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Abstract: The ever-growing number of methods for the generation of synthetic bulk and single
cell RNA-seq data have multiple and diverse applications. They are often aimed at benchmarking
bioinformatics algorithms for purposes such as sample classification, differential expression analysis,
correlation and network studies and the optimization of data integration and normalization tech-
niques. Here, we propose a general framework to compare synthetically generated RNA-seq data
and select a data-generating tool that is suitable for a set of specific study goals. As there are multiple
methods for synthetic RNA-seq data generation, researchers can use the proposed framework to
make an informed choice of an RNA-seq data simulation algorithm and software that are best suited
for their specific scientific questions of interest.

Keywords: simulated data; RNA-seq; differential expression; sample classification; comparative study

1. Introduction

RNA sequencing (RNA-seq) technology has revolutionized the way we analyze the
dynamic transcriptome. This technology overcomes many of the limitations of microarray
platforms—it has the ability to detect unknown genes, is unbiased by antisense probe
sequences, has a wider dynamic range to quantify expression and a more advantageous
signal-to-noise ratio [1,2]. The most popular applications of bulk RNA-seq include the
measurement of gene expression patterns, alternative splicing and isoform expression
studies, and the characterization of gene-sets by systems biology approaches. The method
has been established as a standard when studying how gene expression is altered by vari-
ous experimental conditions, diseases or environments. A recent publication provides an
overview of new bioinformatics algorithms developed for the purpose of retrieving previ-
ously inaccessible information from available RNA-seq data such as: cell type composition
(deconvolution), copy number alteration, microbial contamination, and quantification of
transposable elements and neoantigen prediction [3].

What must be acknowledged is that bulk RNA-seq does not consider the fact that
tissues are composed of various cell types and that there is mounting evidence that gene
expression in similar cell types is not homogeneous [4–6]. The development of single cell
RNA-seq (scRNA-seq) [7,8], especially its high-throughput application [9], has addressed
this limitation of bulk RNA-seq and allows for the profiling of cell-to-cell variability on
a genome-wide scale. Moreover, the scRNA-seq technology allows for a deeper under-
standing of diverse biological processes and thus facilitates basic science, as well as clinical
research. scRNA-seq has significantly advanced the research on cancer evolution, em-
briogenesis, stem cell differentiation, and heterogeneity of microbial populations [10,11].
With the advancement of the technology and the signal resolution at the individual cell
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level, there is an increasing interest in this type of experimental work and in the associ-
ated datasets.

Bulk RNA-seq could be used to obtain an estimate of the mean of the gene expression
from a cell population for detecting the presence and measuring the quantity of transcripts
in a tissue sample at a given moment. This makes bulk RNA-seq best suited to identi-
fying differences between sample conditions. The standard workflow includes wet lab
experiments and downstream computational analyses. The wet lab part consists of RNA
extraction and isolation, library preparation (RNA fragmentation, nonribosomal RNA en-
richment, reverse transcription to cDNA, sequencing adapters ligation, PCR amplification),
and sequencing to a read depth of many millions of reads per sample, with the newest
technology producing billions of read-pairs per lane on a high-throughput sequencing
machine. Bulk RNA-seq usually requires a small initial amount of RNA. The computational
analysis part incorporates filtering out low quality reads and adapter sequences, alignment
to reference transcriptome, read abundance quantification, gene-based read counting and
filtering, and normalization between samples and batches. The relevance of bulk RNA-seq
is supported by large public databases (dbGAP, GEO) and its common use in translational
research [3].

While scRNA-seq experiments share some laboratory preparation steps with the
bulk RNA-seq processing pipeline, they have several specific steps involving single cell
dissociation and capture, which is critical for the quality of the obtained data and the
downstream analysis. The main technologies of scRNA-seq are plate-, microfluidic- and
droplet-based [12]. The computational analysis part in both bulk RNA-seq and scRNA-seq
follows similar pipelines. There are different scRNA-seq technologies, with different RNA
transcript lengths, numbers of captured cells and read depths per cell [13]. scRNA-seq data
are characterized by an excessive amount of zero gene counts (sparsity), which could be
either due to the nature of gene expression of single cells (biological) or due to technical
reasons (non-biological) [14]. This type of data has further peculiarities including a high
level of noise, lower library sizes, large overdispersion, etc., as described in [15].

scRNA-seq data are still not as widely available as bulk RNA-seq data and are much
more expensive to produce. The main factors adding to the cost at the time of writing
are the costs of the reagents as single cells are processed in individual reactions; the
cost of sequencing as many more reads need to be generated; and the technology itself,
which requires more research and development [16]. scRNA-seq is rapidly catching up
to the bulk RNA-seq in terms of available datasets in various databases (the Single Cell
Portal https://singlecell.broadinstitute.org/single_cell (accessed on 8 November 2022), the
Hemberg collection [17], SCPortalen [18], and scRNASeqDB [19]), a large number of single
cell reference atlases, and cell-querying and annotating algorithms [20]. Recently, attempts
have been made to use knowledge from scRNA-seq data for gene signature transfer in bulk
RNA-seq transcriptome studies [21].

After the initial computational processing, researchers are most commonly interested
in the analysis of differentially expressed genes (DEGs). The main difference in DEGs
analysis between bulk RNA-seq and scRNA-seq is that in the case of bulk RNA-seq it
is often aimed at differentiating between case vs control conditions (e.g., tumor versus
normal), while in the case of scRNA-seq it is aimed at detecting biomarkers across cell
types [22,23]. An extended review of the main methodologies for finding DEGs for bulk
RNA-seq data is available in [24]. In the case of scRNA-seq, one has to manage a large
amount of expression data—the measurements can be for several thousands of genes for
many individual cells, generated in a single experiment. Here, the analysis of DEGs is the
main tool for the identification of gene markers for cell type detection and for inputs to
secondary analyses, such as gene set analysis, gene network and pathways analysis [25].
An operational framework for the analysis of DEGs for scRNA-seq data is presented in [25],
along with a classification and summary of the available methods for scRNA-seq data.

The second most common type of analysis aims to discover sets of transcripts that
can discriminate between different biological phenotypes, i.e., statistical methods, and
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supervised or unsupervised machine learning algorithms; thus, these methods attempt to
hypothesize about the presence of phenotypes and their relation to experimental condi-
tions or disease states. The common setup of bulk RNA-seq experiments, with samples
in the hundreds and measured transcripts in the thousands, leads to the so-called “curse
of dimensionality” problem which is further exacerbated by rapidly increasing computa-
tional costs. Because of these issues, the analytical approaches are usually coupled with
dimensionality reduction techniques [26]. An assessment of how well several supervised
methods perform for bulk RNA-seq data is presented in [27]. In the settings of scRNA-seq
data, one is usually interested in discriminating either between cell populations or cell
types [28]. A number of machine learning-based methods have been developed for these
purposes; however, the task of assigning biological functions to clustered or known cell
populations remains a challenge [29]. It should be noted that the depth of sequencing is
essential for the optimization of the machine learning methods and is strongly dependent
on the diversity of cells in the population [30]. With the increase in the amount of available
scRNA-seq data, semi-supervised cell type classification methods, utilizing external and
well-annotated sources, are becoming popular [31].

Gene expression data can be studied not only at the level of individual genes, but also
as gene lists, regulatory pathways or networks because genes interact to support biological
processes. Gene regulatory network inference could be based on simple correlations among
the measured variables (co-expression) or non-linear associations among subsets of the
transcripts represented in the RNA-seq data. Due to the fact that co-expressed genes
can often be functionally related, controlled by the same set of transcriptional factors,
or part of the same pathway, deciphering co-expression networks can help in clarifying
biological modules governing specific biological processes [32]. Interestingly, comparisons
between bulk RNA-seq co-expression networks and microarray data-derived networks
show much higher correlations in RNA-seq data due to higher sensitivity and a larger
dynamic range [33]. Here again, it is also essential to consider how the sample size and
the sequencing depth affect the quality of RNA-seq co-expression networks [34]. In order
to obtain the “gold standard” co-expression networks, it might be necessary to analyze
thousands of samples from different conditions [35].

Additionally, small changes in the expression of some genes may not be detected as
statistically significant or informative when each gene is considered in isolation. However,
their joint activity could have impactful biological consequences. Therefore, the differential
enrichment analysis of biological pathways can sometimes provide a better biological
interpretation than focusing on individual genes [36]. An extensive review of available co-
expression network- and pathway analyses and other applications of RNA-seq is available
here [35]. As the amount of data from scRNA-seq is growing, there is a basis for the
development of approaches using partial information decomposition for the detection of
regulatory networks [37,38]. There are also attempts to integrate scRNA-seq data with
other “omics” datasets for the functional inference of gene regulation [39].

With the increased interest in developing new methods for analysis of bulk and scRNA-
seq data, the need for evaluating methodologies and benchmarking the implementations
of the associated algorithms also increases. Some of the most popular metrics used for such
benchmark performance evaluation are the false discovery rate (FDR) and sensitivity [40],
as well as classification error estimation [41]; additionally, clustering [42] and network
inference accuracy [43] are important areas of interest. Using real datasets for these types of
performance evaluation studies is not reliable because one lacks knowledge of ground truth
related to gene expression levels, their differences between populations, their interactions,
or even their class label. For example, determining the ground truth may require costly
spike-in experiments. Therefore, machine learning and statistical approaches need to be
evaluated on datasets where the multidimensional probability distributions are known
before deploying them on real datasets. A common cost-effective alternative to using real
RNA-seq data for such evaluation purposes is to employ synthetically generated datasets
with known generation parameters and a built-in ground truth, resembling real data.
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As the amount of transcripts in the RNA-seq raw data is measured in non-negative
integer counts, and taking into consideration the systematic biases of the sequencing plat-
forms, the Poisson distribution was first proposed to model RNA-seq data, e.g., in [44].
That distribution has only one parameter and equal mean and variance. This model is not
currently recommended due to the overdispersion of real data, usually exhibiting a large
read count variation among biological replicates. Therefore, RNA-seq data are now often
modeled with two-parameter distributions, such as generalized Poisson distribution or
negative binomial distribution [45], that allow more flexibility in modeling. Alternative
solutions have been proposed to model the global underlying biological variability, includ-
ing a tweedy Poisson distribution [46] and a beta-binomial generalized linear model [47],
which have certain limitations, as described in [46].

A well-known property of scRNA-seq datasets is that they contain a relatively large
proportion of genes with zero counts: the proportion of zeros in bulk RNA-seq data is
10–40% [48,49], while it could reach 90% in scRNA-seq data [50]. This feature of scRNA-seq
data creates challenges for the estimation of gene expression correlations [51] and the
understanding of gene expression dynamics [52]. The sources of zero counts in scRNA-seq
data, along with the impacts of zeros on various data analyses, modeling and interpreting
of data and analyses results are discussed in greater detail in [14].

Currently, there are a multitude of scRNA-seq data simulators available, with the
majority of them estimating features of a real single-cell dataset in order to generate data.
The earliest methods in this direction utilize the negative binomial distribution [49,53,54],
or the zero-inflated negative binomial distribution to better model sparsity [55,56]. Other
parametric and nonparametric methods are discussed in [57]. Some of the popular current
synthetic scRNA-seq data applications could be categorized as follows: (i) studies of the
imputation of missing values [58,59], and (ii) cell type identification [60–63] among others.
An overview of the technologies and important problems that could be solved using
scRNA-seq is available in [64].

Various synthetic data generators for bulk RNA-seq data have been proposed since
the inception of the technology. The early methods simulating bulk RNA-seq data utilize
FASTA, SAM or BED files as the input and have goals such as the evaluation of alignment
algorithms, studying the experimental biases of the sequencing platforms by mimicking the
major experimental steps, or estimation of transcript expression when comparing de novo
transcriptome assemblers [65]. Synthetic bulk RNA-seq data generators that have gained
more recent popularity are discussed in [66] and they are used predominantly for the
purposes of studying differential expression, classification and correlation. Synthetic data
are also used in innovative research areas such as for studying k-mer signatures [67], and
integration, including with different “omics” technologies, as well as for the normalization
of transcriptomic data [68–71], studying viral diversification dynamics [72], haplotypes [73]
and the origin of outbreak [74]. The above list of applications of synthetic RNA-seq data
is not exhaustive. As the need for synthetic RNA-seq data and the number of generators
are ever-growing, researchers can benefit from a general computational framework that
would provide them with an informed choice on whether the intended simulation strategy
is optimal.

The following sections describe a general framework, as shown in Figure 1, for the
benchmarking of synthetic RNA-seq data generators and provide an example, as shown in
Figure 2, of the application of this technique using a few commonly used data generators.
It should be noted that this benchmarking example serves as an illustration of the general
framework and does not aim at a comprehensive utilization of the synthetic datasets
generated for the purposes of this work.
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Figure 1. Methodological framework for synthetic RNA-seq data generation for benchmarking of
algorithms for statistical and pattern recognition analyses.

Figure 2. Application of the framework for comparison of bulk RNA-seq generators. Different
colors indicate different types of methods. compcodeR and powsimR are parametric, SPsimSeq is
semiparametric, and SimSeq and seqgendiff are nonparametric.

2. A General Computational Framework for Selection of Task-Specific Synthetic
RNA-Seq Data Generator

As there is a variety of available software aimed at simulating RNA-seq data, it is
important to compare performance in a systematic fashion. Our paper introduces a general
computational framework that could be used to select a synthetic RNA-seq simulator to
generate a sufficient number of samples, appropriate for the evaluation of a specific analysis
method or to benchmark several such algorithms against each other, as shown in Figure 1.

When selecting algorithms for benchmarking, one should consider their underlying
parametric models for data generation, or lack thereof in the nonparametric case. Para-
metric approaches use experimental datasets to infer the parameter values for an assumed
distribution, whereas nonparametric approaches use experimental datasets as baseline data
add add effects to it, and are model-free; therefore, they are considered to be fast [72]. The
evolution of the nonparametric approaches has been discussed in [75]. Furthermore, one
should consider which of the major goals (DEGs analysis, classification, network analysis,
etc.) are addressed by the respective algorithm and its software implementation. Finally,
an appropriate analysis of the synthetic data pool should be conducted, for example con-
sidering feature-feature correlations, especially when the synthetically-generated data are
used to study clustering or the classification of samples or cells.

3. Application of the Framework to Benchmark Several Synthetic Bulk RNA-Seq
Data Generators

In this article, we focus on one specific application of the proposed computational
framework and consider the following important benchmarking criteria in the case of bulk
RNA-seq data: (i) distributional characteristics of generated synthetic data; (ii) number
of DEGs; and (iii) class-covariance structure, as shown in Figure 2. This example can
serve as a guideline for the framework’s application to evaluation and benchmarking tasks
for synthetic RNA-seq data generation algorithms and software packages. The software
packages that we compare here are aimed at generating synthetic bulk RNA-seq data
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and take as input either a combination of parameters, a count dataset or both. They
have been developed with a focus on the following three major goals: (1) study of DEGs:
compcodeR [40], SimSeq [76], powsimR [49], seqgendiff [75]; (2) classification studies:
Splatter [54]; and (3) correlation studies: SPsimSeq [77].

Because the software packages of interest were originally designed to have real bulk
RNA-seq data as input, we used the AD RNA-seq dataset [78] for comparisons. The cohort
is of patients with Alzheimer’s disease and roughly matched controls, without neurological
diseases, sequenced on Illumina HiSeq 2500, following a standard polyA-selected Illumina
RNA-seq protocol. The data were downloaded from the recount3 repository [79]. After
filtering out genes with a median of 0 and subsetting to 50 patients and 50 controls (not
necessarily matched, which is the case for most real studies), we obtained comparable
datasets for the simulations, with measurements for 34616 genes or transcripts. The
data have two classes corresponding to the input requirement for some of the simulators
compared in this study, as shown in Figure 2.

We also used synthetically generated RNA-seq data with a known covariance structure
(NGSSPPG package, [80,81]) as the input for our benchmarking application. NGSSPPG
simulates RNA-seq data with a known covariance structure—predetermined mean, vari-
ance and feature correlations. We generated two datasets, NGSSPPG1 and NGSSPPG2,
each containing 100 samples with 10,000 genes or features. Both datasets have a clear
two-class structure (class ratio = 50/50), and represent the following two distinct levels
of difficulty for classification algorithms: a “simple” and easily separable class structure
characterized by a small variance parameter, σ0 = 0.4 (this dataset is denoted by NGSSPPG1
in our study) and a “difficult” mixing class structure characterized by a large variance
parameter, σ1 = 0.7 (this dataset is denoted by NGSSPPG2). The two datasets have a
defined feature-feature block correlative structure with a correlation of 0.4 for five fea-
tures as user-specified variables for the algorithm. As in [66], the mean amount of reads
per feature was set to 300 using an empirical procedure accessible in the code (https:
//github.com/Felitsiya/Comparative-study-of-synthetic-bulk-RNA-seq-generators (ac-
cessed on 8 November 2022)), for purposes of comparison with the real RNA-seq data
used in our benchmarking, the Alzheimer’s disease (AD) dataset. The NGSSPPG software
utilizes the following two-step procedure to generate data: (1) modeling mRNA concen-
trations with a multivariate Gaussian model (MVN-GC); and (2) modeling NGS-reads
using a Poisson process that takes the MVN-GC data as its input. The user can specify
the following parameters: number of features, number of samples in each group, number
of subgroups in group 1, number of global, heterogeneous and non-markers, average
expression and average standard deviation for each group, number of correlated variables
in a block structure, strength of block covariance, sequencing depth, and noise.

The procedure we used to simulate data consists of the following steps:

(i) We calculated the parameters needed for the benchmarked packages using the NGSSPPG
synthetic RNA-seq datasets or the real RNA-seq data (AD dataset) as input for textbf-
compcodeR: mean gene expression of class 1, and specific dispersions of class 1 and
class 2, as recommended in the package manual. We used the default values for effect
size and the minfact and maxfact parameters for the simulated samples’ individual
sequencing depths.

(ii) powsimR’s parameter estimation step was performed with the recommended set-
tings for bulk RNA-seq data; the simulation step was performed with the DESeq2
differential testing method. For this particular simulation, we truncated the values
above 107 to be equal to 107 for the AD dataset, with the goal of avoiding the effect of
severe outliers.

(iii) As the input of seqgendiff, we took either one of the two classes from the NGSSPPG
dataset or the control group from the AD dataset. The added signal is from an
exponential distribution with a rate of 0.5 and effect size of 1.5.

(iv) SimSeq runs as a one-step procedure; therefore, we used its default parameters.

https://github.com/Felitsiya/Comparative-study-of-synthetic-bulk-RNA-seq-generators
https://github.com/Felitsiya/Comparative-study-of-synthetic-bulk-RNA-seq-generators
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(v) For SPsimSeq, we set the genewiseCor parameter to FALSE; therefore, we chose not
to retain the gene-to-gene correlation structure of the input data. This was to avoid
the high computational cost of calculating/keeping that structure.

The read count matrices produced by the respective synthetic data generation packages
were used for the comparisons, including quantile-quantile (Q-Q) plots [82] and descriptive
statistics (countsimQC R package [83]), Figure 2. The numbers of DE genes were determined
by DESeq2 [84], Table 1.

Table 1. DEGs found by DESeq2 from datasets simulated based on either the NGSSPPG1 (100 sam-
ples, 10,000 features, class ratio = 50/50) data or the AD data (100 samples, 34,616 features, class
ratio = 50/50). All generators are set to produce data with 5% DEGs. Asterisk (*) denotes the original
dataset; the subsequent rows indicate datasets generated with it as input.

Dataset # DEGs Dataset # DEGs Dataset # DEGs

NGSSPPG1 * 623 NGSSPPG2 * 677 AD * 10066
compcodeR 560 compcodeR 453 compcodeR 1689
powsimR 543 powsimR 449 powsimR 1751
seqgendiff 573 seqgendiff 648 seqgendiff 1649

simseq 77 simseq 238 simseq 297
SPsimSeq 629 SPsimSeq 674 SPsimSeq 1828

Our first comparative metric is based on the Q-Q plots visualization of the similarities
between the distributions of the input and the respective outputs of the five benchmarked
packages. Q-Q plots illustrate the similarity between two given distributions. If the
distributions of two datasets are similar, their quantiles should be close and the scatter plot
should be close to the diagonal, as shown in Figure 3. Notably, for the two well-separable
classes in the NGSSPPG1 dataset, the Q-Q plots indicate greater similarity between the
input data and the output (after using one of the five data simulations methods) data
distributions. In contrast, the data with the larger noise component, NGSSPPG2, is not as
similar to the datasets simulated by the five packages. The closest distribution pair in these
cases is the one with SimSeq, where the regression line is approximately the diagonal. For
simulations based on the real RNA-seq data (AD dataset), a larger intrinsic variation is
noticeable, which is likely due to the nature of real data and the larger number of features
or genes (more than three times as many features than those present in the NGSSPPG
datasets), as shown in Figure 3C. The distribution of the real dataset is best matched in the
sense of Q-Q plots by the simulated compcodeR dataset.

Our second comparative metric is the Dispersion vs Biological Coefficient of Variation
(BCV) plots, as shown in Figure 4. Displayed is the dispersion or so-called biological
coefficient of variation versus the mean of the log2 of the counts per million reads, which is
calculated using DESeq2 before running the test for detecting DEGs. It is immediately no-
ticeable that the curve that is characteristic for many real datasets, as shown in Figure 4C, is
not present in the case of the two-class synthetic RNA-seq data generated by the NGSSPPG
package, which can be seen in Figure 4A,B. The observed discrepancy could be a mani-
festation of the specific goals of the NGSSPPG algorithm, as it aims to generate data for
classification purposes, with relatively low dispersion.

The third metric deployed in our benchmarking application of the general framework
is based on the mean-variance scatter plots, as shown in Figure 5. These plots show the rela-
tionship of the feature variance to their empirical mean, without taking into consideration
the experimental design and potential sample grouping. Note that seqgendiff simulates
data with dispersion, which are not present in the input data, due to the added predeter-
mined fixed effect size and an extra random variable with an exponential distribution.
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Figure 3. Q-Q plots of five synthetic data samples generated by the respective data generators (y axis)
vs. five samples used as input for those data generators (x-axis), with (A–E) NGSSPPG1 samples
used as input data; (F–J) NGSSPP2 samples as input data; (K–O) AD samples as input data. The axes
represent the quantiles of the respective distributions. Blue: linear regression line. Red: diagonal line.

Figure 4. Dispersion vs. BCV plots of the: (A) NGSSPPG1; (B) NGSSPPG2; and (C) AD datasets and
the datasets generated with these as input. Black dots: gene-wise dispersion estimates. Red curve:
fitted mean-dispersion relationship. Blue circles: final dispersion estimates.

The next comparative metric used in our application is based on the Spearman correla-
tion coefficients distribution for pairs of features presented in the feature-feature correlation
plots, Figure 6. This figure visualizes the preservation of the input’s correlation struc-
ture according to the respective generation algorithms. Only non-constant features are
considered—if more than 25 such features are found in a dataset, the pairwise correla-
tions between 25 randomly selected features are displayed [83]. Here, the nonparamet-
ric algorithms SimSeq and seqgendiff outperform the other generators in capturing the
feature-feature correlations in the real dataset, as shown in Figure 6C. Interestingly, these
generators do not perform well in capturing the feature-feature correlations present in the
NGSSPPG input.



Genes 2022, 13, 2362 9 of 15

Figure 5. Mean-variance plots of the: (A) NGSSPPG1; (B) NGSSPPG2; and (C) AD datasets and the
datasets generated with these as input.

Figure 6. Feature-feature correlation plots of the (A) NGSSPPG1; (B) NGSSPPG2; and (C) AD data
and the datasets generated with these as input.

Another metric used in our benchmarking application is the ability of the synthetic
data generators to recapture the number or the percentage of DEGs observed in the input



Genes 2022, 13, 2362 10 of 15

dataset. Note that there is an overwhelming presence of DEGs in the AD dataset, possibly
due to the intrinsic nature of the sampled tissues. The synthetic data generators have
been set to produce data with 5% DEGs i.e., 500 DEGs for the NGSSPPG-based data and
1731 DEGs for the AD-based data, as shown in Table 1. The numbers of DEGs found in the
SimSeq-produced datasets is much lower than expected.

As part of the testing for DEGs, we also generated volcano plots. Volcano plots illus-
trate the statistical significance of the expression difference relative (y-axis) to the magnitude
of difference (x-axis) for every transcript in a comparison between two groups [85]. Figure 7
shows the volcano plots with the greatest resemblance of the input data achieved by SimSeq
and SPsimSeq. One can notice that when simulating with real data (AD dataset) as the
input, as shown in Figure 7C, that compcodeR, powsimR and seqgendiff produce data,
which are skewed towards a positive magnitude of difference, i.e., only overexpression is
present, with almost no underexpression between the two groups.

Figure 7. Volcano plots for: (A) NGSSPPG1; (B) NGSSPPG2; and (C) AD datasets and the datasets
generated with these as input. Blue dots: transcripts with p-value > 0.05, denoting significant
differential expression. Red dots: transcripts with p-value > 0.05 and log2(FoldChange) > 1 or with
p-value > 0.05 and log2(FoldChange) < −1.

Our final tool for benchmarking the five synthetic bulk RNA-seq data generators is
based on principal component analysis (PCA). It demonstrates the separability of groups or
classes potentially present in the respective datasets, as shown in Figure 8. Note that PCA
cannot completely differentiate the two classes of the AD data, as shown in Figure 8C, possi-
bly due to the large variance present in this particular real dataset. At the same time, the syn-
thetic NGSSPPG generation algorithm provides us with the following two clearly distinct
scenarios for class-conditional distributions of the input ground truth data: (i) two clearly
separated classes in the NGSSPPG1 dataset, Figure 8A; and (ii) two mixed (because of the
large noise or variance) classes in the NGSSPPG2 dataset, as shown in Figure 8B. Note that
two of the five benchmarked packages, compcodeR and seqgendiff, produce simulated data
that allow PCA to detect two classes as present in the input NGSSPPG datasets. However,
seqgendiff produces data with a much stronger separability when compared to both cases
of the input NGSSPPG datasets. The possible explanation for this phenomenon could be
that seqgendiff adds signal during the process of data generation. This could lead to the
potential misrepresentation of the data structure as the comparison of the PCA plots of the
AD data vs seqgendiff, which is simulated with it as input, shows.
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Figure 8. PCA plots for: (A) NGSSPPG1; (B) NGSSPPG2; and (C) AD datasets and the datasets
generated with these as input.

4. Discussion

One of the critical problems related to the evaluation of statistical and machine learning
methods for RNA-seq data analyses is the lack of knowledge about the true real data
multidimensional distributional properties. Therefore, the generation of synthetic RNA-seq
datasets, which can serve as ground truth for such an evaluation, has become a topic
of significant interest in the research community. Currently, there is an ever-growing
number of methods and software packages for generating synthetic RNA-seq data. Many
studies focus on the performance of methods analyzing DEGs, typically comparing the
results, e.g., sensitivity, specificity and related performance metrics, and in some cases the
statistical power. However, little attention has been paid to using a systematic approach for
comparing the quality of the RNA-seq simulated data. In this paper, we propose a general
framework to address the problem. We highlight several metrics that can be considered
when comparing synthetic RNA-seq data, while also taking into account the properties
present in the data used as input for the generation algorithms. The application of the
proposed approach is illustrated by using five currently available software packages for the
generation of synthetic bulk RNA-seq data. In our opinion, it is important to include both
synthetic data (NGSSPPG) with a known structure, and real datasets (AD) in the proposed
evaluation. The application of our general computational framework, as shown in Figure 1,
to the benchmarking task of comparing these five data generation software packages
shows that different synthetic RNA-seq data generators are optimal for capturing different
aspects of the input data, such as dispersion, number of DEGs, feature-feature correlations
and separability into two classes. SimSeq, seqgendiff and potentially SPsimSeq are best
suited for preserving the feature-feature correlation structure while compcodeR appears
to be the better choice if the research task is geared towards classification or clustering
studies. The observation that different data-generation algorithms perform differently with
respect to the proposed application metrics underscores the importance of performing
a comparative evaluation before selecting data-generation software in order to evaluate
specific data analysis methods. While the steps outlined in Figures 1 and 2 describe the
general framework for performance evaluation and its specific implementation in the case
of bulk RNA-seq synthetic data generation, it is also evident that more work is needed
to expand upon and refine the proposed framework in each particular case, in particular
when one needs to find a suitable algorithm and software package for generating synthetic
scRNA-seq datasets.
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