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Abstract: Traditional transcriptomics approaches have been used to identify candidate genes affecting
economically important livestock traits. Regulatory variants affecting these traits, however, remain
under covered. Genomic regions showing allele-specific expression (ASE) are under the effect of
cis-regulatory variants, being useful for improving the accuracy of genomic selection models. Taking
advantage of the better of these two methods, we investigated single nucleotide polymorphisms
(SNPs) in regions showing differential ASE (DASE SNPs) between contrasting groups for beef
quality traits. For these analyses, we used RNA sequencing data, imputed genotypes and genomic
estimated breeding values of muscle-related traits from 190 Nelore (Bos indicus) steers. We selected
40 contrasting unrelated samples for the analysis (N = 20 animals per contrasting group) and used a
beta-binomial model to identify ASE SNPs in only one group (i.e., DASE SNPs). We found 1479 DASE
SNPs (FDR ≤ 0.05) associated with 55 beef-quality traits. Most DASE genes were involved with
tenderness and muscle homeostasis, presenting a co-expression module enriched for the protein
ubiquitination process. The results overlapped with epigenetics and phenotype-associated data,
suggesting that DASE SNPs are potentially linked to cis-regulatory variants affecting simultaneously
the transcription and phenotype through chromatin state modulation.

Keywords: phenotype; beef; cis-regulation; ASE

1. Introduction

Allele-specific expression (ASE) analysis is a helpful approach to searching for cis-
regulatory variants [1,2]. ASE consists of the imbalanced ratio between reference and alter-
native alleles’ counts in a heterozygous locus, being a common pattern in mammals [3–5].
As ASE is determined per individual, it reduces the effect of technical factors found in total
expression studies [1,6]. Thus, from the knowledge of the transcribed or repressed alleles it
is possible to infer cis-regulatory variants related to this expression pattern [1], allowing
increased accuracy in predictive models and improving functional variants discovery [7].

Genes 2022, 13, 2336. https://doi.org/10.3390/genes13122336 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes13122336
https://doi.org/10.3390/genes13122336
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0002-6038-7521
https://orcid.org/0000-0003-1082-5535
https://orcid.org/0000-0002-4435-5386
https://orcid.org/0000-0002-9209-2250
https://orcid.org/0000-0003-2481-401X
https://orcid.org/0000-0002-7739-0284
https://orcid.org/0000-0002-0990-4108
https://doi.org/10.3390/genes13122336
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes13122336?type=check_update&version=2


Genes 2022, 13, 2336 2 of 17

As our research group [8,9] and others reported, ASE is widespread in bovine [4,6,8,
10,11]. Previously, we described a high coverage list of single nucleotide polymorphisms
(SNPs) located in transcripts with ASE (ASE SNPs) distributed in Nelore (Bos indicus)
muscle and the candidate cis-regulatory variants potentially affecting the allelic expression.
Additionally, we have shown evidence that the ASE SNPs can regulate transcription, as
they are located in functional regions [9]. ASE analysis benefits the search for functional
variants affecting important economic traits, since genes containing ASE SNPs (ASE genes)
may play a role in muscle maintenance and are related to meat quality traits [8,10].

A traditional transcriptomics analysis compares the total gene expression between
phenotypically contrasting animals [12], resulting in differentially expressed genes (DEGs).
Other techniques are needed to investigate variants associated with the DEGs expression
(expression quantitative trait loci—eQTLs, for example) and associated with the phenotype
(quantitative trait loci—QTLs). Thus, these data layers need to be integrated to draft more
consistent potential mechanisms. Facing the benefits of conducting differential expression
and ASE analyses, a differential allele-specific expression (DASE) approach can identify
regions where the ASE level differs between extreme samples for a given trait.

The DASE regions are likely affected by cis-regulatory variants affecting the expression
pattern because of the observed ASE. In addition, the same cis-regulatory variants may be
related to the phenotype of interest due to allelic imbalance being trait-dependent. Thus,
this approach can reduce analytic steps and avoid false positives compared to integrating
results from multiple consecutive analyses. There are only a few studies with global DASE
analysis, probably due to the requirement of high density genotypic, transcriptomic and
phenotypic data from the same sample. Genome-wide DASE regions were related to breast
cancer phenotypes [7,13], but no study could be found in livestock so far.

In this study, we searched for DASE SNPs related to 55 meat quality, carcass quality,
mineral content, and fatty acid composition traits in the muscle of a Nelore population. We
conducted gene enrichment and co-expression analyses to investigate functional interac-
tions between DASE genes. We integrated the DASE SNPs with results obtained previously
in the same population, such as cis-eQTLs (i.e., SNPs associated with the transcript abun-
dance) and aseQTLs (i.e., SNPs associated with the allelic imbalance). These variants may
affect the traits by the cumulative regulatory effect in co-expressed genes related to these
muscle-related traits.

2. Materials and Methods
2.1. Animal Production and Sample Collection

The experimental population used in this study was part of a large project with all
experimental approaches approved by the Institutional Animal Care and Use Committee
Guidelines of Embrapa Pecuária Sudeste ethics committee (São Carlos, São Paulo, Brazil.
Protocol CEUA 01/2013). Details regarding the animal’s production can be found inprevi-
ous studies [14–16]. For the animal production, 34 sires were selected to have the lesser
kinship and to represent the main lineages of Nelore cattle in Brazil. Semen samples of these
animals were stored at 80 ◦C for later analysis. Artificial inseminations were performed
in purebred Nelore dams, avoiding the same parental pair [15], generating a 386 Nelore
steers population [16]. The animals were raised under the same feeding and management
as detailed described previously [15]. The animals were slaughtered once they reached
5 mm of backfat thickness (BFT), measured by ultrasound. Blood samples and collected in
vacuum tubes containing potassium EDTA (K3) and muscle samples were immediately
collected between the 11th and 13th ribs of the Longissimus thoracis muscle [14–16]. Here,
we used the data of 190 steers from this experimental population for which phenotype,
genotype, and RNA-Seq data were available, being the same samples used in previous
studies of our group [8,9], to ensure comparability.
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2.2. Phenotype Measurements

Phenotypes’ description and genomic estimated breeding values (GEBVs)’ summary
are described in Table S2. Tenderness, Backfat Thickness (BFT), and Ribeye Area (REA)
traits were collected as described previously [15] Briefly, tenderness phenotypes were
measured based on the shear force obtained from the Warner-Bratzler equipment at 24 h
(WBSF0), seven days (WBSF7), and 14 days after slaughter (WBSF14) [15]. The phenotypes
for mineral content (Ar, Ca, Cr, Co, Cu, Fe, Mg, Mn, P, K, Se, Na, S, and Zn) were obtained
from 100 mg lyophilized muscle sample, being measured by a Vista Pro-CCD ICP-OES
spectrometer with a radial view (Varian, Mulgrave, Australia) [17]. GEBVs for these
phenotypes were calculated in GenSel software (https://github.com/austin-putz/GenSel,
accessed on 10 April 2020), using birth, feedlot locations, and breeding seasons as fixed
effects, and age at slaughter was included as a covariate in the statistical model [15,17].

The intramuscular fat (IMF) and fatty acid composition traits (described in Table S2)
were previously reported elsewhere [16]. The measures were conducted in the Animal
Nutrition and Growth Laboratory at ESALQ, Piracicaba, São Paulo, Brazil. IMF was
obtained using an Ankom XT20 Fat Analyzer, following the recommended methods. Fatty
acid content was extracted from 4 g of muscle samples and the profile identification was
performed using gas chromatography by comparing the retention time of the obtained
methyl esters with reference standards. Detailed methods are described previously [16],
which also presented the model for the GEBV estimation for these traits.

The selection of animals to compose contrasting sample groups was similar to the
criteria adopted in the previously reported differential expression data [18–22]. The animals
were ordered and grouped according to the GEBV values for each trait, being the group
with higher GEBV values classified as High and the one with minor values classified as Low.
The animals were chosen to avoid steers descending from the same sires being allocated
to the same contrasting group. A Student’s T-test was applied for all mentioned traits
(p-value < 0.05) to determine whether the phenotypes differed between the two groups.

To observe the relationship between phenotypes in our dataset, we computed the Pearson
correlation between GEBVs values from the subpopulation of 190 animals in a correlogram.

2.3. DNA Extraction, Genotyping and Whole Genome Sequencing

DNA was extracted from frozen semen samples of the sires using the phenol-chloroform
method. Extracted DNA from 26 sires was used for whole-genome sequencing, per-
formed in an equipment Illumina HiSeq 2500 System (Illumina Inc., San Diego, CA,
USA), with 8–21X coverage, in the Functional Genomic Center—ESALQ (Piracicaba,
SP, Brazil). Data management was executed as suggested by the 1000 Bulls Genomes
Project (http://www.1000bullgenomes.com/, accessed on 1 July 2020), as previously
described [23].

Concerning the progeny, DNA was extracted from blood samples using the salting out
method, as described previously [14]. For sires and steers samples, the DNA concentration
was quantified in NanoDrop®, purity was analyzed by comparing the optic absorbance
ratio 260/280, and the material integrity was observed by electrophoresis in agarose gel.
Genotyping was conducted in Illumina BovineHD BeadChip (Illumina Inc, San Diego, CA,
USA) with the extracted DNA from sires and steers, as detailed described elsewhere [24].

Variant imputation was executed with the high-density genotypes together with the
26 sires’ whole-genome sequencing data, which methods were described elsewhere [23].
Concisely, the imputation accuracy was analyzed using a leave-one-out method, where the
sequenced genotypes were used as a reference to observe consistent imputation results.
Quality control was conducted with PLINK software [25], maintaining autosomal SNPs
with minor allele frequency higher than 0.01, which showed an imputation error rate of
less than 2% [23]. The final genotype file contained nearly 4.8 million SNPs.

https://github.com/austin-putz/GenSel
http://www.1000bullgenomes.com/
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2.4. RNA Extraction and Sequencing

RNA from 100 mg of 190 muscle samples from steers was extracted for transcrip-
tomics analysis using TRIzol® (Life Technologies, Carlsbad, CA, USA), according to the
manufacturer’s instructions. RNA libraries were prepared with the TruSeq RNA Sample
Preparation Kit (Illumina, San Diego, CA, USA) with the default protocol. Clustering and
paired-end sequencing were executed in an Illumina HiSeq 2500® (Illumina, San Diego, CA,
USA) equipment. The quality control removed sequencing adapters and low complexity
reads with the software SeqyClean v1.4.13 [26]. The RNA sequencing was made in the
Functional Genomic Center—ESALQ (Piracicaba, SP, Brazil), being detailed in a previous
manuscript [27].

The sequences were mapped to the bovine reference genome (ARS-UCD1.2, Ensembl
100) using the STAR software [28] with default settings. The WASP pipeline [29] was
applied to remove reads presenting mapping bias, which commonly inflates the reference
allele counts [30]. Counts of reads overlapping gene regions were obtained using the
Htseq-count tool [31], and allele-specific counts were obtained from heterozygous variants
with GATK ASE Read Counter [32].

2.5. Analysis of Differential Allele-Specific Expression (DASE) between Contrasting Groups for
Meat Quality Phenotypes

The DASE analysis was conducted to evaluate the relationship between the allelic
expression imbalance level and the phenotype by comparing allelic ratios between contrast-
ing groups. In this approach, tests were performed per phenotype for all SNPs within their
respective genes aiming to compare results with those from differential expression analysis,
co-expression, and gene functions. We used the DESeq2 R-package [33], including each
sample twice in the matrix of counts (for reference and alternate alleles expression), being
the design formula defined as:

design = ~phenotype + phenotype:sample + phenotype:count

where: ~phenotype corresponds to the variation between High and Low groups for the
meat quality traits; phenotype:sample calculates the phenotypic variation of the animals
within each group; and phenotype:count estimates the count’s difference between reference
and alternate alleles for the two contrasting groups. Unlike the traditional differential
expression analysis, size factor normalization is unnecessary in this approach because the
sample is included in the design formula. The code and model details can be found on the tu-
torial page, described by the DESeq2 developer (http://rstudio-pubs-static.s3.amazonaws.
com/275642:e9d578fe1f7a404aad0553f52236c0a4.html, accessed on 12 September 2022). In
this analysis, each test results in three p-values. One determines the significance of the
difference between allele counts within the High group, other for the Low group, and the
last p-value corresponds to the ASE significance between the two contrasting groups, which
is adjusted for the False Discovery Rate (FDR) implemented by the Benjamini-Hochberg
method. The script also returns Log2FoldChange (FC) values, indicating which contrasting
group showed allelic imbalance. The negative FC values indicate that the allelic imbalance
was larger in the Low group compared to the High group. The positive ones correspond to
variants in which the ASE was downregulated in the Low group compared to the High
group. This analysis resulted in DASE SNPs, which corresponded to the SNPs marking
the significant DASE within a gene, which were named DASE genes. We considered as
significant the DASE SNPs corrected per phenotype and per gene with FDR ≤ 0.05.

2.6. Functional Annotation and Gene Enrichment Analyses

The DASE SNPs were annotated using SNPEff software [34] against B. taurus genome
coordinates. Gene ontology (GO) terms related to biological processes and molecular
functions involving DASE genes were obtained from BiomaRT (Ensemble release 104). The
enriched KEGG metabolic pathways containing DASE genes were obtained with ClueGo

http://rstudio-pubs-static.s3.amazonaws.com/275642:e9d578fe1f7a404aad0553f52236c0a4.html
http://rstudio-pubs-static.s3.amazonaws.com/275642:e9d578fe1f7a404aad0553f52236c0a4.html
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Plugin for CytosCape [35], release 101, with the two-sided hypergeometric test in the
enrichment analysis (FDR ≤ 0.05).

2.7. Co-Expression Analysis

To evaluate the correlation between DASE genes, we performed a co-expression
analysis using the default parameters of the CEMITool package [36]. This software results
in outputs with co-expressed modules and performs gene set enrichment (GSEA) and
over-representation (ORA) analyses. The GO biological processes terms underlying the
DASE genes were used for ORA (FDR ≤ 0.1). In addition, the phenotype with the largest
number of DASE genes was chosen for GSEA. The animals for this trait were separated as
High, Low, or “others” according to their GEBVs, “others” being the remaining animals
excluding those belonging to contrasting groups. This analysis was conducted out to
investigate the relevance of co-expressed genes in each module.

2.8. Data Integration

We conducted data integration analysis to examine if the SNPs found in this work
were previously related to ASE and bovine phenotypes in other studies. First, we retrieved
ASE data from the same Nelore population, regardless of the phenotypes [8,9]. After
that, to compare the potential effect on the phenotypes, we downloaded all GWAS data
obtained in the muscle of Nelore from previously published manuscripts related to meat
quality [15], fatty acid content [16], and mineral concentration traits [37]. QTLs coordinates
obtained from the previous bovine reference genome version (UMD3.1) were converted
to the latest version (ARS-UCD1.2) using the liftOver tool from the UCSC database (https:
//genome.ucsc.edu/cgi-bin/hgLiftOver, accessed on 7 June 2022).

DASE genes were compared with DEGs from the same Nelore population, identified
between contrasting samples for meat quality [18,21], fatty acid composition [19], and
mineral content [20,22] traits.

To identify SNPs potentially regulating the expression pattern, we considered a win-
dow of 200 kb upstream and downstream of each DASE SNP to search for aseQTLs [9],
cis-eQTLs [9] and differentially methylated SNPs (DM) [38]. This 200 kb window was
chosen based on our previous study [23] where the aseQTLs were mostly located until
200 kb of the regulated ASE SNP, and based on the high LD with the DASE SNPs expected
to be present in that genomic distance.

DASE SNPs and their 200 kb-distant potential regulatory SNPs were compared with
ChIP-Seq and ATAC-seq data obtained in cattle muscle for the Functional Annotation of
Animal Genomes (FAANG) [39]. The significance of all comparisons with genomic position
ranges was tested with 1000 permutations performed by the RegioneR package [40], with a
p-value threshold of 0.05.

3. Results
3.1. The Muscle-Related Phenotypes Are Correlated

Herein, we evaluated the potential effect of ASE on 55 carcasses and meat quality, min-
eral content, and fatty acids composition traits obtained in Nelore steers’ muscle. GEBVs
and the summary by sample group used here are reported in Table S1. The average GEBVs
differed significantly between the contrasting groups for all phenotypes (p-value ≤ 0.05).
After selecting animals with extreme phenotypes for the different traits (N = 20 per con-
trasting groups), 187 from the initial 190 samples were kept for analysis. The animals could
be analyzed in more than one phenotype. The average number of phenotypes tested per
sample was 11.76, ranging from one to 36 traits.

We used all animals with collected phenotypes and RNA-Seq data (N = 190) to identify
correlated trait clusters in our population. From the correlation matrix, we plot the correl-
ogram in Figure 1. We observed two blocks of strong positive correlations, one between
the Ca, S, Zn, Na, Mg, and K minerals and the other between the C14:1 cis-9, C16:1 cis-9,
C20:2, C18:3n3, PUFA, C20:5, C20:4, C22:5, and n3 fatty acids, including weak positive

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
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correlations with Cr and Cu in the same block. Negative correlation blocks can be observed,
being the more consistent involving C10:0, C12:0, C14:0, C15:0, C18:1 trans -10,11,12, C17:0,
C18:3n6, C18:0, C16:0 and SFA traits against WBSF0, WBSF7, WBSF14, C18:1 cis-13, C18:1
cis-12, C18:1 cis-11, C17:1, C20:1, C18:1 cis-9, and C18:1 total traits. The correlation matrix is
presented in Table S2.

Figure 1. Correlogram of mineral and fatty acid content phenotypes, carcass and meat quality traits.
Red squares represent negative correlations, blue squares represent positive correlations and the
white squares represent phenotypes without correlation in this population.

3.2. Differential Allelic Imbalance Related to Livestock Traits Was Identified in Bovine Muscle

We used several filters to increase the DASE results’ reliability. A sample could be
tested if it exhibited a heterozygous candidate SNP with at least ten counts. Therefore, we
set a threshold of at least three animals for which the SNP satisfied our requirements in
each contrasting group. Thus, for all SNPs, the sample number that passed these filters
was less than the original 20 samples selected to compose the contrasting groups. The
average number of samples per tested SNP was 5.88 in the Low and 5.82 in the High groups,
ranging from three to 18 animals in both extreme groups (Table S3).

For the DASE analysis, 14,429 SNPs were analyzed in 387,919 tests, being 1479 sig-
nificant tests corresponding to 937 unique DASE SNPs (FDR ≤ 0.05). Focusing on each
trait, the number of tests ranged from 5871 to 8141, with a mean of 7053 per phenotype.
The average of DASE SNPs identified per phenotype was 26.89, ranging from 11 (for the
C16:0 trait) to 73 (for WBSF0). All tests and the corresponding significance are represented
in Figure 2A and described in Table S4. Figure 2B represents the significant DASE SNPs
number per phenotype.

FCs ranged from −28.00 to 27.97, with an average of −0.41. The three DASE SNPs
with the most negative FC values were the rs524639701 (FC = −28.00; trait: C18:C15), the
rs441798208 (FC = −27.93; trait: C18:C15), and the rs523288898 (FC = −26.53; trait: Na).
The three DASE SNPs with the most positive values were the rs517071070 (FC = 27.97; trait:
BFT), the rs520889234 (FC = 25.93; trait: C18:1:C12), and the rs443152461 (FC = 20.49; trait:
C22:6). For 742 DASE SNPs the ASE was larger in the High contrasting sample group, and
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for 737 DASE SNPs this pattern was found in the Low group. Figure 2B represents the
number of DASE SNPs according to which phenotype extreme group exhibited ASE.

Figure 2. Differential allele-specific expression analysis results. (A) Manhattan Plot with all DASE
analysis results. The points above the red line were the significant DASE SNPs (FDR ≤ 0.05).
(B) Number of DASE SNPs per trait. The colors correspond to the sample group that presented more
allelic imbalance: Orange color represent the number of DASE SNPs with more ASE in the high
group (positive Log2FoldChange values), and the blue color represents the ones with more ASE in
the low group (negative Log2FoldChange values).

We used SNPEff to annotate DASE SNPs. We found that DASE SNPs are mostly
located in synonymous variation regions (n = 486 occurrences), followed by 3′ UTR regions
(n = 318), downstream regions (n = 248), and 152 DASE SNPs were predicted as missense
variations (Table S4).

3.3. Genes with Differential Allele-Specific Expression Were Related to Muscle Homeostasis

The 937 unique DASE SNPs are within 656 genes. The average of DASE SNPs per
gene was 2.25. The genes showing more DASE SNPs included Heat shock protein family
B—small—member 6 (HSPB6), ENSBTAG00000052709 (novel), and ENSBTAG00000048585
(novel), with 36, 30, and 22 DASE SNPs, respectively.

To investigate the biological relevance of the DASE genes, we analyzed the gene
enrichment of KEGG metabolic pathways, biological processes, and molecular functions
(Table S4). The DASE genes are related to 2246 biological processes, such as regulation
of transcription by RNA polymerase II (with 5.64% of the DASE genes), regulation of
transcription, DNA-templated (5.48% of the DASE genes), positive regulation of transcrip-
tion by RNA polymerase II (5.03%), protein phosphorylation (4.11%), positive regulation
of transcription, DNA-templated (4.11%), and protein ubiquitination (3.65%) (Table S5).
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Regarding molecular functions, 22.25% of DASE genes were identified in protein bind-
ing, 16.15% metal ion binding, identical protein binding (10.36%), ATP binding (9.14%),
nucleotide binding (8.84%), and other 758 molecular functions (Table S5).

We used ClueGo to perform the gene enrichment analysis of the KEGG metabolic
pathways. Based on the number of genes in each pathway, the largest number was found
for pathways in neurodegeneration (26 DASE genes), Alzheimer disease (24), Parkinson
disease (21), Prion disease (19), chemical carcinogenesis (19), and diabetic cardiomyopathy
(19). Considering the percentage of all genes belonging to the pathways that overlapped our
DASE genes, 16.13% of genes from the citrate cycle (TCA cycle) pathway were found in this
study, followed by 13.46% of the genes from amino sugar and nucleotide sugar metabolism
pathway, and 9.78% from the hypertrophic cardiomyopathy pathway. Figure 3A shows
the enriched KEGG pathways from all DASE genes (Table S6) regarding the number and
proportion of DASE genes in the pathways. The interaction of the pathways is represented
in the network in Figure 3B.

Figure 3. KEGG metabolic pathways enriched in the DASE genes. (A) Enrichment of KEGG biological
pathways showing the number and proportion of DASE genes in the given pathways. (B) Interaction
network of the enriched KEGG pathways.
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3.4. Co-Expression between DASE Genes

We conducted a co-expression analysis to identify modules of correlated genes that
can affect the studied phenotypes. We found five co-expressed modules (M1, M2, M3,
M4, and M5). The M1 module gathered 225 DASE genes, with NFAT5, UQCR11, UTRN,
NCOA3, and KDM7A as hub genes; M2 had 98 DASE genes, with the SMAD5, UBE2W,
OXR1, EDEM3, and ARID4A hubs; M3 had 69 DASE genes, with MMADHC, NDUFA5,
LRRC39, FASTKD2, and RTN4 hub genes; 60 DASE genes are within the module M4, with
FANCG, CCNL2, RTEL1, STARD3, and CXXC1 hubs. M5 had 42 co-expressed DASE genes,
being VIM, ANXA5, SPARC, ANXA2, and COL3A1 its hub genes. A total of 145 DASE
genes were not correlated. Modules and paired interacting genes are in Table S7.

To examine the biological relevance of the co-expressed genes, we analyzed the gene
ontology biological processes (BPs) of the DASE genes, corresponding to the ORA (Table S8).
This analysis was not significant for M1, M3, M4, and M5. For M2, the protein ubiquitination
process was enriched with FDR = 0.07, with ten DASE genes.

Due to the greatest number of DASE genes (n = 56), we selected the WBSF0 trait
for GSEA analysis. The GSEA was performed to explore if modules are upregulated or
downregulated in response to this phenotype based on the extreme sample groups. WBSF0
showed significantly enriched gene sets for the modules M1 and M2 in the High and
Low groups (Figure 4 and Table S9). These modules presented opposite effects in each
sample group, with the M2 module induced in the High group and repressed in the Low
group. Similarly, the M1 module showed repression in the High group and induction in
the Low group.

Figure 4. Gene set enrichment analysis of co-expression modules involving DASE genes for WBSF0
phenotype.
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3.5. Integration Was Found between DASE SNPs and QTLs for the Related Phenotypes

Integrating GWAS data obtained in the same Nelore population and the DASE SNPs,
retrieved 353 overlaps, involving 22 traits and 129 DASE SNPs (Table S10). The top three
QTLs with more overlap with DASE SNPs were REA (n = 86), LFAT (n = 49), and C18:0
(n = 41). Furthermore, the rs134535828 DASE SNP was identified as a cis-eQTL in the same
population. Likewise, the rs136209194 DASE SNP was previously found as an aseQTL [9]
(Table S10). Four variants were identified as DASE SNPs and QTLs for C18:0, three for
REA, two for WBSF7, and two DASE SNPs for WBSF0 were identified as QTLs for WBSF7,
as described in Table 1.

Table 1. DASE SNPs overlapping QTLs associated with the same phenotypes in both analyses.

DASE SNP Trait (DASE Analysis) Trait (QTL Integration)

rs720456892, rs43664623, chr11:63468724 G>A, chr11:69714613 G>A C18:0 C18:0

rs716062365, rs41721088, rs109947761 REA REA

rs109976566, rs444293703 WBSF7 WBSF7

rs208417619, rs720858445 WBSF0 WBSF7

DEGs were also found with the identified DASE SNPs. We found 159 overlaps,
between 16 traits and 136 genes containing 196 DASE SNPs (Table S10). Three DASE
genes, SAM and SH3 domain containing 1 (SASH1), Solute carrier family 25 member
4 (SLC25A4), and Diacylglycerol kinase delta (DGKD), identified for C18:1 cis-9 were
differentially expressed for oleic acid content (i.e., the same fatty acid). Kelch-like family
member 40 (KLHL40) was a DEG for palmitic acid (C16:0) and a DASE gene for the same
trait. Striatin Interacting Protein 2 (STRIP2) was differentially expressed for REA [21] and
has the rs137477165 DASE SNP identified here for REA.

3.6. Regulatory Variants Related to the DASE Pattern

We compared DASE SNPs with data from our previous study [9] (Bruscadin et al.,
2022). The ASE SNPs were tested as cis-eQTLs, and SNPs until 200 kb distants of the ASE
SNPs were tested as aseQTLs. We found all DASE SNPs overlapping ASE SNPs from
our previous study [9], 23 of them classified as aseQTLs and 47 as cis-eQTLs (Table S10).
Since regulatory mechanisms can act in variants neighboring the region with ASE, we
searched for potential regulatory variants until 200 kb from the DASE SNPs. We found
9857 aseQTLs and 1274 cis-eQTLs in this genomic window, around 302 and 289 DASE
SNPs, respectively, from our recent study [9]. De Souza et al. (2022) used a subset of
12 animals from the same population to obtain the methylation profile in the muscle,
identifying regions with differentially methylated (DM) SNPs across contrasting groups for
the tenderness phenotype. We found 50 DASE SNPs located until 200 kb of distance from
these DM regions (Table S10).

The DASE SNPs and potentially regulatory SNPs until 200 kb around them (DM SNPs,
cis-eQTLs, and aseQTLs) were compared with FAANG’s ChIP-seq and ATAQ-seq data [39].
We found 182 DASE SNPs overlapping functional regions (Table S10). From the overlapped
DASE SNPs, 21 were previously identified as QTLs in the same population, affecting
traits such as REA (15 SNPs), BFAT, C18:0 and LFAT (five SNPs), WBSF7 and WHC (four
SNPs). From all potential regulatory variants until 200 kb of distance from the DASE SNPs,
1145 aseQTLs, 212 cis-eQTLs and 14 DM SNPs were located within functional regions from
FAANG (Table S10). The permutation tests conducted with RegioneR indicated that the
data integration was significantly more frequent than by chance (Supplementary Data S1).

We compared all features overlapping DASE SNPs to evaluate the evidence of the
regulatory potential on the transcription and phenotype (Table S11). Some SNPs were found
in multiple datasets (Table S11). The rs519474617, identified as aseQTLs and cis-eQTLs [9],
is located in a region presenting all epigenetic marks from FAANG’s study obtained in
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bovine muscle [39]. The rs717173356, found as a cis-eQTL and aseQTL in our previous
study [9], is located in a CTCF binding region from Kern et al. (2021). The rs470985689
DASE SNP, which showed DASE for the Ar content, is located in accessible chromatin and
CTCF regions [39], integrated with aseQTLs [9] and was previously identified as a QTL for
REA [15].

DASE SNPs of DEGs overlapping FAANG’s epigenetic data are also integrated with
potentially regulatory SNPs (Tables S10 and S11). The main SNPs in this context are:
five variants overlapping meat-quality QTLs, five overlapping aseQTLs and seven with
cis-eQTLs, as described in Table 2.

Table 2. DASE SNPs located in DEGs which overlapped epigenetic data and putative regulatory
variants.

DASE SNP Variant Annotation/ Gene Trait (DASE Analysis) Trait (DE) FAANG Trait
(QTL) aseQTL cis-

eQTL

rs457578905 synonymous_variant/THBS4 Cr P, Cu, Na, K, Mg,
Average daily gain ATAC-seq LFAT No no

rs718541482 3_prime_UTR_variant/WDR48 PUFA CLA-c9t11, PA ATAC-seq REA No no

rs211442363 3_prime_UTR_variant/SPARC C20:1 IMF H3K27ac REA No no

rs715527852 downstream_gene_variant/SUGT1 P, S CLA-c9t11 ATAC-seq REA No no

rs1115255230 synonymous_variant/SPARC n6, C20:1, C10:0 IMF H3K27ac REA No no

rs209388096 synonymous_variant/AMFR C22:6 REA ATAC-seq no Yes no

rs719946630 synonymous_variant/PGD WBSF14 CLA-c9t11 ATAC-seq no Yes no

rs1117381943 upstream_gene_variant/CAVIN2 C18_1_T6_T7_T8_T9 AO
H3K4me3, H3K27ac,
H3K4me1, H3K4me3,

ATAC-seq, CTCF
no Yes no

rs516592412 synonymous_variant/PDG C20:1 CLA-c9t11 ATAC-seq no Yes no

rs1117068355 upstream_gene_variant/CAVIN2 C18_1_T6_T7_T8_T9 AO
H3K4me3, H3K4me1,
H3K27me3, H3K27ac,

ATAC-seq, CTCF
no Yes no

rs109090536 5_prime_UTR_variant/DCAF11 C20:2 AO H3K4me3, H3K4me1,
H3K27ac no No yes

rs443738741 synonymous_variant/LNX2 C20:2 REA ATAC-seq no No yes

rs379719524 synonymous_variant/NRAP Cr AO ATAC-seq no No yes

rs715652252 synonymous_variant/LNX2 C20:2 REA ATAC-seq, CTCF no No yes

rs468833876 upstream_gene_variant/NUTF2 C18_2_C9_C12 CLA-c9t11 H3K27ac, H3K27me3,
H3K4me3 no No yes

rs135451771 synonymous_variant/NRAP Cr AO ATAC-seq no No yes

chr2:5447956 G>A synonymous_variant/BIN1 C18_1_T6_T7_T8_T9 AO H3K27ac no No yes

4. Discussion

The information on correlated phenotypes or the traits belonging to the same cluster
is important to investigate the pleiotropic effect of allelic imbalance and understand DASE
SNPs eventually identified for multiple meat quality traits. By correlating all phenotypes
in our population, we found phenotypic interactions making biological sense. The Ca,
Mg, and Zn minerals showed a positive correlation here and were associated with human
muscle mass [41]. Zinc is an essential mineral for lean body mass synthesis, but relatively
large amounts of Zn are needed for new tissue synthesis [42]. Moreover, we found positive
correlations between unsaturated fatty acids and Cu and Cr. Chromium methionine
chelate supplementation in Holstein steers increased the C20:4 (p-value = 0.07) and PUFA
(p-value = 0.04) in beef during late fattening period [43].

Negative correlations were found between saturated fatty acid (SFA) composition and
WBSF traits, which means that tender samples had larger concentrations of SFA. SFA can
be related to initial and sustained juiciness in beef [44]. Although the excessive ingestion
of SFA can be detrimental to the consumer’s health, they are still related to tenderness
and juiciness in the bovine muscle [44,45]. To bring a balance to the production aspects,
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selecting a fatty acid composition in the herd must help the beef quality without increasing
undesired fatty acids, which harm the consumers’ health.

The selection of contrasting samples for DASE analysis used almost all initially avail-
able animals (187 samples out of 190). Nevertheless, the DASE analysis was still conserva-
tive due to the limited number of animals in each contrasting group presenting collected
phenotypes and a transcribed heterozygous SNP. The number of animals tested for DASE
ranged from three to 18 per contrasting group. The statistical power of DASE analyses
would be improved in larger experimental populations, in which it is possible to test
larger contrasting groups because of the increased probability of heterozygous SNPs able
to be tested. However, requiring at least three animals in each group may have guaran-
teed confidence in the obtained results without losing too much information due to our
sample size.

Comparing the number of significant results with the ones from our previous work [9],
we found that only 2.45% of the ASE SNPs were identified here as DASE SNPs. The
proportion of tested SNPs in DASE analysis was 1.06% of the SNPs from the original
dataset (~4 M SNPs), compared with the 3.02% tested for ASE [9]. Firstly, we did not
expect all ASE SNPs to be classified as DASE SNPs because it is improbable that they all
were located in genes related to the studied phenotypes. Moreover, the ASE results are
obtained per animal, with multiple ASE SNPs being significant in a small proportion of
the population, thus resulting in a larger number of significant results compared to the
DASE analysis. Our analysis depends on the phenotypic variation, so it was performed
in a selected sample rather than the whole population, resulting in a reduced number of
significant results. The annotation of DASE and ASE SNPs was similar, mostly located in
synonymous variation, downstream, intronic, and 3′ UTR regions.

DASE genes identified as hubs of the co-expression analysis were underlying metabolic
pathways. ORA enriched for the protein ubiquitination process in M2. The ubiquitina-
tion process marks the proteins to be degraded in the cell cycle, requiring some calcium-
dependent enzymes [46]. C18:2 increases ubiquitination and has a potential role in the
proteasomal degradation of tyrosinase [47]. We found 15 DASE genes associated to C18:2
traits co-expressed in M2, being seven related to C18:2 cis-9, trans-11 (ACIN1, COIL, DGKD,
MED23, SMARCA4, TMEM167A, and RNF20), five DASE genes for C18:2 trans-11, cis-
15 (ITGB1, RGSS, SCAP, BMS1, and CCNL2) and three for C18:2 cis-9,12 trait (EXOC1,
NUTF2 and TMX3). From pig muscle, polymorphisms of ubiquitin protein ligase E3C were
associated with IMF and fatty acid composition, being known as the relationship of E3
ubiquitin proteins and lipid metabolism [48]. Beef tenderness was related to proteassome
proteolysis, which in turn, requires protein ubiquitination [49]. These results suggest an
interplay between beef tenderness and fatty acid content in muscle, especially for C18:2,
via ubiquitination-dependent proteasomal degradation.

To evaluate the enrichment of genes belonging to modules between the sample groups,
the GSEA was performed. We found M1 and M2 modules with opposite effects in con-
trasting groups of the WBSF0 trait. The M1 module showed positive activity in the Low
WBSF0 group (more tender samples). Cytochrome b-c1 complex subunit 10 (UQCR11),
a hub gene of M1, codes to the third complex of the mitochondria’s electron transport
chain, and showed DASE for SFA, C18:3n6, C20:5, and PUFA. Fatty acids are related to
mitochondrial membrane permeability [50]. After slaughter, under no blood circulation,
mitochondria activity is impaired but still may influence biochemical processes in post-
mortem muscle, which in turn requires oxygen from myoglobin to produce ATP [51].
UCQCR11 converts ubiquinol in cytochrome c [52]. The release of cytochrome c induces
apoptosis [51,53]. Apoptosis is a proteolytic process related to meat tenderization under
oxidative stress [49,54,55], which can result from increased mitochondrial membrane per-
meability [50]. Utrophin, encoded by UTRN, the hub gene of M1, is a therapeutic target
for Duchenne muscular disease [56,57]. The upregulation of this protein reduces oxidative
stress and mitochondrial pathology [57], and this protein was related to the homeostasis of
the sodium channel in the heart [56], attenuating the Duchenne’s pathology [56]. Among
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the 15 genes within M1 that showed DASE for the same enriched trait (WBSF0), there are
Platelet-Derived Growth Factor Receptor Alpha (PDGFRA), previously identified as a DEG
for Ca [22], and Prune Homolog 2 With BCH Domain (PRUNE2), differentially expressed
in extremes of RFI [24].

The M2 module showed positive activity in the High WBSF0 group (less tender sam-
ples), a reverse pattern compared with the M1 module. SMAD5 is a hub gene of the M2
module, involved in 39 BPs (see Table S4) being its product a transcription factor part of
BMP signaling [58], exhibiting a role in myogenesis and muscle growth [58,59]. Oxidation
resistance 1 (OXR1) was associated with growth traits in Wagyu cattle [60] and was found
as a hub gene in our co-expression analysis. OXR1 has emerged as an essential antioxi-
dant protein that controls neurons’ susceptibility to oxidative stress. The OXR1 protein
is involved in maintaining mitochondrial morphology in the stress response as part of
its antioxidant function [61]. This protein has orthologs between several species and is
conserved throughout evolution [62]. Thus, the gene set of M1 seems to be related to meat
tenderness, with positive activity in the tender group and the gene set of M2 have a role
in muscle growth. These genes are probable candidates for improving beef quality and
production, and the causal regulatory variants can be linked to the respective DASE SNPs.

Some DASE genes were associated with the same phenotypes affected by differentially
expressed genes previously identified in the same population. These findings suggest that
the total expression of these DASE/DE genes can be affected by cis-regulatory mechanisms
acting over the given DASE SNP region. We identified three genes, SAM And SH3 Domain
Containing 1 (SASH1), Solute Carrier Family 25 Member 4 (SLC25A4), and Diacylglycerol
Kinase Delta (DGKD) associated here and previously DEG with oleic acid content (C18:1
cis9) [19]. SLC25A4 is a DEG up-regulated in the Low group for oleic acid content, showing
ASE in the Low group in this work for its unique DASE SNP—rs109988743, located in a
region with H3K4me3, H3K4me1, H3K27ac, and H3K27me3 peaks reported previously in
bovine muscle [39]. KLHL40 was found as DEG up-regulated in the Low group for palmitic
acid (C16:0) [19], and its rs515929286 DASE SNP was found here with more ASE in the Low
group, being located in an accessible chromatin region [39]. STRIP2 was down-regulated in
the Low group of REA [21] and showed ASE in the Low group of the same trait here for the
rs137477165 DASE SNP, located in a functional region of H3K27ac histone modification [39].
The DASE SNPs pointed out here may be candidates to improve oleic acid content and
REA in bovine muscle, and the variants regulating their transcription warrant further
investigation.

The integration of DASE results and regulatory data revealed multiple functional
variants overlapping or neighboring DASE SNPs, which might be responsible for the allelic
expression pattern and phenotype. This study indicated that the DASE SNPs may not
be exclusively markers for conditional-dependent ASE but also regulatory elements or in
linkage disequilibrium with the causal variants. We showed DASE SNPs classified previ-
ously as cis-eQTLs and aseQTLs, such as rs519474617 and rs717173356, located in accessible
chromatin regions and CTCF-binding regions, indicating CTCF-mediated transcription
regulation [63]. DASE SNPs of previously described DEGs also integrated with multi-
ple targets from FAANG’s study [39] and with aseQTLs, cis-eQTLs, and QTLs obtained
in the same population, such as rs1117068355 and rs1117381943 DASE SNPs/aseQTLs,
rs468833876 (DASE SNP/cis-eQTL) and rs457578905 (DASE SNP/QTL). Thus, DASE re-
gions are co-localized with functional SNPs, which are useful for discovering regulatory
variants that affect gene expression and phenotypes. Other studies can take advantage of
the DASE results, highlighting which contrasting group presented ASE for the intended
phenotype to track regulatory variants close to the DASE SNP or even admitting its own
regulatory potential.

The DASE analysis is a helpful one-step approach for identifying genomic regions
simultaneously associated with gene expression and phenotypic variance, as long as a large
experimental population is available. From the DASE analysis, multiple potentially func-
tional variants were identified located in previously reported regulatory regions. Because
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of the predicted association between DASE genes and meat quality traits, the identified
DASE SNPs can be further explored to be applied in beef improvement programs.
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