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Abstract: The advances in high-throughput sequencing (HTS) have enabled the characterisation of
biological processes at an unprecedented level of detail; most hypotheses in molecular biology rely
on analyses of HTS data. However, achieving increased robustness and reproducibility of results
remains a main challenge. Although variability in results may be introduced at various stages,
e.g., alignment, summarisation or detection of differential expression, one source of variability was
systematically omitted: the sequencing design, which propagates through analyses and may introduce
an additional layer of technical variation. We illustrate qualitative and quantitative differences arising
from splitting samples across lanes on bulk and single-cell sequencing. For bulk mRNAseq data,
we focus on differential expression and enrichment analyses; for bulk ChIPseq data, we investigate
the effect on peak calling and the peaks’ properties. At the single-cell level, we concentrate on
identifying cell subpopulations. We rely on markers used for assigning cell identities; both smartSeq
and 10x data are presented. The observed reduction in the number of unique sequenced fragments
limits the level of detail on which the different prediction approaches depend. Furthermore, the
sequencing stochasticity adds in a weighting bias corroborated with variable sequencing depths and
(yet unexplained) sequencing bias. Subsequently, we observe an overall reduction in sequencing
complexity and a distortion in the biological signal across technologies, experimental contexts,
organisms and tissues.

Keywords: mRNAseq; ChIPseq; smartSeq; 10x; sample splitting; differential expression; enrichment
analysis; cell type calling

1. Introduction

The recent developments and improvements in high-throughput sequencing (HTS)
technologies have facilitated increasingly complex transcriptome/genome-wide analy-
ses [1], enhancing both the qualitative annotation of genomes [2–4] and their quantitative,
functional characterisation through differential expression studies [5,6]. The diversification
of methods specialised to a wide range of perspectives on DNA/RNA biology [7] was
complemented by studies at the single-cell level [8]. Advances were observed across all
aspects of the sequencing workflow [9], complemented by an increasing amount of result-
ing data. This created another challenge: producing robust and reproducible results and
simultaneously keeping up with the increasing intricacy of experiments [10].

The variability of sequencing output, which propagates through to quantification and
other downstream exploration, poses one of the main challenges in bioinformatics analyses
since it implies the disentangling of relevant from irrelevant sources of variation. While
the biologically relevant quantities are context-dependent [11], an essential distinction
exists between variability due to biological processes and variability due to measurement
error or inaccuracy [12,13]. The former is generally specific and well defined in relation
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to a condition; even when it is perturbed by noise, an underlying pattern of expression
may emerge [14]. Technical variability encompasses measurement error [15], sequencing
bias [16,17], and variability due to missing data [18]. For the latter, the assessment of
technical variation can be hindered by the lack of a ground truth.

Several studies have proposed approaches to identify and characterise the sources of
variability in HTS experiments, focusing on several aspects of signal distribution, which
can affect the accuracy of the downstream analyses and interpretations and jeopardise the
reproducibility of the results [11,19]. These included both the analysis of noise [14,20] and
the downstream components of the analyses, such as the batch/background effect [21],
alignment approaches [22], processing pipelines [5], normalisation methods [23] and differ-
ential expression thresholds [24,25]. To model the intrinsic biological variability, the number
of replicates in the context of experimental design was optimised using power calcula-
tions [11,26], designed to provide a robust estimation of differences in expression. These
approaches rely on simulations on the number of expressed genes, as well as on mean-
dispersion estimates and dropouts after applying frequency and outlier filtering; traditional
approaches do not take into account elements of sequencing design including across-lane
sample splitting. In general, the impact of library construction and flow cell and lane
characteristics on downstream analysis has not been studied in detail.

Sources of technical variability for RNAseq experiments span from the combinato-
rial numbers of highly variable isoforms to the handling of ambiguous or multi-mapped
reads [1]. For ChIP datasets, the ability to address specific biological questions can be
significantly impacted by antibody efficiency and specificity [27], as peak distributions are
a direct consequence of affinity, over-crosslinking, DNA fragmentation and PCR amplifi-
cation; for such samples, users are faced with a trade-off between the number of usable
reads (sensitivity of peak detection) and the proportion of false positives derived from
multi-mapped reads [28]. Low-quality replicates can also generate bottlenecks when used
in conjunction with good samples, as true peaks missing from poor-quality replicates may
be marked as non-reproducible, thus creating false negatives [27]. Single-cell experiments
share some of the drawbacks of bulk ones; in addition, the exponential increase in the
number of cells profiled per study, coupled with the shallower sequencing depth, redefined
some of the known difficulties, such as the characterisation of noise [20,29].

Traditional batch effects stem from various sources, e.g., processing differences due to
human variability, differences in achieved sequencing depth, or amplification/sequencing
bias across runs. In addition, the variation in mRNA capture efficiency, the strand specificity
for overlapping genes or the fluctuations in transcript coverage have all been thoroughly
studied [30] and quantified [31]. These batch effects were shown to impact downstream
analyses and induce effects confounded with biological signals; these biases cannot be
mitigated using standard normalisation methods and consequently result in a loss of
statistical power or misleading results [32]. Several approaches were developed and bench-
marked [21,33] to salvage datasets with evident batch effects, including ComBat-seq [34],
which is based on negative binomial regression, and POIBM [35], which infers virtual
reference samples for bulk RNA-seq data. Methods developed for single-cell RNA-seq
data include mnnCorrect [36], based on mutual nearest neighbour detection, CarDEC [37],
a deep learning approach, and scBatch [38], which finds a linear transformation retaining
the advantages of QuantNorm [39]. The quantification of gene expression summarises
a mixture of batch effects; the task of regressing out these effects, while preserving true
biological variation, has been acknowledged as difficult.

Here, we investigate a controllable source of variation: the effect of across-lane sample
splitting, at the sequencing stage, on downstream analyses for bulk and single cell data; the
sampling approach is modelled on observed sequencing outputs (bulk mRNAseq data).
To infer the effect on other types of sequencing data, we study the differences between
ground truth and split-samples (simulating across-lane splitting), with various parameters
controlling the number of splits and proportion of reads produced on each lane. We focus
on standard analyses, i.e., the identification of differentially expressed (DE) genes or ChIP



Genes 2022, 13, 2265 3 of 19

peaks for bulk analyses; for single-cell analyses, we concentrate on the allocation of cells
to clusters (viewed as proxies for cell types) and comment on the observed variability in
biological interpretations.

2. Materials and Methods
2.1. Materials

The motivation for the subsampling strategy used throughout the manuscript is de-
rived from a D. melanogaster mRNAseq dataset (GSE85806) for which 3 samples were
sequenced and split across 2 lanes (GSM2284703, GSM2284704 (2RA3), GSM2284705,
GSM2284706 (2RH2), GSM2284707, and GSM2284708 (26RH3)). To understand and high-
light the consequences of this choice in sequencing design, we compared the resulting
expression levels to the corresponding full samples, GSE55839 (GSM1346985 (2RH2),
GSM1346996 (2RA3), and GSM1347001 (26RH3)) [40].

To illustrate the split effects and their link to the biological interpretation, we use bulk
and single-cell mRNA data and bulk ChIPseq data. For the former (bulk mRNAseq), we
used the Yang et al., 2019 dataset [41], focusing on the 0 h and 12 h samples (GSE117896,
comprising SRR7624365, SRR7624366 (biological replicates for 0 h), SRR7624371 and
SRR7624372 (biological replicates for 12 h)). The bulk ChIPseq analysis was performed
on H3K4me3 and H3K27ac samples, using 0 h and 12 h samples for each (SRR7624381,
SRR7624384, SRR7624389, SRR7624392).

To exemplify the effect on plate-based scRNA-seq platforms (smartSeq), we used the
Cuomo et al., 2020 dataset [42]. We selected data from 6 donors on 4 time points. On this
input, six experimental study cases (Table 1) were designed to illustrate the effect of the
different covariates, i.e., the donor, the specific time-point and cell type (resulting cluster)
identities. To investigate the effects of lane-splitting on 10x Genomics scRNA-seq data, we
used an in vivo dataset of human hematopoietic stem and progenitor cells from spleen,
bone marrow, and peripheral blood [43]; the data are available via BioStudies accession
number S-SUBS4 (donor SAMEA6646089).

Table 1. Overview of the study cases built on scRNA-seq Smart-seq data (Cuomo et al., 2020, [42])
illustrating the combinations of the different covariates. Study case 4 (same donor, different time-
point and same cluster) and case 7 (different donor, different time-point, and same cluster) could not
be generated due to the data structure. While an insufficient number of cells fell into these two study
cases (4 and 7) in this instance, they do represent valid study cases that should be considered for
similar designs and are therefore still included.

Study Case N Cells Donor N Cells
(Donor) Time Point N Cells

(Time Point) Cluster N Cells
(Cluster)

Case 1 105 hayt 105 day2 105 0 105
Case 2 106 pahc 106 day3 106 1 66

4 40
Case 3 168 melw 94 day0 168 3 168

qunz 74
Case 5 168 hayt 168 day1 61 9 61

day3 107 1 107
Case 6 95 melw 47 day1 95 5 45

vils 48 6 50
Case 8 217 melw 95 day0 95 3 95

naah 122 day3 122 2 122

2.2. Methods

[Splitting strategy—sequenced samples] For the 3 D. melanogaster samples (2RA3,
2RH2, 26RH3) for which whole-lane and split-lane sequencing was available, we followed
the standard mRNAseq quantification procedure; the split samples were merged with-
out any additional pre-processing (merged-samples). Whole, split and merged samples
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were aligned to the D. melanogaster r6.41 genome [44] using STAR 2.7.0a [45] with default
parameters. Next, the expression was quantified using featureCounts 2.0.0 [46] and sum-
marised into count matrices. For each BAM, a bigwig was produced using bamCoverage,
and individual transcript coverage was identified using pyBigWig from deeptools [47].
In addition, for all settings, we determined the number of non-redundant (unique) and
redundant (all) reads and evaluated the number of fragments present exclusively in the one
setting. We also calculated the ratio between the abundance of a read (its redundancy) in
the whole vs. split sample, with an expected value equal to the ratio of sequencing depths.

[Splitting strategy—simulated data] The splitting strategy for the simulation study
is consistent across all datasets. The splitting is performed per sample. For each dataset,
on the ground truth (GT), i.e., the original sample, and on the simulated, split (S) samples,
the same pipelines (for the alignment, quantification and identification of differentially
expressed entries), with identical, default parameters are applied to ensure an unbiased
comparison between results obtained on the GT and S samples, respectively.

Let k be the number of splits for a sample and n be the number of iterations (each split
sample is generated from the original GT sample). The steps for generating an S sample
are: (1) subsampling reads without replacement from the GT sample to 100

k % of GT in n
iterations; (2) subsequently, the k subsamples are concatenated. For bulk mRNAseq and
ChIPseq samples, we assessed k = 2 and k = 3, n = 10. In Section 4, we present simulated
samples for k = 2, 3, 4, 5, 10 for one GT sample (bulk mRNAseq, 0 h rep 1), where n = 10;
we also analysed simulated samples for k = 2 with variable split proportions from 55-45 to
95-5. For the bulk ChIPseq data, we assessed k = 2 and k = 3, with n = 10.

For the smartSeq data and 10x data, we generated n = 3 S samples for k = 2 for each of
the study cases (i.e., each subset of samples), respectively, using the seqtk toolkit (v1.3-r106)
(https://github.com/lh3/seqtk, accessed on 6 November 2022). We note that due to the
stochasticity of sequencing, we cannot simulate fragments that are present exclusively in
the whole or split samples. This limitation of the simulation study is compensated by the
analysis of true split samples (the D. melanogaster dataset).

[bulk mRNAseq, Yang et al. dataset] The raw samples (no QC-based filters applied)
were aligned to the M. musculus genome [Ensembl 98.38] [48] using STAR 2.7.6a (paired-end
mode) [45]. Next, the expression was quantified using featureCounts 2.0.0 [46]. To assess the
stability between S and GT samples, abundance density plots and MA plots were produced.
We used noisyR [14] to perform noise analysis on the GT and S samples and further
analysed the PCC distribution for binned abundances. For each dataset, expression levels
were normalised using quantile normalisation [49], and DE genes between 0 h and 12 h
were identified using edgeR [50]. The DE call was based on |log2FC| > 0.5 and adjusted
p-value < 0.05 (using Benjamini–Hochberg multiple testing correction). Enrichment analysis
on the resulting DE genes was performed using the gprofiler2 package [51] on GO, KEGG,
reactome and transcription factor terms, with the background set as the set of expressed
genes with abundance >0 in at least one sample.

[bulk ChIPseq] The GT and S samples were aligned to the M. musculus genome using
bowtie2 v2.4.2 (local mode default parameters) [52]. Output SAM files were converted
to BAMs, and only unique alignments were retained. Narrow peaks were called using
macs2 2.2.7.1 [53]. Peaks were matched between samples if the midpoint of the peak in
sample 1 is within the boundaries of the peak in sample 2 and vice versa. Across sets of
samples, amplitudes were normalised using quantile normalisation [49], and differentially
methylated peaks between 0 h and 12 h were identified using edgeR [50]. Peaks were called
DE if |log2FC| > 0.5 and adjusted p-value < 0.05 (using Benjamini–Hochberg multiple
testing correction).

[sc smartSeq] Six experimental study cases were designed based on the Cuomo
dataset [42], considering the donor, time-point and cluster cell identities (Table 1). The corre-
sponding samples were standardised in read length using Trim Galore (0.4.1) by trimming
10bp from the 5′ end (to reduce the effect of sequencing bias) and 40 bp from the 3′ end
(to address high adapter sequence content); the length of the resulting reads was 75 nts.

https://github.com/lh3/seqtk


Genes 2022, 13, 2265 5 of 19

The GT and S samples were aligned to the H. sapiens genome (GRCh38.p13) [48] using
STAR (2.7.0a) [45] in paired-end mode. The gene counts were summarised in a matrix
using featureCounts 2.0.0 [46]. We applied fastQC [54] to obtain read quality metrics
and multiQC [55] to aggregate QC results from the reads, alignment and quantification.
Seurat objects [56] were created considering features expressed in >3 cells and cells with
>50 features. The analysis pipeline comprises: (i) the normalisation of expression lev-
els (SCTransform [57]), (ii) the computation of PCA and UMAP embeddings (RunPCA,
RunUMAP), (iii) neighborhood graph computation (FindNeighbors), (iv) clustering (Find-
Clusters), (v) and differential expression (FindAllMarkers). We considered as DE features
those with log2FC > 0.5 (i.e., the positive markers) and an adjusted p-value < 0.05 (using
Bonferroni multiple testing correction). To assess the similarity of the partitioning in the
GT and S samples, we calculated Jaccard similarity indices (JSI, [58]) on the cluster-specific
sets of DE features, restricting the JSI to the smaller set of markers.

[sc 10x Genomics] The GT and S fastq files were aligned to the 10x H. sapiens GRCh38
v3 reference transcriptome; the protein-coding genes were quantified using 10x Cellranger
v3.1.0 [59]. The processing and analysis was performed individually for each donor for the
GT and S samples: after the inspection of distributions of UMIs, number of detected
genes, proportion of UMIs from mitochondrial genes (MT) and ribosomal protein-coding
genes (RP), only cells with >1000 unique genes, <10% MT and >20% RP were retained for
downstream analysis; the MT and RP genes were subsequently discarded from the count
matrix. Following normalisation using SCTransform [57], the 3000 most abundant genes,
accounting for 60–85% of UMIs in cells across the data, were identified and used for the
calculation of PCA. A UMAP dimensionality reduction was calculated using the 30 first
PCs (after the inspection of an elbow plot of PC variance); the UMAP was subsequently
used to assess the extent of potential batch effects originating from the tissue origin of cells,
raw and normalised sequencing depths, MT% and RP%.

A 20-nearest neighbour graph was computed on the first 30 PCs of the data; the
cells were clustered using SLM community detection [60] on the NN graph. To assess the
clustering similarity, element-centric clustering comparison [61] was employed on the set
of common barcodes between GT and S using the ClustAssess R package [62]. Cluster
markers were identified using the ROC test in Seurat v3.1.4 [56]; only genes with |FC| > 2
were considered. The top 25 markers per cluster, ranked by discriminative power, were
subsequently used to calculate the per-cell JSI between cluster markers; the JSI when at
least one of the sets is empty was set, by default, to 0.

All analyses were performed in R (3.6.3). The code for generating these results is
available on github https://github.com/Core-Bioinformatics/split-manuscript, accessed
on 6 November 2022. All tests were performed on a Linux server (16 cores, 755G RAM).

3. Results
3.1. Across-Lane Split Leads to Differences in Bulk mRNAseq Data

To determine (and justify) the appropriate parameters for the simulation study, we
analysed the properties of 3 D. melanogaster bulk mRNAseq samples, for which both the
whole-sample per lane [40] and a quantification-based 50/50 split output were available.
We note that the sequencing depths for the halves-samples (2RH2: 36M/26M (58%/42%),
2RA3: 21M/31M (41%/59%), 26RH3: 33M/36M (47%/53%)) diverged from the expected
50/50. To assess the consistency in properties for split samples vs. whole samples, we first
evaluated the nucleotide composition; we see no significant (BH-adjusted p-value <0.05)
differences when comparing, per base, nucleotide distributions or GC content (assessed
using χ2 tests on A/C/G/T frequencies per position, Supplementary Table S1). Next, we
looked into the number and abundance of non-redundant (unique) fragments; we illustrate
the distributions of abundances for the specific fragments across the 3 available samples.

Although we see an increase in sequencing depth for the merged samples vs. the whole
samples, we do not consistently observe a similar proportional increase in the number
of unique reads; for 2RA3, the ratio of unique reads in the merged samples compared

https://github.com/Core-Bioinformatics/split-manuscript
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to the whole samples is ∼1.16 (compared to a ∼1.36 ratio on sequencing depths); we
observe a similar proportion for 2RH2 (∼1.17 compared to ∼1.18) and for 26RH3 (∼1.20
compared to ∼1.23). Next, we assessed the ratio between the abundances of individual
reads in the whole samples vs. the merged samples. The analysis was performed on
non-zero counts for both compared samples; the ratio is expected to mirror the proportions
of sequencing depths. In Supplementary Figure S1A–C, we show the distribution of log2
ratios of abundances between merged and whole samples binned on abundances; the
guideline indicates the expected sequencing-depth-based ratio. The ratio distributions are
located below the guideline for low-medium abundances (1–6 on the log2 scale); the ratio
distributions increase to the expected level for medium-range abundances and rise above
the guideline for high abundances, underlining an “over-amplification” of signal and a
sensitivity of signal quantification to the lane-splitting strategy. Most specific fragments
(to either the concatenated samples or the whole ones) are low-abundance; however, we
note a few high-abundance fragments, which may be affected by sequencing bias (the
distributions of abundances are summarised in Supplementary Figure S1D–F).

The change in the ratio between the split and whole samples is also reinforced when
we consider the differences between the average abundances, calculated using all incident
reads, on sliding windows (100 nts) for the whole and merged samples (Supplementary
Figure S1G–I). The ratios are scaled per overall window abundance. Positive differences
(red) correspond to higher amplitudes in the whole sample; negative differences (blue)
correspond to higher amplitudes in the merged samples). For each sample, we show both
the distribution for all differences (top subplot) and for differences above 0.2 (bottom sub-
plot); the number of windows in each abundance bin are shown above the corresponding
boxplots. We see a wider variation between the whole and merged samples at low-medium
abundances (0–7 on the log2 scale) with larger differences when the merged-sample abun-
dance is higher than that in the whole sample. This trend suggests a systematic, consistent
stochastic over-amplification in the merged-samples; conversely, for abundances higher in
the whole sample, the differences in the merged-samples are more subtle. For medium-high
abundances (>7, log2 scale), we see a higher number of small differences for windows with
abundances higher in the merged sample; the range of differences is wider for windows
with higher abundance in the whole samples, but their count is lower. The pre-alignment
analysis at the read level (Supplementary Figure S1A–C) hinted at these more subtle down-
stream effects, underlining the importance of studying the impact of splitting across lanes
on real data and simulated case studies.

To illustrate some differences observed on individual transcripts, we present three
examples (from sample 2RH2) of expression profiles, quantified using all the reads from
the whole, the split and the merged samples for transcripts at high, medium and low
abundances; these examples were selected based on the differences in signal distributions.
The two split samples behave as technical replicates, as expected; however, for the merged
sample, we observe significant variation in the distribution of the signal compared to
the whole sample (panel L) or in the localisation of expression features such as peaks
(panels J, K)). These differences may have knock-on effects on the downstream analyses
and interpretation results (e.g., for the quantification of noise [14]).

These remarks on the sequenced output generate the hypothesis that conclusions
drawn from standard comparisons between samples may be altered by variations in
splitting strategies; this effect is also entirely technical and stems from the stochasticity
of sequencing. While the simulation approach proposed in this study cannot capture
fragments found exclusively in split samples, the subsampling/concatenating process
mirrors the under-representation of low-medium fragments and the over-amplification of
high abundance fragments, as well as loss of read diversity.
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3.2. Consequences of Across-Lane Splitting on Bulk Data

To systematically investigate the consequences of the observed differences resulting
from splitting samples across lanes, we simulated the splitting of sequencing samples on
several datasets and assesses the downstream effects.

[bulk mRNAseq] For the bulk mRNAseq study case [41], we focus on the effect
of across-lane sample splitting on expression quantification, DE calling and enrichment
analysis (summarised in Figure 1A–F). First, we assess the differences in quantification
corresponding to the same time-point/biological replicate, 0 h (rep 1), on GT vs. k = 2
S sample S2 (1A) and k = 2 vs. k = 3 samples S2 and S3 (1B). We observe standard
MA funneling shapes, with a variation in excess of 1.5FC for low abundances for both
comparisons. In addition, for low-to-medium abundances, we also see a wide distribution
of log2 FC in the S2-S3 comparison , underlining the technical variation (noise) that is
introduced (Figure 1B). Also noted is a slight shift of FCs (Figure 1A) driven by the stochastic
redistribution of reads, i.e., a lack of signal for some low-abundance genes and over-
expression of a small number of medium-high abundance genes. Similar conclusions are
presented in Supplementary Figure S2A,B illustrating GT vs. k = 3 samples S13 and two
simulations of k = 2 S12 and S23, respectively.

Next, we focus on the DE call between the 0 h vs. 12 h replicates, determined using
standard pipelines and parameters. We illustrate the properties of the DE sets called on
GT vs. k = 2 (Figure 1C) and k = 2 vs. k = 3 (Figure 1D), respectively; overall, the results,
converge i.e., all genes are located in the proximity of the diagonal; however, the variation
is larger for the k = 2 vs. k = 3 simulation S12 vs. S13 (1D). Specifically, we see 4086 genes
(14.2% of expressed genes) with a >0.5 log2FC absolute difference for S12 vs. S13 compared
to 4041 (13.7%) between GT and S12. The colour gradient is proportional to the average
abundance of genes and underlines that medium-abundance genes are mostly affected
by the variability in fold-change amplitude and identity. We also assessed the stability of
the DE signal for the GT and two sets of simulations for k = 2 and k = 3, summarised
as an upset plot (the x/5 intersections are represented, with x ∈ {5, 4, 3, 2, 1}). While
the majority of genes are detected across all comparisons (879 out of 1092 for DE in GT
and 1483 called DE in any GT or S sample), we notice comparison-specific genes (up to
79 out of 1179 called DE for S23). In particular, this analysis revealed only a few “false
negatives” (20 genes that were DE only in GT samples) in contrast to a larger number
of “false positives” (between 42 and 79 from each S sample). A total of 18 genes (out
of 1483 called DE in any GT or S sample) were identified across all S samples but not
in the GT. To link back the variability of the signal to the biological interpretation of the
results, we compare the sets of enriched terms corresponding to the various DE predictions
(Figure 1F). Similarly to the DE summary (Figure 1E), we observe a 62.1% consistency in
results, i.e., significant terms shared between all comparisons (out of 634 identified in total
for GT, 787 were identified for at least one comparison). However, “false positive” entries
are present (79 in total, between 13 and 27 from each S sample), identified only for one
set of S samples. These corroborated results underline a mixture of consistent patterns
(on S samples) and random variation that is difficult to predict or mitigate. This suggests
lane-splitting introduces non-biologically-robust results.
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Figure 1. Comparison of bulk mRNAseq analysis results for GT and S samples. (A,B). Scatter (MA) and box plot summary on GT sample (0 h, rep1) and a corresponding
k = 2 S sample S12 (subplot A) and k = 2 and k = 3 S samples S12 and S13 (subplot B). (C,D). Scatter (cross) plots comparing the DE amplitude (log2 FC) calculated on 0 h
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vs. 12 h samples for the GT vs. k = 2 S samples S12 (subplot C) and k = 2 and k = 3 S samples S12 and S13 (subplot D); the colour gradient is log2-proportional to
the average abundance across all 8 corresponding samples. (E). Upset plot showing intersections between sets of DE genes (0 h vs. 12 h) in GT samples (GT), 2 sets of
k = 2 S samples (S12 and S22) and 2 sets of k = 3 S samples (S13 and S23). (F). Upset plot showing intersections between sets of significant terms (adj p-value ≤ 0.05,
BH correction) predicted using gprofiler2 on the corresponding DE genes (see (E)). Comparison of H3K4me3 ChIPseq analysis results for GT and S samples.
(G,H). Scatter (MA) and box plots showing log2 abundance against log2 FC within (G) GT sample (0 h) and a k = 2 S sample S12 and (H) k = 2 and k = 3 S samples
S12 and S13 for the same sample (0 h). (I,J). Scatter (cross) plot showing log2FC when comparing (I) 0 h and 12 h for GT samples and k = 2 S samples S12, and (J) 0 h
and 12 h for k = 2 and k = 3 S samples S12 and S13, coloured by the average amplitude across all 4 corresponding samples. (K) Violin and box plots showing
distribution of ratio of peak lengths between 2 samples ( sample 1 peak length

sample 2 peak length ) comparing ground truth (GT), k = 2 S sample (S12 and S22) and k = 3 S samples (S13).
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[bulk ChIPseq] The effects of across-lane sample splitting are also observed on
ChIPseq data. For this case study, we will focus on the changes in peak amplitude
and length; H3K4me3 (Figure 1G–K and Supplementary Figure S2E–J) and H3K27ac
(Supplementary Figure S2K–Q) data will be exemplified [41]. The variability on peak
calling for H3K4me3 data is assessed using MA (Figure 1G,H) and cross plots (Figure 1I,J).
Similarly as for the mRNAseq data, we observe a funneling behaviour when GT and S
samples are compared (Figure 1G,H), a wider variation in FC for S12 vs. S13 (Figure 1H),
and an over-amplification of peak abundances in the simulated samples (Figure 1G); addi-
tional supporting results are presented in Supplementary Figure S2E,F. These fluctuations
propagate on DE calls (performed using standard pipelines on the 0 h and 12 h replicates)
and are summarised in Figure 1I,J. Despite the overall convergence, for the H3K4me3 data,
we notice a wider variability than for the mRNAseq data, with clear “false-negative” peaks
in the simulated data, i.e., medium-abundance peaks identified as DE in the GT comparison,
with a log2 FC > 2 and not detected as DE in the S samples (borderline vanishing peaks);
this behaviour is also observed for the H3K27ac data (Supplementary Figure S2M,N).

To further investigate the reduced robustness for the DE call, we focused on other
peak properties such as peak length (defined as stop–start coordinates from the macs2
narrowPeak output); in Figure 1K, we illustrate the distribution of ratios of peak lengths
when GT and S samples are compared. We notice a global, systematic shift towards shorter
peaks in simulated samples; the effect is more pronounced for k = 3, and a stability of
behaviour is observed across simulations (blue and purple distributions). The decrease
in peak length can only be observed for common peaks. The reduction in the number of
called peaks is illustrated in Supplementary Figure S2I,J. For the 0 h sample (SRR7624381),
we see 8910 fewer peaks called for S12 samples (mean across 10 iterations) compared to GT
and 11,751 fewer for S13 samples compared to GT, yielding percentage decreases averaging
14.1% and 18.6%, respectively.

Simulated across-lane sampling splitting has multiple effects on the peaks called in
ChIPseq data, from the number of peaks to their amplitude and length; this technical,
stochastic variation may have an impact on the interpretation of the results.

3.3. Effects of Across-Lane Splitting on Single-Cell Data

[sc smartSeq] We exemplify the effect of across-lane sample splitting on single-cell
data first on a smartSeq2 dataset. The diversity of conditions (donors and time-points,
illustrated in Figure 2A) of the Cuomo et al dataset [42] enables us to incrementally examine the
consequences across 6 study cases (Table 1), covering a wide range of experimental situations.

At the sequencing read level, the sample splitting significantly reduces the number of
unique reads (Figure 2B, Supplementary Table S2A), i.e., the read diversity decreases due
to the expansion (over-representation) of duplicated reads. On an invariant total number of
reads, this decrease propagates through to the subsequent alignment and quantification
steps without influencing the fraction of mapped reads and the count distribution of sam-
ples, respectively (Supplementary Figure S3B,C); nonetheless, this results in a reduction
of the number features detected in S samples (Figure 2C). This is a consequence of the
loss of low-abundant features, while mid-abundance and high-abundance features slightly
increase their expression due to the higher read duplication. Significant differences in
the number of features (<0.01 type I error) between simulations and ground truth are
detected only for study Case 3; the abundance distributions are not significantly different
(in localisation or shape) across the other study cases (Supplementary Table S2A,B). Despite
this, the reduction in the number of observed features has an impact on downstream
analyses, such as partitioning into clusters and cell visualisation or identification of cell
type markers. For the former, the UMAP topology of cells/clusters is altered (Supplemen-
tary Figure S3A); for the latter, in Figure 2D, we observe a generalised reduction in the
similarity of marker genes for S samples when compared to marker genes determined on
the ground truth sample (overall, 0.55–0.94 of the markers are shared between homologous
clusters in GT and S samples). In addition, to assess the variability across simulations, we
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display summary upset plots of marker genes across clusters and simulations (Figure 2E,
Supplementary Figure S3E). Although the majority of the DE entries are shared between
simulations, unique features are present in most cases; these sum up to 12.3% of total
features, on average, across clusters, simulations and study cases.

Overall, these results suggest that sample splitting reduces read diversity, which is
propagated to downstream analyses, altering the number of features expressed in sam-
ples and potentially altering the biological interpretation of the results. Moreover, we
highlight the variability across simulations, which may introduce an additional degree of
irreproducibility across replicates.

Following SLM clustering [60] on the nearest-neighbor graph, 19 clusters were found
on GT, and 18 were found on the simulation of P1 (Figure 3A,B). An element-centric clus-
tering comparison [61] was used to evaluate the per-cell clustering similarity on the set
of barcodes common to GT and simulated samples (Figure 3C), revealing high similarity
(ECS > 0.6) for 91% of cells (the top of the GT UMAP) and especially for the island on
the upper right (cluster 4 in both clusterings); low similarity (ECS < 0.2) was observed
for 9.0% of cells (mainly the bottom of the UMAP), and no cells had intermediate ECS
(0.2 ≤ ECS ≤ 0.6). Notably, an island of cells in the lower right of the GT UMAP, corre-
sponding to cluster 15 in GT, disappeared in the split-lane simulation (S samples).

[sc 10x Genomics] The second single-cell case study focuses on a 10x dataset [43];
a similar strategy for generating split samples was applied. Following the alignment
and protein-coding gene quantification of the GT and S samples, we observe a high
overlap of called cells (i.e., barcodes) resulting from the Cellranger cell-calling algorithm
(19,453 common barcodes, 166 barcodes unique to ground truth, 13 barcodes unique to the
simulation). After filtering the low-quality cells, the vast majority of barcodes were still
common to both versions of the analysis (17,095 barcodes in common, 155 barcodes unique
to GT, 5 barcodes unique to the simulation). We observe a greater diversity of UMIs and
genes in GT compared to simulated samples (Supplementary Figure S5F–G).

Figure 2. Cont.
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Figure 2. Sample splitting across sequencing lanes introduces variability that is propagated to
downstream analysis in Smart-seq2 scRNA-seq data. (A) UMAP representation of the Cuomo
dataset. Cells are coloured according to their donor (left), time-point (central) and cluster (right).
For the different study cases considered, we show: (B) number of unique reads distribution for
the ground truth and simulations; (C) number of feature distributions for the GT and S samples;
(D) cluster similarity for each study case as evaluated using the JSI calculated on the set of DE
features obtained per cluster. The values across the 3 simulations were averaged using the geometric
mean. (E) Variability of differentially expressed feature set and number of unique DE features across
simulations for cluster 0 (upper), 1 (central) and 2 (lower) for Study Case 1.
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Figure 3. Lane splitting induces variability in clustering of P1 10x scRNA-seq data. (A,B): UMAP representations of GT (A) and S (B) samples, with colors
indicating SLM clusters calculated on nearest-neighbor graphs; 19 clusters are found in GT and 18 in the S samples. (C). Element-centric clustering similarity,
highlighted using the colour gradient, reveals differences between clusterings at the bottom of the UMAP, especially for the lower-right island of cells (vanishing
island). (D). Jaccard similarity of cluster markers across GT and S clusterings suggests differences in cell types inferred from the data. (E). Fraction of within-island
nearest neighbours for cells in the vanishing island in GT and 3 S samples. The island cells are no longer discrete from the larger body of cells in S samples.
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To investigate whether the disappearing island was a reproducible effect of the lane-
splitting simulations, n = 3 S samples were generated. The S samples were consistent in
terms of UMAP topography and SLM clustering results (Supplementary Figure S4A–F).
Across all S samples, the “island cells” were scattered in the larger body of cells (Supple-
mentary Figure S4H). Conversely, in UMAPs generated on GT across 4 random seeds,
the island of cells was consistently detached from the larger body of cells (Supplementary
Figure S4G). Furthermore, the fraction of within-island nearest neighbors for the island
cells was quantified in the GT and S samples (Figure 3E); while the island cells had each
other as neighbors in GT, this was no longer observed in the simulations, suggesting the
loss of some transcriptional heterogeneity during the lane splitting.

The marker genes that distinguish the vanishing island (Supplementary Figure S5A)
from the rest of the cells are SPP1, SRGN, SOCS2, ALDH1A1, AREG and HIST1H1C
(Supplementary Figure S5B); in particular, SPP1 appears highly specific to the island.
Upon recalculating the PCA, and subsequently the UMAP, on the set of abundant genes
with SPP1 excluded, the island is absorbed into the wider body of cells (Supplementary
Figure S5C), and so is SPP1 expression (Supplementary Figure S5D). SPP1 is identified as
the 5th most variable gene in GT by SCTransform. In S samples, marked differences in gene
variance can be observed when compared to GT (Supplementary Figure S5E), leading to
the downstream consequences on dimensionality reductions and clustering results.

To further investigate the consequences of lane-splitting clustering variability on
cluster markers, typically used to infer the identity of cells, the per-cell Jaccard similarity
index (JSI) was calculated (Figure 3D). Certain regions of cells, such as the middle-right of
the UMAP, displayed high JSI, indicating they would be interpreted similarly in the GT
and S analyses. Other regions exhibited lower JSI; the vanishing island (cluster 15) had a
lower JSI than the retained island (cluster 4). These results suggest that the former could be
interpreted inconsistently, depending on whether the library was split across lanes or not.

4. Discussion
4.1. Effects of Splitting on Read Diversity and Levels of Noise

The main consequence of across-lane sample splitting is the variation in read diversity;
this propagates onto transcript coverage and quantification. To assess the variation, we
focused on the transcript complexity (defined as the ratio of unique to total reads [63],
calculated per transcript), exemplified on the SRR7624365 sample (bulk mRNAseq, 0 h rep
1). We compared the complexities, per transcript, of the GT and S samples (Figure 4A);
each point corresponds to a gene, and the colour gradient is proportional to the log2 (abn).
We observe a consistent trend for medium-high abundant genes across a wide complexity
range [0, 0.75], highlighting the higher complexity (i.e., more diverse reads) of the GT
sample. Also noticeable is the high variability in complexity for the low-abundance genes,
presented on the MA plots in the bulk section of the Results, and the localisation of the low-
abundance cloud under the equal complexity diagonal, enforcing the previous conclusion
across all abundances.

Yet another side effect of the variation in reads diversity is the quantification of noise
across the samples [14]; we focused on the transcript-based approach in noisyR since it is
directly influenced by the robustness of transcript coverage. In Figure 4B, we illustrate the
variation of point-to-point PCC vs. the variation in abundance for the GT and 2 iterations
of k = 2 (S12,S22) and k = 3 (S13,S23). The wide and low PCC distributions correspond to
higher levels of noise; the distributions become higher and tighter for medium- to high-
abundance genes. For medium-abundance genes, the GT distributions are systematically
higher than k = 2 and k = 3, suggesting that the splitting increases the level of noise and
thus interferes with the detection of DE genes or other downstream analyses, as illustrated
in the Section 3. The level of noise in the simulated samples is also variable and generally
higher in k = 3 samples than k = 2, although the distribution of PCC is wider and lower
for all S samples than GT.



Genes 2022, 13, 2265 15 of 19

Figure 4. Summary of split effects on the number of unique reads and noise. (A) Scatter plot
illustrating the complexity ratio (non-redundant to redundant counts) for the GT (x-axis) vs. an S
(y-axis) sample for SRR7624365 (bulk mRNAseq, 0 h rep 1). Each point represents a gene, and the
colour gradient is proportional to the log2 abundance. (B) Box plot of the PCC binned by abundance
for the transcript-based noise removal (noisyR applied to BAM files) corresponding to GT, k = 2
and k = 3 S samples for 0 h rep 1. (C) Boxplot showing distributions of ratios of recovered unique
reads in the S samples with respect to the k hyper-parameter (k = 2, 3, 4, 5, 10); the effect of GT
sample sequencing depth is also assessed. The distributions are built on 10 iterations. (D) Boxplot
showing distribution of ratios of recovered unique reads in the S samples when the proportions of
concatenated subsamples are varied (from 55-45 to 95-5). The distributions are built on 10 iterations.

4.2. Effects of Varying the Number and Proportions of Splits

In the Section 3, we exemplified the concatenation of k = 2 and k = 3 equal subsamples.
However, in a real-world scenario, we rarely observe an equal number of reads across split
samples; in addition, split designs are occasionally mixed. To further understand the knock-
on effects on downstream analyses, we illustrate the effect of the variable number and
proportions of reads allocated to splits. We used the bulk mRNAseq sample SRR7624365
(0 h rep 1) as the starting point, and, based on the consistency in conclusions across different
inputs, we expect a convergence of results for other bulk or single-cell data. We subsampled
the fastq files to 50%, 33%, 25%, 20% and 10% of the total sequencing depth and created S
samples by concatenating the 2, 3, 4, 5 and 10 subsamples, respectively. For each case study,
the distributions were generated on 10 iterations. We also assessed the sequencing depth
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co-variate; the results on the full sequencing depth (75.4 M) and for samples subsampled to
50 M, 25 M and 10 M reads, respectively, (without replacement) are presented. The ratios
of recovered unique reads (i.e., number of unique reads in the S sample divided by the
number of unique reads for the GT sample) across the simulated case studies are presented
in Figure 4C. We observe a decrease in recovered ratios proportional to the number of splits
and initial sequencing depth. The decrease in ratios is uniform across sequencing depths,
but the recovered ratios also have lower y-intercepts (lower absolute ratios), highlighting
that the effect of across lane-splitting is more extreme at low sequencing depths, i.e., while
the decrease-rate is lower for higher k-values, as the number of splits (k) increases, we see a
consistent reduction in the number of unique reads. This underlines that splitting across
lanes has an adverse effect on the diversity of reads.

Additionally, we assessed the effect of uneven splits across lanes; focusing on k = 2 S
samples, we varied the split proportions from 55-45 to 90-10. The resulting recovery ratios
are shown in Figure 4D. The minimum for the recovery ratios is achieved for the 50-50
proportions; the recovery ratios gradually increase as the larger subsample approaches
100%. The observed increase is small for the first few increments and increases more rapidly
as proportions approach 100-0. This illustrates, from yet another angle, the variation in
read diversity.

5. Conclusions

On various sequencing datasets, bulk and single-cell, we observed that the splitting
of samples across lanes reduces the diversity of reads, which in turn triggers side effects
on quantification (e.g., gene expression for mRNAseq, peak expression for ChIPseq) and
auxiliary properties (such as the length of ChIP peaks). The splitting in itself introduces
an additional level of variability in terms of robustness and reproducibility; it may pose
added difficulties stemming from the variable observed number of reads derived from the
stochasticity of the sequencing itself. The potential batch effects derived from loading full
samples on sequencing lanes can be mitigated through randomisation. We acknowledge
that technical circumstances may make splitting unavoidable; our recommendation is
consistency in sequencing setup across all samples in an experiment.
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11. Schurch, N.; Schofield, P.; Gierliński, M.; Cole, C.; Sherstnev, A.; Singh, V.; Wrobel, N.; Gharbi, K.; Simpson, G.; Owen-Hughes, T.;
et al. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you
use? RNA 2016, 22, 839–851. [CrossRef] [PubMed]

12. Oberg, A.; Bot, B.; Grill, D.; Poland, G.; Therneau, T. Technical and biological variance structure in mRNA-Seq data: Life in the
real world. BMC Genom. 2012, 13, 304. [CrossRef]

13. Kim, B.; Lee, E.; Kim, J. Analysis of Technical and Biological Variability in Single-Cell RNA Sequencing; Humana Press: Totowa, NJ,
USA, 2019; Volume 1935, pp. 25–43. ._3. [CrossRef]

14. Moutsopoulos, I.; Maischak, L.; Lauzikaite, E.; Vasquez Urbina, S.; Williams, E.; Drost, H.G.; Mohorianu, I. noisyR: Enhancing
biological signal in sequencing datasets by characterizing random technical noise. Nucleic Acids Res. 2021, 49, e83–e83. [CrossRef]

15. Ma, X.; Shao, Y.; Tian, L.; Flasch, D.; Mulder, H.; Edmonson, M.; Liu, Y.; Chen, X.; Chen, X.; Newman, S.; et al. Analysis of error
profiles in deep next-generation sequencing data. Genome Biol. 2019, 20, 50. [CrossRef]

16. Ross, M.; Russ, C.; Costello, M.; Hollinger, A.; Lennon, N.; Hegarty, R.; Nusbaum, C.; Jaffe, D. Characterizing and measuring bias
in sequence data. Genome Biol. 2013, 14, R51. [CrossRef]

17. Sorefan, K.; Pais, H.; Hall, A.; Kozomara, A.; Griffiths-Jones, S.; Moulton, V.; Dalmay, T. Reducing ligation bias of small RNAs in
libraries for next generation sequencing. Silence 2012, 3, 4. [CrossRef]

18. Hicks, S.; Townes, F.; Teng, M.; Irizarry, R. Missing data and technical variability in single-cell RNA-sequencing experiments.
Biostat 2017, 19, 562–578. [CrossRef]

19. Reuter, J.; Spacek, D.; Snyder, M. High-Throughput Sequencing Technologies. Mol. Cell 2015, 58, 586–597. . j.molcel.2015.05.004.
[CrossRef]

20. Eraslan, G.; Simon, L.; Mircea, M.; Mueller, N.; Theis, F. Single-cell RNA-seq denoising using a deep count autoencoder. Nat.
Commun. 2019, 10, 390. [CrossRef]

21. Chazarra-Gil, R.; Dongen, S.; Kiselev, V.; Hemberg, M. Flexible comparison of batch correction methods for single-cell RNA-seq
using BatchBench. Nucleic Acids Res. 2021, 49, e42. [CrossRef]

22. Srivastava, A.; Malik, L.; Sarkar, H.; Zakeri, M.; Almodaresi, F.; Soneson, C.; Love, M.; Kingsford, C.; Patro, R. Alignment and
mapping methodology influence transcript abundance estimation. Genome Biol. 2020, 21, 239. [CrossRef]

23. Dillies, M.; Rau, A.; Aubert, J.; Hennequet-Antier, C.; Jeanmougin, M.; Servant, N.; Keime, C.; Marot, G.; Castel, D.; Estelle, J.; et al.
A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Briefings
Bioinform. 2012, 14, 671–683. [CrossRef] [PubMed]

24. Mccarthy, D.; Chen, Y.; Smyth, G. Differential expression analysis of multifactor SRNA-Seq experiments with respect to biological
variation. Nucleic Acids Res. 2012, 40, 4288–4297. [CrossRef] [PubMed]

25. Love, M.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome
Biol. 2014, 15, 550. [CrossRef] [PubMed]

26. Svensson, V.; Natarajan, K.; Ly, L.H.; Miragaia, R.; Labalette, C.; Macaulay, I.; Cvejic, A.; Teichmann, S. Power analysis of single
cell RNA-sequencing experiments. Nat. Methods 2017, 14, 381–387. [CrossRef]

27. Nakato, R.; Shirahige, K. Recent advances in ChIP-seq analysis: From quality management to whole-genome annotation. Briefings
Bioinform. 2016, 18, 279–290. [CrossRef]

http://doi.org/10.1038/s41576-019-0150-2
http://www.ncbi.nlm.nih.gov/pubmed/31341269
http://dx.doi.org/10.1038/nrg3174
http://www.ncbi.nlm.nih.gov/pubmed/22510764
http://dx.doi.org/10.1186/s13073-017-0441-1
http://dx.doi.org/10.1186/s13059-019-1715-2
http://dx.doi.org/10.1186/s13059-016-0881-8
http://dx.doi.org/10.1186/gb-2010-11-12-220
http://www.ncbi.nlm.nih.gov/pubmed/21176179
http://dx.doi.org/10.1093/bib/bby051
http://www.ncbi.nlm.nih.gov/pubmed/30084865
http://dx.doi.org/10.15252/msb.20188746
http://dx.doi.org/10.1038/s41576-020-0272-6
http://dx.doi.org/10.1093/bioinformatics/btw475
http://dx.doi.org/10.1261/rna.053959.115
http://www.ncbi.nlm.nih.gov/pubmed/27022035
http://dx.doi.org/10.1186/1471-2164-13-304
http://dx.doi.org/10.1007/978-1-4939-9057-3_3
http://dx.doi.org/10.1093/nar/gkab433
http://dx.doi.org/10.1186/s13059-019-1659-6
http://dx.doi.org/10.1186/gb-2013-14-5-r51
http://dx.doi.org/10.1186/1758-907X-3-4
http://dx.doi.org/10.1093/biostatistics/kxx053
http://dx.doi.org/10.1016/j.molcel.2015.05.004
http://dx.doi.org/10.1038/s41467-018-07931-2
http://dx.doi.org/10.1093/nar/gkab004
http://dx.doi.org/10.1186/s13059-020-02151-8
http://dx.doi.org/10.1093/bib/bbs046
http://www.ncbi.nlm.nih.gov/pubmed/22988256
http://dx.doi.org/10.1093/nar/gks042
http://www.ncbi.nlm.nih.gov/pubmed/22287627
http://dx.doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
http://dx.doi.org/10.1038/nmeth.4220
http://dx.doi.org/10.1093/bib/bbw023


Genes 2022, 13, 2265 18 of 19

28. Chung, D.; Kuan, P.; Li, B.; Sanalkumar, R.; Liang, K.; Bresnick, E.; Dewey, C.; Keles, S. Discovering Transcription Factor Binding
Sites in Highly Repetitive Regions of Genomes with Multi-Read Analysis of ChIP-Seq Data. PLoS Comput. Biol. 2011, 7, e1002111.
[CrossRef] [PubMed]

29. Dal Molin, A.; Camillo, B. How to design a single-cell RNA-sequencing experiment: Pitfalls, challenges and perspectives.
Briefings Bioinform. 2018, 20, 1384–1394. [CrossRef]

30. Goh, W.W.B.; Wang, W.; Wong, L. Why Batch Effects Matter in Omics Data, and How to Avoid Them. Trends Biotechnol. 2017,
35, 498–507.

31. Buttner, M.; Miao, Z.; Wolf, F.o. A test metric for assessing single-cell RNA-seq batch correction. Nat. Methods 2019, 16, 43–49.
[CrossRef]

32. Leek, J.; Scharpf, R.; Bravo, H.; et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat.
Rev Genet 2010, 11, 733–739. [CrossRef] [PubMed]

33. Tran, H.; Ang, K.S.; Chevrier, M.; Zhang, X.; Lee, N.; Goh, M.; Chen, J. A benchmark of batch-effect correction methods for
single-cell RNA sequencing data. Genome Biol. 2020, 21, 12. [CrossRef] [PubMed]

34. Zhang, Y.; Parmigiani, G.; Johnson, W.E. ComBat-seq: Batch effect adjustment for RNA-seq count data. NAR Genom. Bioinform.
2020, 2, lqaa078. . [CrossRef] [PubMed]

35. Holmström, S.; Hautaniemi, S.; Häkkinen, A. POIBM: Batch correction of heterogeneous RNA-seq datasets through latent sample
matching. Bioinformatics 2022, 38, 2474–2480. . [CrossRef]

36. Haghverdi, L.; Lun, A.; Morgan, M.; Marioni, J. Batch effects in single-cell RNA-sequencing data are corrected by matching
mutual nearest neighbors. Nat. Biotechnol. 2018, 36, 421–427. [CrossRef]

37. Lakkis, J.; Wang, D.; Zhang, Y.; Hu, G.; Wang, K.; Pan, H.; Ungar, L.; Reilly, M.; Li, X.; Li, M. A joint deep learning model enables
simultaneous batch effect correction, denoising and clustering in single-cell transcriptomics. Genome Res. 2021, 31, 1753–1766.
[CrossRef]

38. Fei, T.; Yu, T. scBatch: Batch-effect correction of RNA-seq data through sample distance matrix adjustment. Bioinformatics 2020,
36, 3115–3123. . [CrossRef]

39. Fei, T.; Zhang, T.; Shi, W.; Yu, T. Mitigating the adverse impact of batch effects in sample pattern detection. Bioinformatics 2018,
34, 2634–2641. . [CrossRef]

40. Mohorianu, I.; Bretman, A.; Smith, D.; Fowler, E.; Dalmay, T.; Chapman, T. Genomic responses to socio-sexual environment in
male Drosophila melanogaster exposed to conspecific rivals. RNA 2017, 23, 1048–1059. [CrossRef]

41. Yang, P.; Humphrey, S.; Cinghu, S.; Pathania, R.; Oldfield, A.; Kumar, D.; Perera, D.; Yang, J.; James, D.; Mann, M.; et al.
Multi-omic Profiling Reveals Dynamics of the Phased Progression of Pluripotency. Cell Syst. 2019, 8, 427–445.e10. [CrossRef]

42. Cuomo, A.; Seaton, D.; McCarthy, D.; Martinez, I.; Bonder, M.; Garcia-Bernardo, J.; Amatya, S.; Madrigal, P.; Isaacson, A.; Buettner,
F.; et al. Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression. Nat. Commun.
2020, 11, 810. [CrossRef] [PubMed]

43. Mende, N.; Bastos, H.; Santoro, A.; Sham, K.; Mahbubani, K.; Curd, A.; Takizawa, H.; Wilson, N.; Göttgens, B.; Saeb-Parsy, K.;
et al. Quantitative and molecular differences distinguish adult human medullary and extramedullary haematopoietic stem and
progenitor cell landscapes. bioRxiv 2020. [CrossRef]

44. Thurmond, J.; Goodman, J.; Strelets, V.; Attrill, H.; Gramates, L.; Marygold, S.; BB, M.; Millburn, G.; Antonazzo, G.; Trovisco, V.;
et al. FlyBase 2.0: The next generation. Nucleic Acids Res. 2018, 47, D759–D765. [CrossRef] [PubMed]

45. Dobin, A.; Davis, C.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T. STAR: Ultrafast universal
RNA-seq aligner. Bioinformatics 2012, 29, 15–21. [CrossRef]

46. Liao, Y.; Smyth, G.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features.
Bioinformatics 2013, 30, 923–930. [CrossRef]

47. Ramírez, F.; Ryan, D.; Grüning, B.; Bhardwaj, V.; Kilpert, F.; Richter, A.; Heyne, S.; Dündar, F.; Manke, T. deepTools2: A next
generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016, 44, W160–W165. [CrossRef]

48. Yates, A.; Achuthan, P.; Akanni, W.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Ridwan Amode, M.; Armean, I.; Azov, A.; Bennett, R.;
et al. Ensembl 2020. Nucleic Acids Res. 2019, 48, D682–D688. [CrossRef]

49. Bolstad, B.; Irizarry, R.; Åstrand, M.; Speed, T. A Comparison of Normalization Methods for High Density Oligonucleotide Array
Data Based on Variance and Bias. Bioinformatics 2003, 19, 185–193. [CrossRef]

50. Robinson, M.; Mccarthy, D.; Smyth, G. edgeR: A Bioconductor package for differential expression analysis of digital gene
expression data. Bioinformatics 2010, 26, 139–140. [CrossRef]

51. Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. g:Profiler: A web server for functional enrichment
analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019, 47, W191–W198. [CrossRef]

52. Langmead, B.; Salzberg, S. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. . nmeth.1923. [CrossRef]
[PubMed]

53. Zhang, Y.; Liu, T.; Meyer, C.; Eeckhoute, J.; Johnson, D.; Bernstein, B.; Nusbaum, C.; Myers, R.; Brown, M.; Li, W.; et al.
Model-based analysis of ChIP-seq (MACS). Genome Biol. 2008, 9, R137. [CrossRef] [PubMed]

54. Andrews, S.; Krueger, F.; Segonds-Pichon, A.; Biggins, L.; Krueger, C.; Montgomery, J. FastQC. Babraham Institute. 2012.
Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 6 November 2022).

http://dx.doi.org/10.1371/journal.pcbi.1002111
http://www.ncbi.nlm.nih.gov/pubmed/21779159
http://dx.doi.org/10.1093/bib/bby007
http://dx.doi.org/10.1038/s41592-018-0254-1
http://dx.doi.org/10.1038/nrg2825
http://www.ncbi.nlm.nih.gov/pubmed/20838408
http://dx.doi.org/10.1186/s13059-019-1850-9
http://www.ncbi.nlm.nih.gov/pubmed/31948481
http://dx.doi.org/10.1093/nargab/lqaa078
http://www.ncbi.nlm.nih.gov/pubmed/33015620
http://dx.doi.org/10.1093/bioinformatics/btac124
http://dx.doi.org/10.1038/nbt.4091
http://dx.doi.org/10.1101/gr.271874.120
http://dx.doi.org/10.1093/bioinformatics/btaa097
http://dx.doi.org/10.1093/bioinformatics/bty117
http://dx.doi.org/10.1261/rna.059246.116
http://dx.doi.org/10.1016/j.cels.2019.03.012
http://dx.doi.org/10.1038/s41467-020-14457-z
http://www.ncbi.nlm.nih.gov/pubmed/32041960
http://dx.doi.org/10.1101/2020.01.26.919753
http://dx.doi.org/10.1093/nar/gky1003
http://www.ncbi.nlm.nih.gov/pubmed/30364959
http://dx.doi.org/10.1093/bioinformatics/bts635
http://dx.doi.org/10.1093/bioinformatics/btt656
http://dx.doi.org/10.1093/nar/gkw257
http://dx.doi.org/10.1093/nar/gkz966
http://dx.doi.org/10.1093/bioinformatics/19.2.185
http://dx.doi.org/10.1093/bioinformatics/btp616
http://dx.doi.org/10.1093/nar/gkz369
http://dx.doi.org/10.1038/nmeth.1923
http://www.ncbi.nlm.nih.gov/pubmed/22388286
http://dx.doi.org/10.1186/gb-2008-9-9-r137
http://www.ncbi.nlm.nih.gov/pubmed/18798982
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


Genes 2022, 13, 2265 19 of 19

55. Ewels, P.; Magnusson, M.; Lundin, S.; Kaller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single
report. Bioinformatics 2016, 32, 3047–3048. [CrossRef]

56. Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R.
Comprehensive integration of single cell data. Cell 2018, 177, 1888–1902. [CrossRef] [PubMed]

57. Hafemeister, C.; Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative
binomial regression. Genome Biol. 2019, 20, 296. [CrossRef] [PubMed]

58. Beckers, M.; Mohorianu, I.; Stocks, M.; Applegate, C.; Dalmay, T.; Moulton, V. Comprehensive processing of high throughput
small RNA sequencing data including quality checking, normalization and differential expression analysis using the UEA sRNA
Workbench. RNA 2017, 23, 823–835. [CrossRef] [PubMed]

59. Zheng, G.; Terry, J.; Belgrader, P.; Ryvkin, P.; Bent, Z.; Wilson, R.; Ziraldo, S.; Wheeler, T.; McDermott, G.; Zhu, J.; et al. Massively
parallel digital transcriptional profiling of single cells. Nat. Commun. 2017, 8, 14049. [CrossRef]

60. Waltman, L.; van Eck, N. A smart local moving algorithm for large-scale modularity-based community detection. Eur. Phys. J. B
2013, 86, 471. [CrossRef]

61. Gates, A.; Wood, I.; Hetrick, W.; Ahn, Y.Y. Element-centric clustering comparison unifies overlaps and hierarchy. Sci. Rep. 2019,
9, 8574. [CrossRef]

62. Shahsavari, A.; Munteanu, A.; Mohorianu, I. ClustAssess: Tools for Assessing the Robustness of Single-Cell Clustering. bioRxiv 2022.
[CrossRef]

63. Mohorianu, I.; Schwach, F.; Jing, R.; Lopez-Gomollon, S.; Moxon, S.; Szittya, G.; Sorefan, K.; Moulton, V.; Dalmay, T. Profiling of
short RNAs during fleshy fruit development reveals stage-specific sRNAome expression patterns. Plant J. Cell Mol. Biol. 2011,
67, 232–246. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/bioinformatics/btw354
http://dx.doi.org/10.1016/j.cell.2019.05.031
http://www.ncbi.nlm.nih.gov/pubmed/31178118
http://dx.doi.org/10.1186/s13059-019-1874-1
http://www.ncbi.nlm.nih.gov/pubmed/31870423
http://dx.doi.org/10.1261/rna.059360.116
http://www.ncbi.nlm.nih.gov/pubmed/28289155
http://dx.doi.org/10.1038/ncomms14049
http://dx.doi.org/10.1140/epjb/e2013-40829-0
http://dx.doi.org/10.1038/s41598-019-44892-y
http://dx.doi.org/10.1101/2022.01.31.478592
http://dx.doi.org/10.1111/j.1365-313X.2011.04586.x
http://www.ncbi.nlm.nih.gov/pubmed/21443685

	Introduction
	Materials and Methods
	Materials
	Methods

	Results
	Across-Lane Split Leads to Differences in Bulk mRNAseq Data
	Consequences of Across-Lane Splitting on Bulk Data
	Effects of Across-Lane Splitting on Single-Cell Data

	Discussion
	Effects of Splitting on Read Diversity and Levels of Noise
	Effects of Varying the Number and Proportions of Splits

	Conclusions
	References

