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Abstract: The objective of this study was to investigate the effects of tributyrin supplementation on
liver fat metabolism in broiler chickens. Two hundred and forty broilers were randomly allocated
into two experimental groups (6 replicates per treatment; 20 chickens in each replicate): the control
group (CN), which received a basal diet, and the tributyrin group (TB), which received a basal diet
supplemented with 1 g/kg of tributyrin. The experimental period lasted 37 days. The results showed
that in the liver, broilers supplemented with tributyrin had higher content of high-density lipoprotein
cholesterol (HDL-C) (p < 0.05). Liver hepatic lipase (HL), lipoprotein lipase (LPL) and total lipid (TL)
activity were significantly lower than in the TB group than that in the NC group. Meanwhile, the diet
supplemented with tributyrin had more lipid droplets than the NC group, whereas the TB and NC
groups showed no histological abnormalities in the liver. Furthermore, the mRNA expression levels
of peroxisome proliferators-activated receptor α (PPARα), proliferators-activated receptor γ (PPARγ),
fatty acid synthase (FAS), LPL and adipose triglyceride lipase (ATGL) in the liver were significantly
upregulated in the TB group (p < 0.05), while those of the long-chain acyl-CoA-synthetase 1 (ACSL1)
mRNA between the TB group and the NC group were not different (p > 0.05). These findings
indicated that the diet supplemented with tributyrin could increase fat deposition appropriately by
promoting fat synthesis without causing liver tissue damage, which demonstrated that tributyrin can
be considered a valid feed additive for broiler chickens.
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1. Introduction

Chickens are important components of human food, and appropriate fat deposition in
chicken meat contributes significantly to its quality attributes, such as juiciness, flavor, taste
and other organoleptic properties. However, excessive fat deposition in broiler chickens
will not only induce broiler ascites syndrome, sudden death and other metabolic diseases,
but could also lead to adverse effects in the consumer’s health [1]. Therefore, it is imperative
to find suitable additives for fat deposition.

Tributyrin (TB) is a triglyceride containing three butyrate moieties, and one molecule
of tributyrin releases three molecules of butyrate directly in the small intestine, which could
be rapidly adsorbed [2,3]. Supplementation of tributyrin showed positive effects on growth
performance and gut health in pig and rat [4–6]. In pig, a basal diet supplemented with
tributyrin significantly increased production traits and nutrient metabolism to regulate
lipid metabolism [4]. In rat, treatment with tributyrin attenuated diet-induced obesity
and associated insulin resistance [6]. Moreover, regarding beneficial effects, tributyrin
administration can also attenuate lipopolysaccharide-induced liver injury through gut
regulation [7,8]. Therefore, these findings indicated that tributyrin could modulate liver
lipid metabolism. However, there are no other studies investigating the effects of dietary
tributyrin on lipid metabolites in healthy chickens.
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In birds, the liver is the main site of lipogenesis [9], contributing 80 to 85% of the fatty
acids stored in adipose tissue [10]. As a result, most of the endogenous body lipids are
of hepatic origin, and the development of adipose tissue depends on the availability of
plasma triglycerides that are hydrolyzed prior to their utilization by adipocytes [11–13].
Liver fatty acid metabolism, as the most important lipid metabolic pathway, is widely
involved in fat deposition [14,15]. These results prompted studies on gene expression in
the liver, especially those genes involved in lipogenesis and lipolysis [16–18], including
peroxisome proliferators-activated receptor α (PPARα), peroxisome proliferators-activated
receptor γ (PPARγ), fatty acid synthase (FAS), adipose triglyceride lipase (ATGL) and
lipoprotein lipase (LPL). However, little is known about the effect of tributyrin on hepatic
gene expression in poultry, especially in broiler chickens.

Broiler chickens have a high propensity for lipid biosynthesis. It is reported that total
body lipids of growing chickens double every 5.5 days, and they reach the maximum rate
of hepatic fatty acid synthesis at 7 weeks of age [19]. The aim of the present study was to
explore the effect of tributyrin on hepatic lipid metabolism and lipid metabolism-related
gene expression in broiler chickens, which might help to identify the underlying mechanism
of tributyrin in modulating fat deposition in liver tissue.

2. Materials and Methods
2.1. Ethics Statement

Animals used in this study were raised and slaughtered in accordance with the
national standard of Laboratory animal Guideline for ethical review of animal welfare
(GB/T 35892-2018), issued by General Administration of Quality Supervision, Inspection
and Quarantine of the people’s Republic of China and Standardization Administration of
the People’s Republic of China. All experiment procedures were approved by the Institute
of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences
(Hangzhou, China).

2.2. Animals and Experimental Model

Two hundred and forty 26-day-old Hexi dwarf female broilers were randomly allotted
into two experimental groups with similar conditions to those under which commercial
farm animals were kept before the first day of the trial. After one week of adaptation, the
control group (NC) received a basal diet, while the TB group received the same basal diet
supplemented with 1 g/kg of dietary tributyrin [20] (Jinfulai Technology Development Co.,
Ltd., Harbin, China). All groups consisted of 6 replicates per treatment and 20 chickens
in each replicate. The dietary nutrient levels were based on National Research Council
recommended nutrient requirements for broiler chickens (Table 1). The experimental period
lasted 37 days. After the experimental period, six broilers in each group were randomly
selected for blood and liver sample collection.

2.3. Sample Collection

After 37 days, blood samples from the jugular vein of six broiler chickens per treatment
(1 broiler per replicate) were collected into pro-coagulation tubes and maintained for 2 h at
room temperature. All samples were centrifuged at 3000 rpm for 10 min at 4 ◦C. Serum
was removed and the aliquots were stored at −20 ◦C for further analysis. Broilers were
euthanized with an ear intravenous injection of sodium pentobarbital (200 mg/kg BW).
The liver tissue samples were collected and immediately snap-frozen in liquid nitrogen
and fixed in 4% paraformaldehyde for RNA and histological analysis, respectively.
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Table 1. The composition and nutrient levels of the experimental diets.

Items 26~40 d 41~62 d

Ingredient (%)
Wheat 77.96 81.51

Soybean meal 5.65 0
Sunflower meal 3.5 4.5

Peanut meal 4 4.25
Corn gluten meal 1.56 1.28

Feather meal 0 1
Lard 3.14 3.46

Calcium bicarbonate 0.63 0.47
Stone powder 1.36 1.33

Premix 1 2.2 2.2
Nutrient composition, calculated

Nitrogen-corrected apparent
metabolizable energy (MJ/kg) 12.76 12.97

Crude protein (%) 17.50 16.50
Crude fat (%) 4.76 5.17
Calcium (%) 0.8 0.75

Phosphorus (%) 0.3 0.28
Lysine (%) 0.90 0.85

Methionine (%) 0.45 0.37
1 Premix supplied the following per kilogram of diet: NaHCO3 90 g; NaCl 90 g; vitaminA 10,000 IU; vitaminD
33,000 IU; vitaminE 30 mg; vitaminK 31.3 mg; vitaminB 120.013 mg; thiamine 2.2 mg; riboflavin 8 mg; nicotinamide
40 mg; choline chloride 600 mg; calcium pantothenate 10 mg; pyridoxine·HCl 4 mg; biotin 0.04 mg; folic acid 1 mg;
Fe 80 mg; Cu 7.5 mg; Mn 110 mg; Zn 65 mg; I 1.1 mg; Se 0.3 mg. Moreover, 26 to 40 days includes methionine 90 g;
threonine 70 g; lysinesulphate 361 g, while 41 to 62 days includes methionine 68 g; threonine 89 g; lysinesulphate
406 g.

2.4. Biochemical Analysis

Liver total cholesterol (TC), triglycerides (TG), high-density lipoproteincholesterol
(HDL-C) and low-density lipoproteincholesterol (LDL-C) were measured using commer-
cially available kits (Jiancheng Biotechnology Inc., Nanjing, China), following the manufac-
turers’ instructions. Hepatic lipase (HL), LPL and total lipid (TL) activities were determined
using liver tissue HL, LPL and TL kits (Jiancheng Biotechnology Inc., Nanjing, China),
following the manufacturers’ instructions.

2.5. Histological Observation

Liver tissues fixed in 4% paraformaldehyde were subjected to a standard hematoxylin
and eosin (H&E) staining and then cut into 10 µm thin layers. The obtained slices were
subjected to a dry-wash cycle (60 min); after that, the dried slices were rinsed in 60%
isopropanol and then stained with Oil Red O solutions (10 min). After differentiation in
60% isopropanol, distilled water was used to wash twice, then restained with Mayer’s
hematoxylin (2 min), washed twice with distilled water (10 min), dried and embedded
with the aqueous medium. The slices were observed using a Nikon E100 microscope, and
pictures were taken at a magnification of 400×.

2.6. Gene Expression Analysis

Total RNA was isolated from the liver samples using TRIzol reagent (TAKARA, Dalian,
China), and then the single-stranded cDNA was synthesized. All cDNA samples were
stored at −20 ◦C until used. A 20 µL reaction mixture contained 10 µL of 2× Power
SYBR® Green Master Mix (Applied Biosystems, Waltham, MA, USA), 0.5 µL of each primer,
1 µL of template cDNA, and 8 µL of double-distilled water (ddH2O). The amplification
reaction consisted of 95 ◦C for 30 s, then 40 cycles at 95 ◦C for 15 s and 63 ◦C for 25 s.
Glyceraldehyde 3-phosphatedehydrogenase (GAPDH) was used as the housekeeping
gene, and the normalized target gene expression level in the sample was calculated using
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the formula 2−∆∆Ct. The primers were designed using Primer Premier 5.0 software and
synthesized by Sangon Biotech (Shanghai, China), and they are listed in Table 2.

Table 2. Primers used in the study.

Gene Genbank Accession Primer Sequences (5′→3′) Size (bp) Annealing (◦C)

β-actin NM_205518.1
CTGAACCCCAAAGCCAACAGA

120 60AGTGGTACGACCAGAGGCATACA

LPL NM_205282.2
CAGTGTCTGCTGCTTACACGAA

101 60CAAGTGGACATTGTTGAGAGGGTAA

ACSL1 XM_040698931.1
CGGACAGAGCAGAGTATGTG

74 60GCCTACGTACTGGCTGTGA

PPARγ NM_001001460.1
CATGCATCACCACTGCAGGAA

83 60ACTGCCTCCACAGAGCGAAA

PPARα NM_001001464.1
GGAGTACATGCTTGTGAAGGTTG

148 60CTGAAAGGCACTTCTGAAAACGACA

FAS NM_205155.3
CAAGCCTGGAGATGTGGAGTAT

154 60CTCTGGATGACCCATGTTTGAC

ATGL EU240627.2
CTGACAACTTGCCACGATATGAG

149 60GAGGTTGCGAAGGTTGAATTGGA

2.7. Statistical Analysis

Data are presented as the mean ± standard error (SE) and processed by the statistical
package for the SPSS 25.0 software (Chicago, IL, USA). t-test analysis was used to assess the
differences between groups. Differences were considered statistically significant at p < 0.05.

3. Results
3.1. Effect of Tributyrin on Lipid Levels in Liver Tissues

To determine whether dietary addition of TB could affect fat deposition in the liver,
the contents of TC, TG, HDL-C and LDL-C were observed. As indicated in Table 3, TB
treatment significantly increased the content of HDL-C (p < 0.05), while no difference
between the control and TB groups in the liver content of TC, TG and LDL-C (p > 0.05) was
observed. On the other hand, broilers fed the diet supplemented with TB had significantly
decreased values of the liver TL, HL and LPL activity.

Table 3. Effect of TB on liver lipid parameters in broiler chickens.

NC TB p-Value

TC (mmol/L) 0.0645 ± 0.0079 0.0578 ± 0.0059 0.129
TG (mmol/L) 0.1248 ± 0.0187 0.1073 ± 0.0135 0.095

HDL-C (mmol/L) 0.0049 ± 0.0008 b 0.0071 ± 0.0005 a <0.001
LDL-C (mmol/L) 0.0532 ± 0.0058 0.0480 ± 0.0057 0.149

TC, total cholesterol; TG, triglycerides; HDL-C, high-density lipoproteincholesterol; LDL-C, low-density lipopro-
teincholesterol. Data are presented as means ± SE (n = 6). Different superscripts indicate significant differences
between groups (a, b: p ≤ 0.05).

3.2. Effect of Tributyrin on Enzymatic Activity in Liver Tissues

As shown in Table 4, the hepatic activity of TL in the TB supplementation group was
significantly lower than in the control group (p < 0.05). Meanwhile, the activity of HL and
LPL in the liver were also significantly lower in the TB supplementation group (p < 0.05).
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Table 4. Effect of TB on liver lipid parameters in broiler chickens.

NC TB p-Value

TL (U/mg.prot) 9.14 ± 0.73 a 6.30 ± 0.96 b <0.001
HL (U/mg.prot) 1.78 ± 0.32 a 1.23 ± 0.14 b 0.003
LPL (U/mg.prot) 7.36 ± 0.47 a 5.08 ± 0.84 b <0.001

TL, totallipase; HL, hepatic lipase; LPL, lipoproteinlipase. Data are presented as means ± SE (n = 6). Different
superscripts indicate significant differences between groups (a, b: p ≤ 0.05).

3.3. Histological Observations of Liver Tissues

To confirm the changes in liver tissue after TB supplementation, histological analysis
was performed, and the NC and TB groups showed no histological abnormalities in the
liver (Figure 1A). To further confirm the distribution and abundance of lipid droplets, the
liver tissue was subjected to Oil Red O staining. It was found that the TB group had more
lipid droplets than the NC group (Figure 1B).
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3.4. Effect of Tributyrin on Liver mRNA Expression of Lipogenesis and Lipolysis-Related Genes

To further determine the underlying mechanisms of tributyrin involved in liver lipid
deposition, the expression levels of genes that are related to lipogenesis and lipolysis were
measured (Figure 2). Among lipid uptake genes, the mRNA expression levels of LPL in the
TB group were significantly higher than that in the control group (p < 0.05), while there was
no difference between the control and TB groups in ACSL1 mRNA expression (p > 0.05).
The key lipogenesis genes, including PPARα, PPARγ and FAS, were also compared in the
two groups. It was found that in comparison to the control group, TB treatment significantly
increased PPARα, PPARγ and FAS mRNA expression levels (p < 0.05). Finally, TB was
found to increase the expression of the ATGL gene related to lipolysis in the liver (p < 0.05).
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4. Discussion

With its long history as a delicious food source, chicken has proven highly popular
with consumers. Meanwhile, appropriate fat deposition in broiler chickens will improve
the flavor of meat quality, which makes the meat more delicious [21]. Glyceryl butyrate has
beneficially improved the growth performance and carcass yield in broiler chickens [22–24].
Moreover, TB contains the butyrate moieties and could be rapidly adsorbed by releasing the
butyrate directly in the small intestine [2,3]. In birds, lipogenesis takes place primarily in the
liver, whereas adipocyte serves as the storage site for triglycerides [9]. Despite the wealth
of information indicating that tributyrin alters lipid metabolism in animals [4,6], little is
known about the effect of tributyrin on lipid metabolism and hepatic gene expression in
poultry, especially in broiler chickens.

The HDL-C can transport the free cholesterol accumulated in peripheral tissues and
the lipoproteins in circulation to the liver cells, accelerating the removal of cholesterol
and thus playing an important role in minimizing atherosclerosis [25,26]. In the present
study, broiler chickens fed with TB-containing diets showed increased content of HDL-C
in liver tissue, while no statistically significant differences were observed for TC, TG and
LDL-C content. These results indicated that TB could accelerate the accumulation of HDL
cholesterol in circulation.

The lipid mobilization includes lipogenesis and lipolysis, which are in a dynamic
balance under normal conditions [27]. The HL, as an important lipid metabolic enzyme
produced primarily by the liver, mainly modulates the reaction responsible for transferring
cholesterol from the peripheral tissue to the liver [28]. The LPL is synthesized in parenchy-
mal cells in fat, myocardium, skeletal muscle and breast tissues, which has functional
similarities with HL. HL has been found to catalyze and break the TG into fatty acids
and monoglycerides for use in aerobic metabolism or for fat storage. The liver takes up
the unesterified cholesterol accumulated in HDL with the help of HL. This could pre-
vent excess cholesterol accumulation in the liver’s peripheral tissues [29,30]. This study
demonstrated a pronounced increase in HL, LPL and TL activity after the administration
of TB in broiler chickens, which resulted in increased lipid synthesis and accelerated lipol-
ysis [28,31]. Histological analysis and Oil Red O staining further demonstrated that TB
dietary supplementation accelerated liver fat deposition with no adverse effects on hepatic
functionality. We speculated that TB might positively affect liver lipid regulation based on
the findings mentioned above.
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Fat accumulation is a complex process characterized by many gene expression changes
controlling lipogenesis and lipolysis [1]. LPL, a classical lipid metabolic enzyme, is involved
in liver fatty acid metabolism [32], and ACSL1 is also involved in the regulation of lipid
metabolism uptake [33]. Our study showed that the mRNA expression level of LPL in
the TB group was higher than in the NC group, while the ACSL1 mRNA level showed no
difference between the TB and NC groups. The result suggested that TB may improve lipid
uptake of chicken broilers by regulating the LPL level. The PPARs are a superfamily of
nuclear receptors that play a significant role in adipocyte cell differentiation and intra- and
extracellular transportation of fatty acid [34,35]. Both PPARα and PPARγ mainly influence
fatty acid metabolism and modulate the lipid accumulation via increased expression of
LPL [36]. In the present study, we found that TB treatment significantly upregulated the
LPL, PPARα and PPARγ mRNA levels, showing similarities with a previous study where
oral tributyrin increased the hepatic PPARα and PPARγ gene expression to attenuate LPS-
induced lipid metabolism abnormalities [37]. Based on these results, supplementation
with TB could play a positive role in liver lipogenesis in chicken broilers. Moreover,
ATGL is the key lipase involved in the lipolysis process, and these enzymes hydrolyze the
triacylglycerols to monoacylglycerols and other lipids in various tissues [38,39]. The TB
group had a higher ATGL mRNA expression than the NC group, which indicated that TB
might improve the liver lipolysis of chicken broilers. These data suggest that TB plays a
more relevant role in balancing lipogenesis and lipolysis.

5. Conclusions

The present study showed that supplementation with tributyrin significantly elevated
HDL-C content and decreased the HL, LPL and TL activity. Broiler chickens treated with
tributyrin promoted fat deposition without negative effects on liver morphology. Moreover,
the PPARα, PPARγ, FAS, LPL and ATGL mRNA levels were significantly upregulated. All
these data suggested that tributyrin could promote liver fat deposition without resulting
in excessive accumulation. For these reasons, it would be interesting to evaluate and
investigate the meat quality in detail.
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