencing in bioinformatics is focusing
on deep learning methods (see [8]). The methods presented in this paper, however, are
local rather than statistical. We apply our model to DNA sequences less than 55 base pairs
long, which is not enough for statistical methods. Markov chain theory is being applied
to modeling music and literature. For example, a random song generated by a Markov
chain based on some given piece of music, can achieve a similarity level comparable to this
piece (see [9–11]). The question arises whether DNA can be handled similarly to a piece of
music. Numerous attempts to write an understandable text as the realization of a low-order
Markov chain have not proved successful. For high-order Markov chains, however, such
a text becomes understandable as it contains complete sentences from the original text
(see [12–14]). Therefore, the question whether Markov chains of any order are suitable to
study DNA sequencing becomes the question about the complexity of the DNA structure.
In this paper we show methods for filling in short gaps in DNA sequences. The results
obtained by our method are then compared with the original DNA sequence.
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1.2. Notations

We consider a probability space (Ω,F , P), where Ω = {S1, S2, . . . , Sn} denotes a finite
state space, i.e., the set of all possible results of an experiment, F is a σ-field of events, and
P : F → [0, 1] denotes a probabilistic measure. By random variable we denote a function
Z : Ω→ R such that for any a ∈ R a preimage Z−1((−∞, a]) is in the σ-field F . In our case
a random variable will allow us to assign natural numbers to states from the state space
Ω: let E be a single experiment with possible results forming Ω, if in t-th repetition (i.e., in
time t) of experiment E we obtain result Sj ∈ Ω, then we put Zt = j, where Zt is a random
variable with natural values.

1.3. Stochastic Matrices

Definition 1. A matrix Π = (pij)i,j∈{1,...,n} is called stochastic if all pij are non-negative and
for any i we have ∑n

j=1 pij = 1 (right stochastic matrix) or for any j we have ∑n
i=1 pij = 1 (left

stochastic matrix). A doubly stochastic matrix is both left stochastic and right stochastic. A vector
with non-negative real elements is a stochastic vector if its elements sum to one.

Remark 1. Rows of right (columns of left) stochastic matrix are row (vertical) stochastic vectors.

Using basic algebra one can prove the following remark.

Remark 2. The product of two right (two left) stochastic matrices is a right (left) stochastic matrix.

Definition 2. A square matrix A = (aij)i,j∈{1,...,n} is called irreducible if for any partition S∪ T =
{1, . . . , n}, S ∩ T = ∅ there exists s ∈ S, t ∈ T such that ast 6= 0.

Definition 3. Let A be a square matrix. An eigenvalue of A is a complex number λ such that
det(A − λI) = 0 (i.e., λ is a zero with multiplicity k ≥ 1 of the characteristic polynomial
pA(λ) = det(A− λI)), where I denotes the identity matrix. The set of all eigenvalues is called
spectrum.

Definition 4. The eigenvector of a of a square matrix A is a column vector v such that Av = λv,
where λ is an eigenvalue of A. The left eigenvector of a square matrix A is a column vector w such
that wT A = λwT , where λ is an eigenvalue of A. Some authors define the left eigenvector as a row
vector wT .

2. Markov Chains

A Markov chain is a sequence of random variables forming a probabilistic model
describing a memoryless type of dependency: the future may depend only on the present
and must be independent of the past.

2.1. Model

1. E is an experiment with possible results forming a finite set Ω = {S1, S2, . . . , Sn};
2. S = {1, 2, . . . , n} is a state space associated with Ω;
3. (Ω,F , P) is a probability space, where F ⊂ 2Ω is a σ-field and P is a probabilistic

measure P : F → [0, ∞);
4. Zt is a random variable defined as follows: if in t-th repetition of experiment E we

obtain result Sj ∈ Ω, then we put Zt = j ∈ S .

Definition 5. A sequence of random variables (Zt)∞
t=0 with values in a state space S is a Markov

chain if for all t ∈ N and all j0, j1, . . . , jt ∈ S

P(Zt = jt|Z0 = j0, Z1 = j1, . . . , Zt−1 = jt−1) = P(Zt = jt|Zt−1 = jt−1) (1)
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if only
P(Z0 = j0, Z1 = j1, . . . , Zt−1 = jt−1) > 0.

Remark 3. In the general case a state space S can be an arbitrary countable subset of N (positive in-
tegers).

Remark 4. The Equation (1) is called Markov property and its right-hand side is called a transition
operator i.e., the probability of moving from state jt−1 to state jt in one step.

Definition 6. Let (Zt)∞
t=0 be a Markov chain. For t ≥ 1 we call a stochastic matrix Π(t) =

(pij(t))i,j∈S a transition Matrix of a Markov chain (Zt) in time t if

pij(t) = P(Zt = j|Zt−1 = i) (2)

for all i such that P(Zt−1 = i) > 0. Since the total of transition probability from one state to all
other states must be equal to one, thus this matrix is a right stochastic matrix.

Definition 7. Let (Zt)∞
t=0 be a Markov chain. If P(Zt = jt|Zt−1 = jt−1) is independent of t, then

we call this Markov chain homogeneous.

Remark 5. For our convenience we index states by t, but we remind the reader of the following
property of homogeneous Markov chains

P(Zt = jt|Zt−1 = jt−1) = P(Zt+m = jt|Zt+m−1 = jt−1), t, m ∈ N.

Remark 6. If a Markov chain (Zt)∞
t=0 is homogeneous then there exists a stochastic matrix Π =

(pij)i,j∈S such that for all t ≥ 1 transition matrix Π(t) = Π, where each value pij is the probability
of moving from state i to state j in one step.

Now we are going to consider probabilities of moving from state to state in larger
number of steps.

Definition 8. Let (Zt)∞
t=0 be a homogeneous Markov chain. For m ≥ 1 we call a stochastic matrix

Π(m) = (p(m)
ij )i,j∈S a transition Matrix of a Markov chain (Zt) in m steps if

p(m)
ij = P(Zm = j|Z0 = i) (3)

for all i such that P(Z0 = i) > 0.

Theorem 1. Let (Zt)∞
t=0 be a homogeneous Markov chain. Then Π(m) = Πm.

Proof. For m = 1 theorem is true because Π(1) = Π. For m ≥ 2 from the law of total
probability we obtain

p(m)
ij = P(Zm = j|Z0 = i)

= ∑
s∈S

P(Zm−1 = s|Z0 = i)P(Zm = j|Zm−1 = s) = ∑
s∈S

p(m−1)
is psj.

Hence Π(m) = Π(m−1)Π, thus Π(m) = Πm.

Example 1 (Random walk on a complex plane). Identify adenine with −i, cytosine with 1,
guanine with −1, and thymine with i. Let (Un)∞

n=0 be a sequence of independent random variables
such that for any n ≥ 1:

P(Un = 1) = p1, P(Un = i) = p2, P(Un = −1) = p3, P(Un = −i) = p4,
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where p1 + p2 + p3 + p4 = 1, and P(U0 = 0) = 1.
For n ≥ 1 define Zn = U0 + U1 + . . . + Un which is a random variable with values in state

space of Gaussian integers Z[i] = {a + bi : a, b ∈ Z}. Gaussian integers form a commutative ring
and 2-dimensional integer lattice. We show that (Zn)∞

n=0 is a Markov sequence.
Let j0, j1, . . . , jn ∈ Z[i] be such that P(Z0 = j0, Z1 = j1, . . . , Zn−1 = jn−1) > 0. Then, from

definition of Zn,

P(Zn = jn|Z0 = j0, Z1 = j1, . . . , Zn−1 = jn−1)

=
P(Z0 = j0, Z1 = j1, . . . , Zn−1 = jn−1, Zn = jn)

P(Z0 = j0, Z1 = j1, . . . , Zn−1 = jn−1)

=
P(U0 = j0, U1 = j1 − j0, . . . , Un−1 = jn−1 − jn−2, Un = jn − jn−1)

P(U0 = j0, U1 = j1 − j0, . . . , Un−1 = jn−1 − jn−2)

=
P(U0 = j0)P(U1 = j1 − j0) · . . . · P(Un−1 = jn−1 − jn−2)P(Un = jn − jn−1)

P(U0 = j0)P(U1 = j1 − j0) · . . . · P(Un−1 = jn−1 − jn−2)

= P(Un = jn − jn−1)

because variables (Un)∞
n=0 were independent. Observe that variables Un and Zn−1 are also indepen-

dent, thus

P(Un = jn − jn−1) =
P(Un = jn − jn−1)P(Zn−1 = jn−1)

P(Zn−1 = jn−1)

=
P(Zn−1 = jn−1, Un = jn − jn−1)

P(Zn−1 = jn−1)
=

P(Zn−1 = jn−1, Zn = jn)
P(Zn−1 = jn−1)

= P(Zn = jn|Zn−1 = jn−1).

One can show that E(|Zn|)—the expected translation distance after n steps is of order
√

n,

more precise, lim
n→∞

E(|Zn |)√
n =

√
π
2 . With our identification of adenine (−i), cytosine (1), guanine

(−1), and thymine (i) using Markov chain (Zn)∞
n=0 we can consider probability that from n-th to m-

th place in DNA strand, n < m, number of adenine equals number of thymine and, simultaneously,
number of cytosine equals number of guanine. This situation means that our random walk made
a loop, that is Zn = Zm (see Figure 1). If one needs to research other pairwise equalities it suffices
to change the identification. Denote Z[n1, n2] = {Zn : n1 ≤ n ≤ n2}. One can show that for all
k ≥ 2 we have P(Z[0, k] ∩ Z[2k, 3k] 6= ∅) > 0. That means that with positive probability there
exists n ∈ [0, k] and m ∈ [2k, 3k] such that Zn = Zm, i.e., we have a loop.

Figure 1. Fifty-four step random walk from a central point on a complex plane. Based on DNA
sequence from Example 2.



Genes 2022, 13, 554 5 of 15

2.2. Classification of States and Chains

In this subsection, we will give some mathematical background and also state some
well known results, see [7,15].

Definition 9. A state i is called accessible from state j if there exists n ≥ 0 such that P(Zn =
i|Z0 = j) > 0. If state i is accessible from state j and vice versa we say that states i and j
communicate.

Observe that communication is an equivalence relation that divides states into equiva-
lence classes called communicating classes.

Definition 10. A Markov chain is called irreducible if its state space forms a single communicat-
ing class.

In other words, in irreducible Markov chain it is possible to get from any state to any
state (every two states communicate).

Definition 11. A state i is called inessential if there exists a state j and n ≥ 1 such that P(Zn =
j|Z0 = i) > 0 and P(Zk = i|Z0 = j) = 0 for any k ≥ 0. A state is essential if it is not inessential.

Denote f (n)ij = P(Zn = j, Zn−1 6= j, . . . , Z1 6= j|Z0 = i), Fij = ∑∞
n=1 f (n)ij , Pi = ∑∞

n=1 p(n)ii
and define Ni = ∑∞

n=1 1{Zn=i}, Mi = ∑∞
n=1 1{Tii≥n}, where Tij = inf{n ∈ N : Zn = j} when

Z0 = i. Then f (n)ij is a probability that we access state j from state i exactly in n steps, Fij is
a probability that we ever access state j from state i, Pi a trace of the transition matrix in
n steps, Ni is a random variable that counts how many times state i is accessed and Mi is
a random variable that counts how many steps are needed to reappear in state i for the
first time.

Remark 7.

Pi =
∞

∑
n=1

P(Zn = i|Z0 = i) =
∞

∑
n=1
E(1{Zn=i}|Z0 = i) = E(Ni|Z0 = i),

where E denotes an expected value. Thus Pi is an average time a Markov chain is in state i (averagely
how many times Markov chain is in state i). If we define µi = ∑∞

n=1 P(Tii ≥ n|Z0 = i) then
µi = E(Mi|Z0 = i). Thus µi is an average number of steps needed to reappear in state i.

Definition 12. A state i is called recurrent if Fii = 1. If Fii < 0 then state i is called transient.

We will need the following result.

Theorem 2 (see [15]).

(a) A state i is recurrent if and only if P(Ni = ∞|Z0 = i) = 1.
(b) A state i is transient if and only if P(Nj < ∞|Z0 = i) = 1.

Theorem 3.

(a) A state i is transient if and only if Pi < ∞.
(b) A state i is recurrent if and only if Pi = ∞.

Proof. Note that for all states i, j and natural n we have

p(n)ij =
n

∑
m=1

f (m)
ij p(n−m)

jj . (4)
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It follows from the fact that accessing state j from state i after n steps means that we
access state j for the first time after exactly m steps (for some m ≤ n) and then after next
n−m steps we return to it (perhaps reaching state j a few times on the way). Thus we have

n

∑
k=1

p(k)ii =
n

∑
k=1

k−1

∑
m=0

f (k−m)
ii p(m)

ii =
n−1

∑
m=0

p(m)
ii

n

∑
k=m+1

f (k−m)
ii

≤
n

∑
m=0

p(m)
ii Fii = Fii + Fii

n

∑
m=1

p(m)
ii .

Hence we get an inequality

(1− Fii)
n

∑
m=1

p(m)
ii ≤ Fii. (5)

Since n is arbitrary, as n tends to infinity we obtain

(1− Fii)Pi ≤ Fii. (6)

Assume that state i is transient. Then from (6) we obtain Pi < ∞. On the other hand
if Pi < ∞ then E(Ni|Z0 = i) < ∞, thus P(Ni = ∞|Z0 = i) = 0. From Theorem 2 state
i is transient. If i is recurrent, then we must have Pi = ∞ (otherwise see proof of point
(a)). Now assume Pi = ∞. If Fii < 1 then (1− Fii)Pi is unbounded and from (6) we get
a contradiction.

Remark 8. In irreducible Markov chain either all states are recurrent or all states are transient.
Thus we call an irreducible Markov chain recurrent or transient, depending on type of states.

Remark 9. One can show that for a finite Markov chain (chain with a finite state space) a state is
inessential if and only if it is transient, thus a state is essential if and only if it is recurrent.

Remark 10. In the case of gene A3GALT2 each state is essential (because all entries in transition
matrix are nonzero), thus from Remark 9 each state is recurrent. This also can be shown using
properties of transition matrix: evaluate p(n)ii from the matrix Πn. Then Pi = ∞ for each i ∈
{a, c, g, t}. From Theorem 3 we once again obtain that each state is recurrent.

Definition 13. A state i is called null-recurrent if lim
n→∞

p(n)ii = 0. A state which is not null-
recurrent is called positive recurrent.

Definition 14. A state i is called periodic with period di if di = GCD{n > 0 : p(n)ii > 0} > 1 (if

for all n > 0 we have p(n)ii = 0 then we put di = ∞). If di = 1 state i is called aperiodic.

Definition 15. A state which is aperiodic, recurrent, and positive recurrent is called ergodic.

Remark 11. In case of our matrix Π all states are ergodic.

For irreducible matrices we have the following property.

Theorem 4. A Markov chain is irreducible if and only if for all j ∈ {1, . . . , n} there exists a limit

lim
t→∞

p(t)ij = pj, i, j ∈ {1, . . . , n},
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independent of i, where pj, j ∈ {1, . . . , n}, form a unique solution of the following system
of equations {

∑n
i=1 pi pij = pj, j ∈ {1, . . . , n}

∑n
j=1 pj = 1.

A special case of irreducible Markov chain is a regular Markov chain.

Definition 16. A irreducible Markov chain is called regular if there exists k ∈ N such that all
entries of the matrix Πk are positive. In other words there exists k ∈ N such that from any state we
can reach any state in exactly k steps.

Definition 17. Let Π be a transition matrix of a Markov chain. A stationary probability vector is
a stochastic vector (see Definition 1) such that π = πΠ. In other words π is a stochastic eigenvector
associated with eigenvalue λ = 1 of matrix Π.

Theorem 5 (see [15]). Let Π(m) = (p(m)
ij )i,j∈S be a transition matrix in m steps of an irreducible

aperiodic Markov chain (Zn) with finite state space S . Then

(i) for any i, j ∈ S there exists a limit lim
m→∞

p(m)
ij = πj, where πj > 0,

(ii) Markov chain (Zn) is recurrent,
(iii) a vector π = (πj)j∈S is a unique stationary probability vector, moreover,

πj =
1
µj

where µj is an average number of steps needed to reappear in state j.

For regular Markov chains we have the following result.

Theorem 6. Let Π be a transition matrix of an irreducible aperiodic Markov chain with finite state
space. Then matrix Π(m) converges to a positive stochastic matrix W such that if π is a row of
matrix W, then π = πΠ.

2.3. Analysis of Alpha 1,3-Galactosyltransferase 2

We show that a time homogeneous Markov chain is an appropriate simple model of
Alpha 1,3-Galactosyltransferase 2 (A3GALT2). We use transition matrices as a criterion
for identifying similarities in structure of this particular gene. A3GALT2 is a Protein
Coding gene (a region of DNA) located in chromosome 1, position 33,306,766, consisting of
14,333 bases [16].

Let Ω = {S1, S2, S3, S4}, where S1 = A, S2 = C, S3 = G, S4 = T, and S = {1, 2, 3, 4}
be a corresponding state space. We form a stochastic matrix (7) as follows. For example we
would like to know how probable is that after adenine (A) occurs cytosine (C). We count
all occurrences of a pair AC in gene A3GALT2 and divide it by number of all occurring
pairs which start from A. Number of all such pairs is equal to number of occurrences of A
provided that A is not the last nucleotid base in gene A3GALT2.

Π =



A C G T
A 769

3195
745

3195
1093
3195

588
3195

C 1140
4052

1392
4052

350
4052

1170
4052

G 811
3715

934
3715

1254
3715

716
3715

T 475
3370

980
3370

1018
3370

897
3370

 (7)

Note that because the last nucleotide base in gene A3GALT2 is T, in the denominator
in last row we have 3370 instead of 3371.

Remark 12. One can pose a question of biological interpretation of matrix Π. Does the occurrences
of nucleotid bases can be used to identify a specific gene or, in general case, to identify an individual?
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Because all entries of matrix Π are positive, in the case of gene A3GALT2 a suitable
Markov chain is irreducible (see Definition 10) and each di = 1 for i ∈ S thus our chain
is aperiodic (see Definition 14). From Theorem 5 for any i, j ∈ S there exists a limit
lim

m→∞
p(m)

ij = πj > 0, suitable Markov chain is recurrent, π = (πj)j∈S is a unique stationary

probability vector and πj =
1
µj

where µj is an average number of steps needed to reappear
in state j.

Remark 13. The stationary probability vector of matrix Π is

π = (0.22292, 0.28265, 0.25923, 0.23521).

Remark 14. Note that if nucleotide bases in gene A3GALT2 are a good estimation of a possible
sequence of values of a Markov chain, then from Remark 13 probability of occurrence of a should be
0.22292, c: 0.28265, g: 0.25923 and t: 0.23521. Comparing this with computed probabilities from
Table 1 (a: 0.222912, c: 0.282704, g: 0.259192, t: 0.235192) we see that they are correct up to the
fourth decimal place.

Table 1. Occurence of nucleotide bases in A3GALT2.

Nucleotide Bases Occurence in
A3GALT2

Probability (Occurence Divided by
Length of Gene)

A 3195 0.222912

C 4052 0.282704

G 3715 0.259192

T 3371 0.235192

Corollary 1. From Remark 13 we can compute approximate values of µj: µ1 ≈ 4.486, µ2 ≈ 3.538,
µ3 ≈ 3.858, µ4 ≈ 4.252 which means that an average number of steps needed for each nucleotide
base to reappear in our gene is approximately 4 for all bases. Thus we conclude that bases are uni-
formly distributed in gene A3GALT2 which means that they appear to be random and disorganized.

All of the above considerations can be repeated for pairs of bases, see Table 2.

Table 2. Occurence of nucleotide pairs of bases in A3GALT2.

Pairs of
Bases

Occurence in
A3GALT2 Probability Pairs of

Bases

Occurence
in

A3GALT2
Probability

AA 769 769
14,332 GA 811 811

14,332

AC 745 745
14,332 GC 934 934

14,332

AG 1093 1093
14,332 GG 1254 1254

14,332

AT 588 588
14,332 GT 716 716

14,332

CA 1140 1140
14,332 TA 475 475

14,332

CC 1392 1392
14,332 TC 980 980

14,332

CG 350 350
14,332 TG 1018 1018

14,332

CT 1170 1170
14,332 TT 897 897

14,332
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3. The Markov Process Model of Nucleotide Substitution

We assume that nucleotide substitution is follow a homogeneous Markov process. We
take Ω = {S1, S2, S3, S4}, where S1 = A, S2 = C, S3 = G, S4 = T. Let S = {1, 2, 3, 4} be
a corresponding state space. Let P(t) = {Pµν(t)} is a matrix of transition probabilities in
time t. We assume that P′(t) = QP(t) where Q = {Qµν} is the rate matrix of the process.

Remark 15. Figures 2–5 show four situations in which the sequence starts with adenine, cytosine,
guanine, and thymine, respectively. In each case, the probabilities of occurence of a given base
stabilize. Finally, they converge to the probabilities forming a stationary probability vector. Note
that, as predicted by Corollary 1, in each case stabilization is achieved after about four steps.

Figure 2. Probabilities of occurrences of the bases in consecutive steps starting from adenine.

Figure 3. Probabilities of occurrences of the bases in consecutive steps starting from cytosine.
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Figure 4. Probabilities of occurrences of the bases in consecutive steps starting from guanine.

Figure 5. Probabilities of occurrences of the bases in consecutive steps starting from thymine.

4. Application in DNA Sequencing, Redesigned DNA

The meaning of DNA sequencing is here deemed to cover all methods used to de-
termine the order of nucleotides along a DNA strand. The objective of this section is to
present an example of applying Markov chains to complete short fragments of a DNA
strand. Markov chains have been applied as mathematical models of real-life processes.
Such real-life dynamical systems, examined with Markov-chain method, include

- queues of passengers arriving at an airport,
- currency exchange rates or
- animal population dynamics.
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Markov chains are also applied to build algorithms calculating the PageRank value
for a website (see [17]). The website PageRank value reflects the probability that a random
internet surfer will land on this webpage upon clicking a link. Markov processes of various
orders are used to model DNA sequencing (see also [6]). A Markov process of order m
is one for which the probability of any event depends exclusively on the m preceding
events. Statistically, DNA does not have the features of a first-order Markov chain. Higher-
order models have been proposed for analyzing interrelations within a DNA sequence,
see [6]. Statistical tests used in [6] properly determined the order of the Markov chain being
tested for sequences of length 29 base pairs or higher. Nevertheless, the authors consider
it important to present the method described below for local problems, that is for very
short DNA sequences (54 base pairs in our example). We believe it is worth examining the
results of local DNA completion based on the properties of first-order Markov chains, when
the length of a DNA sequence is less than 29 base pairs. The method presented below is
a simple, local tool for completing short DNA segments. The method has also educational
value. Moreover, instead of analyzing a DNA sequence of the five unit nucleotides, we may
use first-order Markov chains to analyze codons or, more precisely, amino acids encoded
with those codons. It is worth recalling here some basic facts and conventions:

- Codon is a sequence of three nucleotides (a triplet) occurring in mRNA, a unit encoding
a specific amino acid during protein synthesis;

- Proteins are built of 20 different amino acids;
- The sequence of amino acids in a protein exactly follows the sequence of the relevant

codons in mRNA;
- Most amino acids are encoded in several ways (with different codons, which, however,

differ from one another usually on the third place in the triplet only); owing to this,
certain changes in the genetic information (mutations) do not affect the amino acid
sequence;

- There are 61 codons encoding amino acids and 3 non-encoding codons (they are STOP
codons: UAG, UAA, UGA); all in all: 43 various triplets;

- The AUG codon, read as the first one in mRNA by a ribosome during protein synthesis
is known as the initiation or start codon;

- Since a mutation of a single nucleotide changes a single amino acid, the genetic code
has to be read as non-overlapping, i.e., any given codon may be followed by any
other codon;

- To get the form typical of DNA, each U in an mRNA codon should be replaced by T;
for instance, TAA is the DNA equivalent of the mRNA codon UAA;

- In the case of a sequence of amino acids, understood as resulting from first-order
Markov process action, the transition matrix is a square matrix of degree at most 21.
One state is reserved for the three STOP codons, which do not encode amino acids.

Example 2. Let us consider the human SATB1 gene, which, as research has revealed, is a major
growth factor for breast cancer, see [18]. Let us generate a DNA sequence based on SATB1 (this gene
is on chromosome 3, locus p23, on the minus strand). The table below sets forth a 54-base-pair-long
segment of SATB1, position 18,389,139. Data is sourced from website [19], accessed upon entering
human gene SATB1.

The relevant state space comprises four nucleotides: Ω1 = {A, C, G, T}. The corresponding
amino acid sequence is:

Val Lys Arg Leu Ser Asp Lys Asn Lys Ser Ser Leu STOP Gln Leu Cys Cys STOP.

We give another sequence in Table 3, as a variation of the method consists in examining the
sequence of amino acids and not the DNA sequence of base pairs. For the sequence of the DNA
segment under this analysis, the state space is:

Ω2 = {Asn, Asp, Arg, Cys, Leu, Lys, Gln, Ser, Val, STOP}.
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In the application of the method described below, it is important that in both tables the last element
occurs at least twice. Assume that in the sequence in Table 4, the TCC codon (corresponding to the
amino acid serine (Ser)) is missing. We want to properly complete the following sequence including
three adjacent gaps:

GTCAAAAGACTCTCCGACAAAAACAAA���AGTCTC

TAGCAGTTATGTTGTTAG
(8)

In the other approach, using representation with amino acids (see Table 3), we want to complete
the following corresponding sequence including a single gap:

Val Lys Arg Leu Ser Asp Lys Asn Lys� Ser Leu STOP Gln Leu Cys Cys STOP. (9)

The (extensive) transition matrix corresponding to sequence (8) is:

Π1 =



A C G T
A 9

18
3

18
5
18

1
18

C 4
10

1
10

1
10

4
10

G 2
8

1
8

0
8

5
8

T 3
13

5
13

2
13

3
13

 (10)

Let us observe that the number of occurrences of G in sequence (8) is 8, as we do not count the
last occurrence, because it is not paired. The number of occurrences of A in sequence (8) is 18, as we
do not count the last occurrence of A, before the lacking fragment, because this occurrence is not
paired. Analogously, the transition matrix corresponding to sequence (9) is:

Π2 =



Asn Asp Arg Cys Leu Lys Gln Ser Val Stop
Asn 0 0 0 0 0 1 0 0 0 0

Asp 0 0 0 0 0 1 0 0 0 0

Arg 1
3 0 1

3 0 0 0 0 1
3 0 0

Cys 0 0 0 1
2 0 0 0 0 0 1

2

Leu 0 0 0 1
3 0 0 0 1

3 0 1
3

Lys 1
3 0 1

3 0 0 0 0 1
3 0 0

Gln 0 0 0 0 1 0 0 0 0 0

Ser 0 1
3 0 0 1

3 0 0 1
3 0 0

Val 0 0 0 0 0 1 0 0 0 0

Stop 0 0 0 0 0 0 1 0 0 0



(11)

Note that, after rounding, the stationary probability vector of matrix Π1 is equal to:

π1 ≈ (0.367347, 0.204082, 0.163265, 0.265306).

For the sake of comparison, we below give rounded relative frequencies of nucleotide occurrences,
as disclosed in Table 4:

A : 0.351852, C : 0.222222, G : 0.166667, T : 0.259259.

The values sourced from Table 4 are not identical to the respective coordinates of the vector π1,
given that:
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1. the sequence of 54 nucleotides is short,
2. in sequence (8), three nucleotides are lacking (cf. Remark 14).

Using the transition matrix Π1, we will run an experiment, described below, which will allow
us to complete sequence (8). One can proceed analogously using the matrix Π2, which we will not
do, given the symmetry of the method. The description of the experiment makes it possible to repeat
it with no IT tools.

Prepare four boxes, labeled A, C, G and T. In each box, there are assorted balls labeled A,
C, G and T. The numbers of balls of individual colors in box A are in proportion to respective
entries of the first row of the matrix Π1. Thus there are 9 balls labeled A, 3 balls labeled C, 5 balls
labeled G, and 1 ball labeled T, a total of 18 balls. We fill the other boxes (C, G and T) analogously.
Now the experiment begins. In sequence (8), there is a gap after A. Therefore, we draw one ball
from box A at random. Assume we have drawn T, which can be done with probability 1

18 . In
the next step we draw from the box labeled the same way as the most recently drawn ball; in our
experiment it is box T. Assume we have drawn C from box T, which can be done with probability
5

13 . Proceeding this way, we now draw a ball from box C. Assume we have again drawn C, which
can be done with probability 1

10 . Thus we have generated three consecutive elements of the sequence
GTCAAAAGACTCTCCGACAAAAACAAA, namely TCC, and we fill the gap in sequence (8)
with this result. We have recovered the original sequence presented in Table 4. The algorithm works
as shown in Figure 6.

For the reader’s convenience, we present in Figure 7 below a computer program written in
the Python 3 language, the source code is also available in GitHub [20].

Table 3. The sequence of amino acids corresponding to 54-base-pair-long segment of SATB1.

1,2,3 4,5,6 7,8,9 10,11,12 13,14,15 16,17,18 19,20,21 22,23,24 25,26,27

Val Lys Arg Leu Ser Asp Lys Asn Lys

28,29,30 31,32,33 34,35,36 37,38,39 40,41,42 43,44,45 46,47,48 49,50,51 52,53,54

Ser Ser Leu STOP Gln Leu Cys Cys STOP

Table 4. Numbered 54-base-pair-long segment of SATB1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

G T C A A A A G A C T C T C C G A C

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

A A A A A C A A A T C C A G T C T C

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

T A G C A G T T A T G T T G T T A G

Figure 6. Illustration for Example 2.
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Figure 7. Program executes computations from Example 2 with probabilities from the transition
matrix Π1 and generates the completion of sequence (8) with exactly three elements.

5. Conclusions

The method just presented is primarily of educational value. The procedure is de-
scribed suggestively and, the authors believe, explanatory, which makes it possible for the
method to be used in a more general context, also by non-mathematicians. The authors do
not imply that the probability of achieving the proper completion of a DNA genome is sat-
isfactory; they only present a tool which may be used for such completion and with which
they would like to familiarize the reader. The authors are aware that the contemporary
efforts in the area of DNA genome completion are focusing on deep learning rather than on
Markov chains even of higher orders, see [8]. This paper proposes an alternative tool that
can be explained suggestively and deeply. It is now clear that the deep learning methods
lead to more exact completions than the Markov chains methods. Yet, our method allows
for understanding of what happens behind the process of proper completion and sequenc-
ing. It should therefore be treated as of explanatory and educational value, with a potential
for future research. It is worth asking, if the algorithms presented in Example 2 might be
used to easily generate test data for more advanced deep learning algorithms (see [21]).
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Zakarczemny) and M.Z. (Małgorzata Zajęcka); visualization, M.Z. (Maciej Zakarczemny) and M.Z.
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