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Abstract: Cannabidiol (CBD) is a non-psychotomimetic compound present in cannabis sativa. Many
recent studies have indicated that CBD has a promising therapeutic profile for stress-related psychiatric
disorders, such as anxiety, schizophrenia and depression. Such a diverse profile has been associated
with its complex pharmacology, since CBD can target different neurotransmitter receptors, enzymes,
transporters and ion channels. However, the precise contribution of each of those mechanisms for
CBD effects is still not yet completely understood. Considering that epigenetic changes make the
bridge between gene expression and environment interactions, we review and discuss herein how
CBD affects one of the main epigenetic mechanisms associated with the development of stress-related
psychiatric disorders: DNA methylation (DNAm). Evidence from in vivo and in silico studies indicate
that CBD can regulate the activity of the enzymes responsible for DNAm, due to directly binding to
the enzymes and/or by indirectly regulating their activities as a consequence of neurotransmitter-
mediated signaling. The implications of this new potential pharmacological target for CBD are
discussed in light of its therapeutic and neurodevelopmental effects.
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1. Introduction

Cannabis sativa (cannabis) is one of the first plants cultivated by man, with histori-
cal and archaeological findings describing its cultivation in China, 4000 B.C. [1,2]. The
world’s oldest pharmacopeia, the Chinese Pen-ts’ao Ching, described medical preparations
of cannabis for treating different conditions, including pain, gastrointestinal disorders and
infection, among others [1]. The first reference to the psychoactive properties of cannabis in
humans is also described in this Chinese pharmacopeia, and the plant’s psychoactive effects
have been well known by different civilizations since ancient times [1,3]. At the beginning
of the 20th century, the medical indications of cannabis included dozens of different con-
ditions, and its consumption for hedonistic purposes reached social importance in many
countries [4]. However, concerns regarding its addictive properties resulted in worldwide
legal restrictions for cannabis use for medical and recreational purposes by the second half
of the 20th century [1]. Such prohibitions significantly delayed the scientific development
of elucidating the plant’s chemical composition and the mechanisms responsible for the
diversity of its effects.
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It was only in 1964 that Gaoni and Mechoulam identified the chemical structure of the
principal constituent of cannabis, ∆9-tetrahydrocannabinol (THC), which was later identi-
fied as the main one responsible for the plant’s psychostimulant effects [5,6]. Currently, it
is known that cannabis contains more than 120 C21 terpenophenolic constituents named
phytocannabinoids, of which THC and cannabidiol (CBD) are the most abundant [7,8].
Unlike THC, CBD does not induce psychostimulant effects nor has abuse liability [9–11].
On the other hand, similarly to THC, CBD is pharmacologically active and shows promis-
ing therapeutic potential in a wide range of conditions, such as chronic inflammation and
pain, infection, cancer, neurological diseases and mental illnesses, among others, with
varying levels of supportive evidence [9,12–14]. In the context of brain disorders, CBD
has shown anticonvulsant, anxiolytic, antipsychotic and antidepressant effects in animal
models and human studies [10,15–18]. The diverse pharmacological profile of CBD has
attracted considerable attention worldwide, and many clinical trials have been designed to
evaluate its therapeutic properties [19–22]. Currently, CBD is approved by the US Food
and Drug Administration (FDA, Silver Spring, MD, USA) and European Medicines Agency
(EMA, Amsterdam, The Netherlands) as an add-on treatment for rare epilepsies, and a
preparation of 1:1 CBD+THC is approved in several European countries and Canada for
the treatment of multiple-sclerosis-associated spasticity [14]. Despite some studies pointing
to the beneficial effects of CBD in psychiatric disorders, the lack of sufficient supportive
evidence has been an essential limitation regarding its indication in such conditions [10,23].

The growing interest of the scientific community in understanding the molecular basis
of CBD effects has revealed the complex pharmacology behind its actions [14,24], making it
a good candidate for further therapeutic investigation [25]. The complete elucidation of
CBD’s mechanism of action in psychiatric disorders and other health conditions is thus
necessary to provide a better understanding of its therapeutic potential. In this review, we
address possible mechanisms by which CBD can modulate DNA methylation (DNAm), the
best studied and currently the best understood epigenetic mechanism that regulates the
expression of multiple genes central to the neurobiology of psychiatric disorders [26–28].

2. Cannabidiol and Its Molecular Targets

Although the CBD molecule is almost identical to THC, their conformational structures
differ significantly, which may explain the pharmacological difference between these
compounds. While THC exists in a planar conformation, CBD presents a bent structure
with two rings more or less at right angles [29] (Figure 1). THC mimics the action of the
endogenous cannabinoids by binding to cannabinoid receptors with much more affinity
than CBD [29]. Identifying specific binding sites to THC in the brain led to the discovery of
cannabinoid receptors, CB1 and CB2, culminating with the identification of endogenous
cannabinoids, or endocannabinoids (eCB) [30]. The eCB system comprises the synthesizing
and degrading enzymes, transporters and receptors and two main eCBs: anandamide (AEA)
and 2-arachidonoylglycerol (2-AG) [16,31] (Figure 2). AEA and 2-AG are arachidonic acid
derivatives and directly modulate the activation of different receptors with varying affinities
and efficacies: CB1, CB2, GRP55 and TRPV1 receptors, among other receptors [16]. The
concentration of eCB is tightly regulated by the degrading enzymes, the fatty acid amide
hydrolase (FAAH) and monoacylglycerol lipase (MAGL), responsible for the breakdown
of AEA and 2-AG, respectively [16,31]. The CB1 receptor is highly expressed in the brain
and is particularly abundant in brain areas associated with motor control, emotional
responses and energy homeostasis, while CB2 is primarily expressed in immune cells and
glia, although it can also be present in neurons [8,16].
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Figure 1. A 3D structural representation of tetrahydrocannabinol (THC) and cannabidiol (CBD). In 
panel (A) (top), the lowest energy conformation of THC is represented, and, in panel (B) (bottom), 
the lowest energy conformation of CBD. The 2D structures were retrieved from PDB with the 
following IDs: TCI for THC and P0T for CBD. The energy minimization and conformer generation 
were performed in LigPrep in Maestro-Suite v.11.2—Schrödinger. The structures were represented 
in Licorice model with carbon atoms represented in green, oxygens in red and hydrogens in white. 
Abbreviations: THC, tetrahydrocannabinol; CBD, cannabidiol; PDB, protein data bank. 

 
Figure 2. Canonical tripartite eCB signaling in the brain. Neurotransmitter-induced depolarization 
in the postsynaptic neuron and increased calcium concentration triggers the synthesis of 
anandamide (AEA) and 2-arachidonoylglycerol (2-AG) by NAPE-PLD and DAGL, respectively. The 
eCB can activate specific receptors (CB1, CB2, TRPV1 and GPR55) and/or follow degradation by 
FAAH and MAGL [31]. 

Figure 1. A 3D structural representation of tetrahydrocannabinol (THC) and cannabidiol (CBD). In
panel (A) (top), the lowest energy conformation of THC is represented, and, in panel (B) (bottom), the
lowest energy conformation of CBD. The 2D structures were retrieved from PDB with the following
IDs: TCI for THC and P0T for CBD. The energy minimization and conformer generation were
performed in LigPrep in Maestro-Suite v.11.2—Schrödinger. The structures were represented in
Licorice model with carbon atoms represented in green, oxygens in red and hydrogens in white.
Abbreviations: THC, tetrahydrocannabinol; CBD, cannabidiol; PDB, protein data bank.
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Figure 2. Canonical tripartite eCB signaling in the brain. Neurotransmitter-induced depolarization
in the postsynaptic neuron and increased calcium concentration triggers the synthesis of anan-
damide (AEA) and 2-arachidonoylglycerol (2-AG) by NAPE-PLD and DAGL, respectively. The
eCB can activate specific receptors (CB1, CB2, TRPV1 and GPR55) and/or follow degradation by
FAAH and MAGL [31].
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The CB1 receptors are the main target for THC, where it acts as an agonist, and its
activation is associated with the rewarding properties of the plant [8,32]. Unlike THC, CBD
has a very low affinity for CB1 and CB2 receptors [33]. An allosteric binding activity of CBD
on these two receptors has been reported, resulting in CBD binding to CB1 as an inverse
agonist/antagonist and CB2 as an antagonist [14,30,33,34]. In line with that, preclinical and
clinical evidence indicates that CBD not only lacks abuse potential but it also attenuates the
psychotomimetic and anxiogenic effects induced by THC [35,36].

Despite the negligible affinity of CBD to cannabinoid receptors, there are indirect ways
in which it can activate CB1 and CB2: (a) it can inhibit FAAH, and thereby increase AEA
levels [14]; (b) it can inhibit the uptake of eCBs [37]; (c) it can bind to fatty-acid-binding
proteins, such as FABP5, and thereby inhibit eCB transport to FAAH [38]. Altogether, these
mechanisms can increase the endogenous levels of eCB and promote activation of CB1, CB2
and TRPV1 receptors (Figure 2). Indeed, many behavioral effects of CBD can be blocked by
the concomitant administration of CB1 and/or CB2 receptors [39–41].

Since CBD displays such low affinity for CB1 and CB2 receptors, many studies with
CBD have attempted to characterize CB1- and CB2-independent effects for this phyto-
cannabinoid. It is now known that CBD binds to a wide variety of targets, including
receptors (primarily PPARγ, GPR55, TRPV1, 5-HT1A, 5-HT3, mu-opioid, A2 and GABAA),
enzymes (MAGL and FAAH), transporters (monoamines, glutamate and eCB) and ion
channels, among others [14,42] (Figure 3). This might explain the multitude of CBD effects
on neurotransmitter release, cell signaling, gene expression and protein levels, cell cycle
control, oxidative stress and inflammation [43]. Altogether, the polypharmacology of CBD
may explain its ability to be effective against diverse pathologies by recruiting different
mechanisms depending on the system compromised in the given condition [14,43,44].
The promiscuity of CBD on its targets also poses a challenge in deciphering its precise
mechanism of action, which remains mostly unclear, especially in psychiatric disorders.
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Figure 3. CBD molecular targets. CBD can target different molecules in the brain, including mem-
brane (CB1, CB2, TRPV1 and GPR55) and nuclear (PPARy) receptors, enzymes and transporters,
thereby regulating the neurochemical milieu and transcription in different ways [42]. Lines represent
the mechanism of action: red lines = inhibitor/antagonist; dashed red lines = negative allosteric
modulation; dark lines = agonist; dashed black lines = partial agonist. D2: dopamine-2 receptor;
MOR: mu-opioid receptor; A2: adenosine-2 receptor.

The number of studies showing the potential therapeutic effects of CBD in psychiatric
disorders has considerably increased over the past decade. Overall, the reports suggest that
CBD is effective against anxiety [45,46], psychotic symptoms [47,48], depression [49,50]
and PTSD [51]. Furthermore, CBD is also effective in many pathological processes that
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are involved in the neurobiology of psychiatric disorders, such as neurodegeneration and
impaired neuroplasticity [52,53], neuroinflammation [54,55], imbalanced neurotransmitter
levels [56–58] and synaptic homeostasis [18,59]. Interestingly, these changes are under
the control of transcriptional regulation involving changes in DNAm [60–64]. However,
the number of studies for CBD effects on DNAm and its relevance for psychiatry is very
limited, but the available evidence is discussed in the following sessions.

3. Regulation of DNAm by CBD
3.1. DNAm and Psychiatric Disorders: A Brief Overview

Stress exposure throughout life is amongst the most influential environmental chal-
lenges that can promote long-lasting reprogramming of gene expression and influence
the development of brain disorders [63]. The epigenome translates the gene–environment
interaction into gene expression changes that influence several brain processes, such as
neuronal differentiation, maturation and plasticity, as well as brain neurochemistry, thereby
affecting how the brain responds to challenging environmental exposures [63].

Amongst the epigenetic mechanisms that influence chromatin remodeling and regula-
tion of gene expression is DNAm, characterized by the transfer of a methyl group, donated
by S-adenosylmethionine, onto the C5 position of the cytosine to form 5-methylcytosine
(5mC) [65]. In most mammalian cell types, DNAm occurs primarily on a CpG dinucleotide,
and it is associated with repression of transcription if it happens in promoter regions, while
in gene bodies, it is associated with an increase or decrease in transcription [66]. The methy-
lation of DNA is catalyzed by a family of enzymes called DNA methyltransferases (DNMTs)
(Figure 4). While DNMT1 functions during DNA replication to copy the DNAm pattern
from the parental DNA strand onto the newly synthesized daughter strand, DNMT3a and
DNMT3b can establish a new methylation pattern for an unmodified DNA sequence and
are thus are known as de novo DNMTs [65].
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Figure 4. DNA methylation (DNAm) and demethylation in mammal cells. DNAm is catalyzed
by DNMTs, which transfer a methyl radical from SAH to cytosines, forming 5mC. The methylated
cytosine can become demethylated either by (i) actively undergoing a series of reactions by TETs or
(ii) passively by losing the mark during DNA replication [67,68].

Recent evidence indicates that DNAm is a dynamically regulated process with the
participation of a family of enzymes named ten-eleven translocase (TET), responsible
for oxidizing 5mC onto 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and
5-carboxylcytosine (5caC), in sequential reactions [69–71] (Figure 4). Interestingly, neuronal
activation can regulate the activity of TET1, which catalyzes the conversion of 5mC to
5hmC, and induce DNA demethylation with subsequent changes in the expression of genes
involved in neuronal plasticity [72]. A similar role has also been proposed for Tet3 [73].
DNAm can be an active or passive process. Passive demethylation occurs when DNAm
patterns are not restored after DNA replication on the newly synthesized DNA strand, while
active is thanks to the oxidation via TETs. Furthermore, 5hmC itself has different properties
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and impacts on gene expression than 5mC, with altered patterns of epigenetic regulation
and subsequent gene expression already after the first oxidation from 5mC to 5hmC [74].

This dynamic regulation of DNAm in the brain is crucial for neuronal development
and subtype specification, synaptic plasticity, neuronal activity, neuroprotection and re-
generation [60,66]. Therefore, aberrations in writing or reading changes in DNAm can be
linked to developing different brain disorders, including mental illnesses [26]. Detailed
reviews have been published elsewhere, where aberrant patterns of DNAm have been
described in peripheral and brain tissue of individuals with depression, anxiety, PTSD
and schizophrenia [27,75], all psychiatric disorders with established increased risk through
exposure to adverse life events [26]. Changes in DNAm (hypo/hypermethylation) have
been identified in several genes coding for receptors, transporters and degrading enzymes
of neurotransmitters involved in psychiatric disorder etiology and treatment (dopamine,
serotonin, GABA and glutamate) (for review, see [27]). Furthermore, changes in DNAm
have also been described in genes involved in neuroplasticity regulation, such as brain-
derived neurotrophic factor (BDNF) and mediators of the neuroendocrine response to
stress (glucocorticoid receptors and neuropeptides) [76]. Mediators of the inflammatory
response, such as cytokines, are also known to have their expression regulated by DNAm
in response to stress and psychiatric disorders [27,77]. Such changes could compromise the
neurochemical milieu and synaptic homeostasis required for promoting stress adaptation,
thereby hindering resilience and increasing the vulnerability to psychiatric disorders by
different mechanisms [78,79].

DNAm is also influenced by genetic variation. Distinctly methylated genes seem to
impact DNAm on phenotype differences, such as susceptibility to certain diseases and
pathogens and response to drugs and environmental agents [80]. Many genome-wide
association studies have provided a growing list of genetic variations associated with
psychiatric phenotypes and have clarified the shared and unique components of mental
illness [81–83]. A genome-wide meta-analysis study analyzing eight psychiatric disorders
has found 146 risk loci, of which 109 are associated with at least two psychiatric disorders,
confirming the effect of genetic risk variants and highlighting the close genetic relationship
between some diseases, such as schizophrenia and bipolar disorder [84]. Genetic variants in
DNMTs are critical in defining the threshold for environmental factors toward susceptibility
to psychiatric diseases [28]. Therefore, a substantial fraction of the epigenome is controlled
by the DNA sequence, and the genetic–epigenetic paradigm is important to understand
how genes and life adversities outline individuals in states of vulnerability or resilience [85].

Interestingly, drugs used to treat psychiatric disorders, such as antidepressants, mood
stabilizers and antipsychotics, can correct some, but not all, DNAm changes observed in
stressed animals and patients [75,86,87], thus suggesting that this mechanism can contribute
to their therapeutic effects. In line with that view, preclinical evidence has demonstrated
that drugs that directly target DNMTs with resulting inhibition of their catalytic activity,
such as decitabine or RG108, promote stress-coping behavior in different animal models of
psychiatric disorders: the forced swim test [88,89], the learned helplessness [64] and the
social defeat stress [90,91]. Therefore, DNAm can be explored as a possible pharmacological
target to correct aberrant methylation patterns associated with increased vulnerability to
disease, including stress-induced psychiatric disorders [87,90,92]. Drugs with potential
ability to regulate the activity and/or the expression of DNMTs and TETs become, thus,
valuable therapeutic tools for further research.

3.2. CBD Effects on DNAm: In Vivo Evidence

Evidence describing CBD effects on DNAm is still scarce. When searching on PubMed
using the search string [(cannabidiol) AND (DNA methylation) (ALL FIELDS)], only 17 papers
were retrieved (30 August 2022). Of those, two are not dealing with CBD effects on
DNAm [93,94]; one used a mixture of polyphenols, including CBD, making it difficult to
draw any conclusion regarding CBD effects [95]; and four are narrative reviews [96–99], as
summarized in Table 1.
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Table 1. Published evidence about cannabidiol effects on DNAm (search: cannabidiol and DNA methylation, PubMed, 30 August 2022).

Article
Categories Cell or Tissue Type Type of

Study

CBD Effects
Related

Psychiatric
Disorder

Gene DNAm
Measure Main Findings Assessment Reference

Comparative
study

Keratinocytes
human HaCaT cells In vitro N.A. Keratin 10 and

global DNAm

DNAm-specific
primed PCR

Methyl-accepting
assay with CpG
methylase SssI

CBD (0.5 µM)
increased DNAm of

keratin 10 gene
CBD (0.5 µM)

increased global
DNAm by

selectively enhancing
DNMT expression

First evidence that
CBD could

target DNAm
[100]

Research study Hippocampal
mitochondria

Animal model
(male Wistar rats) Neurodegenerative N.A.

Methylated DNA
quantification

ELISA kit

CBD (10 mg/kg/day,
i.p.; 14 consecutive
days) attenuated

iron-induced decrease
in global DNAm

First evidence that
CBD restores
hippocampal

DNAm of
mitochondrial

mtDNA

[101]

Research study Prefrontal
cortex

Animal model
(male Sprague-
Dawley rats)

Schizophrenia CNR1
Pyrosequencing

of bisulfite
converted DNA

CBD (30 mg/kg/day,
i.p.; 20 days) reduced

DNAm in the
CNR1 promoter

First evidence
regarding the

involvement of
DNAm in the
antipsychotic

properties of CBD

[102]

Review N.A. N.A. Fragile X
Syndrome N.A. N.A. N.A. None about CBD

and DNAm [99]

Review N.A. N.A. N.A. N.A. N.A. N.A. Brief review of
published articles [98]
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Table 1. Cont.

Article
Categories Cell or Tissue Type Type of

Study

CBD Effects
Related

Psychiatric
Disorder

Gene DNAm
Measure Main Findings Assessment Reference

Research study
Prefrontal
cortex and

hippocampus

Animal model
(male Swiss mice) Depression Global DNAm DNAm ELISA kit

CBD (10 mg/kg, i.p.)
attenuated the DNAm

changes induced by
stress (increasing

DNAm in the
prefrontal cortex and
the decreasing DNAm
in the hippocampus)

First evidence
regarding the

involvement of
DNAm in the

antidepressant-like
action of CBD

[103]

Research study Hippocampus
Animal model

(male Agouti viable
yellow- Avy mice)

Autism,
schizophrenia N.A.

Genome-wide
DNAm (reduced-

representation
bisulfite

sequencing)

3323 genes’
differentially

methylated loci were
found in

CBD-exposed animals
(20 mg/kg/day, p.o.;

14 days)

CBD modifies
DNAm in genes

relevant for
psychiatric diseases

[104]

Research study Prefrontal
cortex and PBMCs

Animal model
(male Sprague-

Dawley)
Schizophrenia

DRD2
dopamine

D2 receptor
Pyrosequencing

DRD2 DNAm (CpG
site 1) was reduced in

the PBMCs of
schizophrenic subjects
CBD (30 mg/kg/day,

i.p.; 21 consecutive
days) attenuated the

DRD2 DNAm
reduction in the

prefrontal cortex of
rats exposed
to the THC

Peripubertal CBD
treatment reverted
DNAm modulation

of DRD2 in rats

[105]
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Table 1. Cont.

Article
Categories Cell or Tissue Type Type of

Study

CBD Effects
Related

Psychiatric
Disorder

Gene DNAm
Measure Main Findings Assessment Reference

Comparative
study

Cortex and
hippocampus

Animal model
(female Avy mice)

Neurodevelopmental
disorders,

epilepsy and
others

N.A.

Genome-wide
DNAm (reduced-

representation
bisulfite

sequencing)

CBD (20 mg/kg/day,
i.p.; 14 consecu-

tive days)

First evidence
that developmental

CBD exposure
modified DNAm

[106]

Review N.A. N.A. Mood disorders
and anxiety N.A. N.A. N.A.

Showed evidence
that therapeutic

effects of CBD could
involve DNAm

[97]

Research study

Canine monocyte-
macrophage (DH82)

and epidermal
keratinocytes cells

In vitro Canine atopic
dermatitis

Ccl2, ccl17 and
tslp, il31ra

Bisulfite-treated
DNAm

pyrosequencing

The nutraceutical
mixture induced a

significant
downregulation of

many genes in
immune cells, along

with increased DNAm

CBD effects were
not investigated

isolated, but only as
part of the

nutraceutical
treatment (mixture

containing
polyphenols and

cannabinoids),
making it difficult to
assess CBD effects

[95]

Research study Ventral striatum and
prefrontal cortex

Animal model
(male Swiss mice) Schizophrenia Global DNAm DNAm ELISA kit

CBD (30 and 60
mg/kg, i.p.)

prevented the
amphetamine-

induced DNAm
increase in the

ventral striatum

First evidence that
CBD has sustained
antipsychotic-like
action, suggesting
the involvement of

DNAm in
these effects

[107]

Review N.A. N.A. Mood disorders
and schizophrenia N.A. N.A. N.A. None about CBD

and DNAm [96]
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Table 1. Cont.

Article
Categories Cell or Tissue Type Type of

Study

CBD Effects
Related

Psychiatric
Disorder

Gene DNAm
Measure Main Findings Assessment Reference

Research study N.A. Silico molecu-
lar docking N.A. N.A. N.A.

Cannabinoids,
including CBD,

inhibited the activity
of TET1 protein

First in silico
evidence that

CBD can regulate
DNAm through
direct interaction

with TET1
Did not investigate

CBD effects
on DNAm

[108]

Research study Leaf-originated
explant In vitro N.A. N.A.

Methylation-
sensitive

amplification
polymorphism

The plasma treatment
induced differential

DNA methylome

Did not investigate
CBD effects
on DNAm

[94]

Research study Callus cells of
Cannabis indica In vitro N.A. N.A.

Methylation-
sensitive

amplification
polymorphism

Simulated
microgravity-

triggered changes in
the DNAm profile

Did not investigate
CBD effects
on DNAm

[93]

Review N.A. N.A. Depression N.A. N.A. N.A.

Showed that
multiple genes

related with
depression are
differentially

methylated upon
exposure to the

cannabis or
cannabis-derived

compounds,
including CBD

[109]

Note: DNAm—DNA methylation; N.A.—not applicable; PCR—polymerase chain reaction; CpG—cytosine phosphate guanine; CBD—cannabidiol; DNMT—DNA methyltransferase;
mtDNA—mitochondrial DNA; CNR1—cannabinoid receptor 1; ELISA—enzyme-linked immunosorbent assay; DRD2—dopamine receptor D2; TET—ten-eleven translocation.
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The first piece of evidence describing the possible effects of CBD on DNAm aimed at
clarifying the epigenetic regulation of keratinocyte differentiation by phytocannabinoids,
including CBD [100]. This investigation using human kHaCaT cells revealed that CBD
(0.1–1.0 µM, 5 days) increased global DNAm, DNMT1 expression level and DNMT activity,
and decreased gene expression involved in keratinocyte differentiation [100]. Interestingly,
CBD effects on DNAm and gene expression were mimicked by AEA and blocked by a
selective CB1 antagonist, suggesting an indirect mechanism rather than a direct regulation
of DNMT activity by CBD [100].

In another study, the neuroprotective effects of CBD against mitochondrial dysfunction
induced by neonatal iron overload were investigated in the hippocampus of adult Wistar
rats [101]. Iron exposure reduced 5mC and 5hmC levels in mitochondrial DNA in the hip-
pocampus, an effect attenuated by CBD treatment (10 mg/kg, 14 days) in adulthood [101].
Surprisingly, there were no corresponding changes in the expression of mitochondrial
ferritin, but the lack of analysis of other mitochondrial genes makes it difficult to draw any
conclusions about possible epigenetic mechanisms of CBD in this context. Nevertheless,
given the importance of mitochondrial genes and metabolism for determining susceptibility
to stress-induced psychiatric disorders [110–112], this mechanism could be relevant for the
therapeutic effects of CBD in such conditions.

The epigenetic mechanisms of CBD were also investigated in neurodevelopmental
models associated with the development of schizophrenia. Chronic postnatal CBD treat-
ment (30 mg/kg/day; 10 days) rescued the decreased sociability and recognition memory
deficit induced by prenatal exposure to the antimitotic agent methylazoxymethanol acetate
(MAM), which is a model to study the negative symptoms and cognitive deficits associated
with schizophrenia [25,97,98,102]. Moreover, CBD attenuated the decreases in DNAm and
increases in mRNA expression of CB1 receptors in the prefrontal cortex of MAM-treated
animals, implicating epigenetic mechanisms in the antipsychotic properties of CBD [102].
In another study, the perinatal exposure to THC also induced neurodevelopmental deficits
associated with a schizophrenia-like phenotype in rats. This observation was made along
with decreased DNAm and increased expression of D2 receptors in the prefrontal cor-
tex, effects that were attenuated by peripubertal treatment with CBD (30 mg/kg/day,
10 days) [105]. Interestingly, decreased DNAm in parallel with increased expression of
the D2 receptor gene was found in blood cells of schizophrenic patients [99,105], and all
known antipsychotics block D2-mediated signaling in the mesolimbic pathway. Further-
more, differential DNAm at multiple loci across the genome are associated with psychosis
and schizophrenia [113]. Therefore, it is possible to speculate that, at least in part, the
antipsychotic effects of CBD might involve the regulation of altered gene expression in the
mesolimbic pathways due to changes in DNAm patterns of genes relevant for this disorder.

Corroborating those findings, acute CBD administration (60 or 30 mg/kg) attenu-
ated the dysfunctions in the sensorimotor gating induced by psychomimetic drugs in
adult Wistar rats associated with changes in global DNAm in two brain regions [107].
However, CBD effects in the corresponding DNAm changes were rather complex, both
increasing or decreasing global DNAm depending on the brain region analyzed (prefrontal
cortex vs. ventral striatum) and the drug used as the psychomimetic (amphetamine or
MK-801) [101]. Altogether, these studies suggest that the antipsychotic effect of CBD
might involve dynamic and tissue-specific regulation of DNAm in schizophrenia, but the
methods used in such studies do not allow for further conclusions regarding the precise
mechanisms involved in CBD effects. The dual regulation of DNAm described in the
study of Pedrazzi and colleagues [107] suggests indirect mechanisms due to CBD affecting
different neurotransmitter systems involved in schizophrenia (e.g., D2 and 5-HT1A), as
it seems to be the case for antipsychotic drugs [114]. Therefore, future studies should
consider the analysis of DNAm of individual genes through more advanced techniques,
such as Whole-Genome Bisulfite Sequencing (WGBS), to evaluate CBD effects compared
with known antipsychotic drugs.
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The effects of CBD on stress-induced DNAm have also been investigated to evaluate
if its antidepressant properties could be associated with rapid changes in gene expression
in brain regions relevant for depression neurobiology. In adult Wistar rats submitted
to the forced swimming test, an animal model predictive of antidepressant effects [115],
acute CBD administration (10 mg/kg) attenuated the immobility time in the test and
reversed the decreased and increased DNAm in the prefrontal cortex and hippocampus,
respectively, induced by stress [103]. Moreover, the combination of subeffective doses of
CBD (7 mg/kg) with subeffective doses of two chemically unrelated inhibitors of DNAm
(RG108 and 5-aza-2-deoxycytidine, 5-azaD) promoted a significant antidepressant effect but
without corresponding synergistic effects in DNAm [103]. Surprisingly, the DNMT activity
was affected by CBD treatment only in the prefrontal cortex but not in the hippocampus,
highlighting again tissue-specific effects of the compound on DNAm patterns across the
genome Although the interpretation of these findings is limited by the measurement of
global DNAm and DNMT activity, it is possible to speculate the involvement of indirect
mechanisms, given the dual nature of the changes. However, RG108 and 5-azaD promoted
the same dual changes as CBD, indicating the involvement of more complex mechanisms.
Previous evidence suggested that the mammalian DNMTs can also act as Ca2+ ion- and
redox-state-dependent active DNA demethylases [116], which makes it possible that drug
binding to the enzyme (by CBD, RG108 or 5-azaD) could either increase or decrease activity-
induced changes in DNAm, as observed by Sales and colleagues [103].

It is worth noting that acute treatment with conventional monoaminergic drugs pro-
moted similar effects as CBD in swim-induced changes in DNAm and also presented
synergistic effects when combined with RG108 or 5-azaD [88]. Furthermore, chronic—
but not acute—treatment with monoaminergic antidepressants attenuated the increase in
DNAm and DNMT3 levels in the prefrontal cortex of rats exposed to the learned help-
lessness model of depression, thus implicating this epigenetic mechanism in the delayed
antidepressant effect [117]. Interestingly, both CBD (30 mg/kg) [118] and DNAm inhibitors
(RG108 and 5-azaD) [64] induced fast and sustained antidepressant effects in rats exposed
to different models of depression, including the learned helplessness, with the involvement
of increased signaling by BDNF and its receptor, TrkB, in the prefrontal cortex. Although
increased DNAm and decreased gene expression levels of BDNF and TrkB are described in
the brains of stressed animals and depressed subjects [87,119], it is not known if CBD can
reverse such changes.

DNAm plays an essential role in the neurobiology of depression. It has been associated
with modifications in genes such as the serotonin transporter (SLC6A4 or 5-HTT), BDNF,
glucocorticoid receptor (NR3C1 or GR), mineralocorticoid receptor (NR3C2 or MR), FK506-
binding protein 5 (FKBP5) and corticotropin-releasing hormone receptor 1 (CRHR1) [27,75].
Antidepressant drugs can modulate DNAm in the promoter region of genes related to
neuroplasticity and mood regulation [87]. Methylomic and transcriptomic studies can
provide important additional information to indicate if changes in DNAm are paralleled by
corresponding transcriptional changes in the genes involved with depression neurobiology
and/or the antidepressant effect.

In fact, two recent studies investigated genome-wide changes in brain DNAm patterns
induced by CBD, but none used animal models of psychiatric disorders [104,106]. In one
study, the authors investigated the neurodevelopmental effects of CBD exposure (from be-
fore breeding to lactation) on behavior and genome-wide methylation profile in F0 and F1.
Developmental exposure to CBD results in sex-specific increases in anxiety and memory
performance in F1 with hyper- and hypomethylation in both directly and developmentally
exposed animals (predominantly hypomethylation in F1) [106]. Functional enrichment
analysis revealed an over-representation of genes involved in neurogenesis and neuron
morphology, while top disease terms pointed to autism spectrum disorder, schizophrenia
and intellectual disability [106]. In another study with naive adult female wild-type mice
that received CBD (20 mg/kg/day, 14 days), a small skew toward global hypomethylation
was observed in the hippocampus, including hypomethylation of the de novo methyltrans-
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ferase DNMT3a and 3.323 differentially methylated loci enriched for genes involved in
neuronal function and synaptic organization [104]. Disease ontology enrichment revealed
an over-representation of differentially methylated loci in gene sets associated with autism
spectrum disorder and schizophrenia [104]. The results of both studies confirm CBD effects
on DNAm changes, which vary depending on sex, age and duration of exposure. Since
both studies employed naive animals, genome-wide methylation analysis of CBD effects in
animals exposed to different models of psychiatric disorders is required to decipher CBD
effects in DNAm, the mechanisms involved and their functional consequences.

The current evidence does not provide clear information about the mechanisms in-
volved in CBD’s effects on DNAm. There are, however, some possibilities to be considered:

(a) CBD could regulate DNAm by indirectly changing the availability of neurotransmit-
ters, such as eCB and glutamate. As previously mentioned herein, CBD can increase
AEA availability [14], and AEA can induce DNMT activity in a CB1-dependent man-
ner involving p38 MAPK signaling in differentiated keratinocytes [120]. CBD can
also regulate glutamate levels by blocking its reuptake or indirectly by increasing
eCB levels with subsequent CB1 activation, thereby inhibiting neurotransmitter re-
lease [121]. Activation of NMDA receptors can regulate DNMT3 activity/expression
levels through a CREB-dependent mechanism [122].

(b) CBD could directly target enzymes involved in methylation and demethylation of the
DNA, such as DNMTs and TETs, respectively. Currently, there is no evidence that CBD
could bind and/or regulate the activity of DNMTs. However, a recent publication
indicates that CBD and other related cannabinoids exhibit potent inhibitory activities
towards the TET1 protein in vitro, most likely due to interaction with amino acid
residues in the active center of the enzyme, according to an in silico molecular docking
approach [108].

3.3. CBD Effects on DNAm: In Silico Evidence

As mentioned above, evidence regarding the potential binding affinities of CBD for en-
zymes involved in DNAm could provide important information regarding the mechanism
of action of CBD on transcriptional regulation and neuroplasticity. A recent docking study
using a homology model of TET1 based on the alignment to a solved crystal structure of
the human TET2 enzyme suggests that CBD interacts with amino acid residues in the active
center of the enzyme essential for its inhibition [108]. Although further in vivo experiments
are necessary to confirm this hypothesis, it poses an interesting new mechanism of action
for CBD. Considering that both overexpression of TET1 and its catalytically inactive mutant
affected gene expression and memory formation in similar ways, including the expression
of neuroplasticity-related genes [72], it is difficult to speculate about the impact that TET1
inhibition by CBD would have on the control of gene expression. One promising study,
however, identified that the selective deletion of TET1 in the nucleus accumbens promotes
antidepressant-like effects in mice submitted to social defeat stress [123]. It is, thus, possible
that some of CBD effects involve DNAm changes due to the regulation of TET1 activity in
the nucleus accumbens. This hypothesis requires further investigation.

To further explore the possibility that CBD would target other components of the
epigenetic machinery, we performed an in silico evaluation to test CBD’s affinity to the
different DNMTs (DNMT1, DNMT3a and DNMT3b) through molecular docking assays. To
do that, we used crystallographic structures of the corresponding human proteins retrieved
from Protein Data Bank (PDB) [41], with their respective PDB IDs: DNA Methyltransferase 1
(DNMT1)—6 × 9J [124]; DNA Methyltransferase 3 α (DNMT3a)—6BRR [125]; and DNA
Methyltransferase 3 β (DNMT3b)—6U8P [126]. Only structures with co-crystallized ligands
and with resolution levels (in Angstroms, Å) equal to or better than 3.0 Å were used.
Molecular docking calculations were performed using Glide—Schrödinger, considering
the ligands flexible and the protein rigid. CBD structure was retrieved from the PubChem
repository (PUBCHEM ID 13956-29-1) and it was docked into DNMTs using the Maestro
Glide software in extra-precision (XP) mode [127]. The complete methodological approach
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can be found in the Supplementary Material provided, and the results are represented in
Figure 5 and Table S1.
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blue drop-shapes, respectively. Cannabidiol was represented in Licorice model with carbon atoms 
represented in cyan, oxygens in red and hydrogens in white. Proteins and DNA helix were repre-
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Figure 5. The 3D ((A,C,E) in left panels) and 2D ((B,D,F) in right panels) intermolecular interactions
among cannabidiol and DNMT targets. Cannabidiol docked in (A,B) DNMT1 with a docking score of
−6.230 kcal mol−1 and LE: −0.271 for the best conformer and made hydrogen bonds (magenta arrow
lines) and π–π stacking interactions (green curved lines) with nucleotides of DNA double-helix; in
(C,D), DNMT3a (docking score −5.684 kcal mol−1, LE: −0.247) made hydrogen bonds (magenta
arrow lines) with amino acid residues of the binding site of the protein; and in (E,F) DNMT3b
(docking score −2.897 kcal mol−1, LE: −0.126) made a single hydrogen bond (magenta arrow lines)
with a solvation water molecule around the protein–DNA complex. In all three protein targets,
CBD made a net of hydrophobic and polar interactions with amino acid residues, represented by
green and blue drop-shapes, respectively. Cannabidiol was represented in Licorice model with
carbon atoms represented in cyan, oxygens in red and hydrogens in white. Proteins and DNA
helix were represented in Newcartoon model with carbon atoms of DNMT1 represented in green,
DNMT3a in yellow and DNMT3b in deep salmon. DNA double helix was represented in dark blue.
The 2D diagrams were built at the Maestro, Schrodinger suite, and 3D diagrams were generated
with the Pymol software. Abbreviations: CBD—cannabidiol; DNMTs—DNA methyltransferases;
LE—ligand efficiency.
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Briefly, the findings of the docking study indicate that CBD has a similar docking
score with a superior ligand efficiency (LE) score to DNMT1 when compared to the control
co-crystallized inhibitor, GSK3685032. Interestingly, CBD interacts in a different site in the
DNMT1 binding pocket, making more interactions with the nucleotides of the open-frame
DNA double-helix than GSK3685032, which interacts more directly with some amino acid
residues. CBD intermolecular interactions with DNMT3a and DNMT3b were few and the
calculated docking scores were inferior to those of the co-crystallized ligand S-adenosyl-
L-homocysteine (SAH). As depicted in Figure 5, CBD interacts in a different and possibly
complementary binding pocket of DNMT1, probably contributing to a steric impediment
of this enzyme activity in the DNA double helix. This is likely to result in direct inhibition
of the enzyme by CBD, which could explain the already described inhibitory effects of CBD
upon DNAm in stressed animals and synergistic effects when administered concomitantly
with DNAm inhibitors [103].

4. Conclusions

CBD has a strong therapeutic potential for the treatment of stress-related psychiatric
disorders, such as depression, anxiety and schizophrenia [10,18]. Despite the many pharma-
cological targets already disclosed for CBD, the precise contribution of each of them to CBD
effects remains poorly understood. The evidence reviewed herein suggests an important
contribution of the regulation of gene expression by direct and/or indirect targeting of
the enzymes that catalyze DNA methylation/demethylation, with possible subsequent
effects for the transcription of genes associated with the neurobiology of psychiatric dis-
orders. The interference with DNAm by CBD indicates that it may have transgeneration
and neurodevelopmental effects, which may also be associated with pathophysiological
mechanisms and susceptibility to disease [98,104]. Future studies should better characterize
CBD effects on DNAm using in vitro and in vivo approaches to describe epigenetic changes
in animals of both sexes, at different stages of development, across tissues, under stressful
and non-stressful conditions. Finally, since there are no studies to date that analyzed CBD
effects on DNA methylome in humans, the analysis of DNAm changes in the blood as
well as postmortem brain tissues of patients exposed to treatment with CBD could also
reveal important epigenetic changes induced by the drug and its potential implications
in psychiatry.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13112165/s1, Table S1: Docking results of cannabidiol
against DNA methyltransferases (DNMTs).
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