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Abstract: Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is a fast-growing conifer with great
forestation value and prefers outcrossing with high inbreeding depression effect. Previously, we
captured a special Chinese fir parent clone named as ‘cx569’ that lacks early inbreeding depression. In
view of the fact that very little has been published about the rare self-fertilizing event in Chinese fir from
a genetic view, herein, we conduct an SSR-based study on the variation of open- and self-pollinated
offspring of this parent to gain a view of the rare self-fertilizing event. The results indicated that genetic
diversity of self-pollinated offspring was significantly reduced by half (Ho: 0.302, vs. 0.595, p = 0.001;
He: 0.274 vs. 0.512, p = 0.002) when compared to an open-pollinated set. Self-pollinated offspring also
had significantly positive FIS values (FIS = 0.057, p = 0.034) with a much higher proportion of common
allele (20.59% vs. 0), reflecting their heterozygote deficiency. Clustering analysis further indicated a
separation of the self- and opened- pollinated groups, implying a natural preference of outcrossing
for cx569. However, the cx569 still had 6% acceptance for selfing. When accepted 100% for its own
pollen, the cx569 led to a genetically unique selfing group. Additionally, this selfing group seemed to
be consistently homozygous at seven particular loci. These findings gave us more genetic clues to
gain insight into the rare self-fertilizing event in conifer (Chinese fir).

Keywords: Chinese fir; selfing; genetic diversity; genetic structure

1. Introduction

The reproduction mode of plants determines, to a great extent, their genetic properties
and the efficacy of natural selection, and thus potential for adaptive evolution [1,2]. The
genetic and ecological consequences of mating systems have long been the subject of
considerable concern in evolutionary biology. Selfing, where male and female gametes arise
from the same parent, is one of the reproduction modes in seed plants [3,4]. It is considered
to have short-term ecological and genetic benefits, including reproductive assurance and
inherent transmission advantage [5–7]. Nonetheless, selfing inevitably has negative effects,
such as pollen discounting and specifically inbreeding depression [8,9]. Thus, plants generate
numerous mechanisms (e.g., self-incompatibility, herkogamy dichogamy and dioecy) to
prevent selfing and to promote outcrossing, potentially avoiding the negative consequences
of selfing [4].

The morphological traits that are expected to influence mating systems are known
to be highly dynamic, varying widely among populations or individuals, and have been
well documented in some species, such as Arabidopsis lyrata [10,11], Arenaria uniflora [12],
the Leavenworthia species [13–15] and Eichhornia Paniculata [16]. The most frequent evo-
lutionary shift of mating systems is the transition from outcrossing to selfing across the
plant kingdom [4,17,18]. From the perspective of genetic consequences, selfing is expected
to show reduced effective recombination rates and increased homozygosity, resulting in
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decreasing genetic diversity relative to outcrossing [19,20]. Given the important effects
of mating systems on plant genetic properties, it is of considerable interest to assess the
genetic consequences of mating system transition [2,21–23]. Up to the current date, the
effect of the mating system on genetic properties have focused on angiosperms, however,
coniferous trees have received much less attention.

C. lanceolata belongs to Cupressaceae, with a common name as Chinese fir, and is a
fast-growing coniferous tree with great forestation value [24]. It is naturally widespread
from the central to the southeastern zones of China, and has been indicated for cultivation
in many countries around the world, such as Vietnam, Brazil, New Zealand, Australia and
Canada [25–27]. C. lanceolata is a monoecious species, which produces pollen and ovulate
cones in different structures within the same individual (Figure 1). The ovulate cones are dis-
tributed in the middle to upper crown, while pollen cones are in the middle to lower crown
in a single individual [28–30]. Generally, ovulate cones sexually mature earlier than pollen
cones within the same plant of C. lanceolata [31]. Temporal or spatial separation of ovulate
and pollen cones are likely to serve as an effective mechanism to encourage outcrossing and
prevent selfing in C. lanceolata [28,29]. Given this, C. lanceolata is generally regarded as an
outcrossing species. Previous studies indicate that self-fertilization gives rise to significant
inbreeding depression in C. lanceolata, reducing different components of fitness, e.g., seed
yield, germination rate and seedling growth [32–34]. High inbreeding depression may
play a central role to prevent the evolution of self-fertilization in the species [32,33]. Our
fieldwork and previous studies [29,31] have shown that the overlapping degree of pollen
and ovulate cone maturation vary widely among individuals in C. lanceolata. Synchronism
in pollen and ovulate cone maturation was discovered in a special Chinese fir parent
clone, named as ‘cx569’ (Figure 1), providing the opportunity for self-fertilization. More
interestingly, the comparation of self- and open-pollinated seedling growth in our previous
study showed an absence of early inbreeding depression in cx569 [34]. However, very little
has been published about the rare self-fertilizing event in the conifer (Chinese fir) from a
genetic view. Simple sequence repeats (SSRs) are extensively and successfully employed in
population genetic studies because they are co-dominant, multi-allelic, highly polymorphic
and reproducible [35–37]. Here, we conduct a comparative study on the genetic properties
of self- and open-pollinated offspring of cx569 using 20 SSR markers. The aim of the present
study was to reveal the effect of the self-fertilizing event on genetic diversity and structure
in Chinese fir.
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2. Materials and Methods
2.1. Plant Material and DNA Extraction

The unpollinated ovulate cones of cx569 were bagged, and pollinated with self-pollen
in a 2.5th generation seed orchard of Chinese fir that locates in the Xiaokeng State Forest
Farm (Guangdong Province, China; N24◦70′, E113◦81′, alt. 328–339 m) in February 2018.
The mature self-pollinated seeds were then collected in November. Simultaneously, open-
pollinated seeds of the cx569 were also collected. All seeds were germinated on filtered
water and grown in peat soil mixed with 20% expanded-perlite. Then, 200 seedlings of self-
and open-pollination were collected randomly for DNA extraction, respectively.

Total genomic DNA was extracted from the fresh and health leaves with a DNAsecure
Plant Kit (TIANGEN, Beijing, China). The DNA purity and concentration were evaluated
using 1% agarose gel electrophoresis and a NanoDrop-2000 Spectrophotometer (Wilming-
ton, DE, USA).

2.2. SSR Genotyping

The quality of markers and the accuracy of the genotyping data significantly influence
the effectiveness and success of SSR. In this study, 20 polymorphic SSR markers, except
for SSR6, previously developed were used in this study [38,39]. Attributes of the 20 SSR
primer pairs are shown in Table S1. The polymerase chain reaction (PCR) was conducted
in a total volume of 25 µL consisting of 0.5 µL DNA (~50 ng), 0.5 µL forward primer
(10 µmol/L), 0.5 µL reverse primer (10 µmol/L), 12.5 µL 2 × Taq Plus PCR MasterMix
(TIANGEN, Beijing, China), and 11 µL double distilled water. The PCR program was as
follows: initial denaturation at 94 ◦C for 5 min, followed by 35 cycles at 94 ◦C for 30 s, 55 ◦C
for 30 s, 72 ◦C for 30 s and final extension at 72 ◦C for 10 min. Capillary electrophoresis with
fluorescence-labeled SSR marker is a common method that heralded accurate and consistent
allele sizing with a high degree of automation and throughput [35–37]. Here, the forward
primers were labeled with one of the fluorescent dyes ROX, FAM, or HEX at the 5′ end in
the polymerase chain reaction assay. The PCR products were then subjected to capillary
electrophoresis using an ABI3730xl DNA Analyzer (Applied Biosystems, Carlsbad, CA,
USA). Genotypes were determined with Gene-Marker 2.2.0 software (SoftGenetics LLC,
State College, PA, USA).

2.3. Data Analysis

To evaluate the genetic diversity, the number of alleles (Na), the Shannon’s informa-
tion index (I), the observed heterozygosity (Ho), the expected heterozygosity (He) were
analyzed with the GenAlEx 6.5 [40]. Then, an independent t-test was used to test whether
genetic parameters of self-pollinated offspring were statistically lower than those of open-
pollinated group in SPSS Statistics 23 (SPSS Inc., Chicago, IL, USA). Allele frequency was
also estimated in GenAlEx 6.5.

Three different approaches were used to assess genetic relationship among offspring.
Firstly, a Bayesian model-based cluster analysis was implemented with STRUCTURE
v2.3.4 [41] to assign individuals to K genetic clusters. Five independent runs for K values
ranging from 1 to 10 were conducted under the admixture model with 100,000 burn-in
iterations followed by 1,000,000 iterations for Markov chain Monte Carlo (MCMC). The
appropriate K value was determined according to the method of Evanno et al. using Struc-
ture Harvester program [42]. The software CLUMPP [43] was used to merge the results of
multiple iterations of the corresponding K values. Secondly, Power Marker version 3.25 [44]
was used to calculate pairwise Nei’s (1983) DA distance between individuals and generate a
genetic distances matrix. The genetic distances matrix was then used as input for clustering
analysis by the unweighted pair-group method of averages (UPGMA) and neighbor-joining
algorithm (NJ) to generate dendrograms in Power Marker, respectively. MEGA 7.0 [45] was
employed to plot and edit the dendrogram. Thirdly, Principal Coordinate Analysis (PCoA)
was conducted to visualize the genetic relationship among individuals using GenAlEx 6.5.
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3. Results and Discussion
3.1. Polymorphism Analysis of SSR Markers

The lack of genetic variability and narrow genetic base have significantly harmed the
discrimination ability of molecular markers in inbred lines [46]. Thus, the development
of specific molecular markers with high-resolution is critical to the accurate and rapid
discrimination of inbred lines. In this study, SSR profiles for 20 loci are presented in Table S2.
Among the 20 markers tested, 13 (65%) and 20 (100%) were polymorphic in self- and open-
pollinated offspring, respectively (Table 1). A total of 33 and 132 alleles were observed
across the 20 markers in self- and open-pollinated offspring, respectively. The number of
alleles produced by each primer pair varied from one to two with an average of 1.7 ± 0.5 in
self-pollinated offspring, while three to 14 with an average of 6.6 ± 3.3 in open-pollinated
offspring. SSR1 and SSR11 had the largest number of alleles (Table 1, Figures S1 and S2).
The observed heterozygosity (Ho) ranged among loci from 0 to 0.714 and from 0.065 to 0.930
in self- and open-pollinated offspring, respectively, while the expected heterozygosity (He)
ranged from 0 to 0.500 and from 0.064 to 0.798 (Table 1). Among the 20 loci, SSR1 had the
highest genetic diversity, while SSR12 harbored the lowest diversity. Most notably, some of
the markers including SSR1, SSR2, SSR5, SSR7, SSR11, SSR13, SSR15, SSR17, SSR18, SSR20,
SSR21, not only showed high values of genetic parameter in open-pollinated offspring, but
also had moderate values in complete selfing offspring (Table 1). Similar to our findings,
Duan et al. [47] investigated genetic diversity in 149 Chinese fir using the same 20 SSR
markers and found these markers with high Ho, He and I values. Having high genetic
parameter values for a marker is a vital indicator that the marker can be successfully used
for closely related species/cultivars authentication [48]. Therefore, we propose that these
loci can serve as high-resolution makers in estimation of genetic diversity and identification
of inbred lines of Chinese fir.

Table 1. Genetic diversity across 20 SSR loci for self- and open-pollinated offspring in clone cx569 of
Chinese fir.

Locus
Self-Pollinated Offspring (n = 200) Open-Pollinated Offspring (n = 200)

Na Ho He I FIS Na Ho He I FIS

SSR1 2 0.610 0.496 0.689 −0.230 14 0.865 0.798 1.936 −0.083
SSR2 2 0.525 0.497 0.690 −0.056 12 0.690 0.751 1.709 0.082
SSR3 1 0 0 0 - 5 0.300 0.283 0.588 −0.060
SSR4 1 0 0 0 - 7 0.775 0.567 1.064 −0.366
SSR5 2 0.495 0.500 0.693 0.010 8 0.930 0.737 1.457 −0.263
SSR7 2 0.560 0.496 0.689 −0.129 5 0.570 0.614 1.085 0.072
SSR8 1 0 0 0 - 4 0.195 0.193 0.414 −0.009
SSR9 2 0 0.049 0.117 1.000 6 0.500 0.421 0.844 −0.187

SSR10 1 0 0 0 - 7 0.855 0.568 1.004 −0.505
SSR11 2 0.510 0.500 0.693 −0.020 14 0.885 0.778 1.755 −0.137
SSR12 1 0 0 0 - 5 0.065 0.064 0.181 −0.023
SSR13 2 0.560 0.498 0.691 −0.124 4 0.545 0.518 0.793 −0.053
SSR14 1 0 0 0 - 7 0.565 0.458 0.905 −0.235
SSR15 2 0.620 0.500 0.693 −0.241 5 0.660 0.586 1.056 −0.125
SSR16 2 0 0.010 0.031 1.000 5 0.440 0.375 0.773 −0.174
SSR17 2 0.560 0.500 0.693 −0.120 3 0.435 0.369 0.568 −0.180
SSR18 2 0.550 0.498 0.691 −0.104 5 0.645 0.594 1.016 −0.086
SSR19 1 0 0 0 - 3 0.385 0.329 0.563 −0.169
SSR20 2 0.714 0.472 0.665 −0.511 3 0.770 0.480 0.686 -0.604
SSR21 2 0.335 0.459 0.652 0.271 10 0.815 0.753 1.672 −0.083
Mean 1.7 0.302 0.274 0.384 0.057 6.6 0.595 0.512 1.003 −0.159

SD 0.5 0.281 0.242 0.334 0.435 3.3 0.234 0.198 0.470 0.169

Na, the number of alleles; Ho, the observed heterozygosity; He, the expected heterozygosity; I, the Shannon’s
information index; FIS, fixation index; SD, standard error of the mean.
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3.2. Genetic Diversity of Self- and Open-Pollinated Offspring

Compared with outcrossing, selfing is expected to show reduction of genetic diver-
sity [49–51]. In this study, the average values of observed heterozygosity (Ho: 0.302 ± 0.281
vs. 0.595 ± 0.234, p = 0.001), expected heterozygosity (He: 0.274 ± 0.242 vs. 0.512 ± 0.198,
p = 0.002) and Shannon’s index (I: 0.384 ± 0.334 vs. 1.003 ± 0.470, p = 0.000) for self-
pollinated offspring were significantly lower than those for open-pollinated offspring
(Table 1). As theory prediction [19,20], complete selfing results in a reduction of 50% ge-
netic diversity when comparing to open-pollinated offspring in Chinese fir. The reason
behind this reduction is that selfing may decrease recombination rates, leading to increased
homozygosity and thus reduction of diversity [52–54]. Such is the case, which can be draw
from the differences in fixation index (FIS) and allele frequency distribution patterns be-
tween the two types of offspring. Positive FIS value indicates a deficit of heterozygote, while
negative FIS value suggests heterozygote excess [55]. Here, the self-pollinated offspring had
positive FIS values (FIS = 0.057) (Table 1), suggesting their heterozygote deficiency. On the
contrary, the open-pollinated offspring showed negative FIS values (FIS = −0.159) (Table 1),
indicating they presented an excess of heterozygotes. Moreover, they displayed different
distribution patterns of allele frequency as illustrated in Figure 2. For self-pollinated off-
spring, medium-to-high gene frequency allele (0.5 < gene frequency < 1) accounted for
the highest proportion (44.12%), followed by low-to-medium frequency allele (0.5 < gene
frequency ≤ 0.5) (29.41%) and common allele (allele frequency = 1) (20.59%). Rare allele
(allele frequency ≤ 0.05) accounted for a very low proportion (5.88%). Conversely, rare al-
lele accounted for the highest proportion (53.03%), while common allele (allele frequency =
100%) was absent in open-pollinated offspring. These results suggest that the self-pollinated
offspring become more or completely homozygous for most alleles (67.41%) relative to the
open-pollinated set, thus resulting in decrease of genetic diversity.
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3.3. Genetic Structure and Mating System in Clone cx569 of Chinese Fir

Bayesian genetic cluster analysis implemented in STRUCTURE showed that, with
K = 2, delta K and log likelihood reached a maximum and minimum value, respectively
(Figure 3A,B). All the self-pollinated offspring were assigned to the same genetic cluster,
while most open-pollinated offspring were assigned to a second genetic cluster (Figure 3C).
The UPGMA dendrogram (Figure 4A) was broadly consistent with the unrooted neighbor-
joining (NJ) tree (Figure 4B). The 400 offspring were grouped into two clusters comprising
all individuals of self-pollinated offspring and most open-pollinated offspring, respectively
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(Figure 4). PCoA (Figure 5), an alternative mean of detecting and visualizing the genetic
structure, revealed a pattern that was also broadly in line with the partitioning results
of the STRUCTURE analysis, UPGMA dendrogram and the NJ tree, that is, self- and
open-pollinated offspring were clustered as two genetic groups. Moreover, many alleles
that were found in open-pollinated offspring were absent in self-pollinated offspring.
For example, only two alleles of SSR1 with size of 336 bp and 350 bp were observed in
self-pollinated offspring, while additional twelve alleles were found in open-pollinated
offspring (Figure S1). Similarly, SSR11 produced 14 alleles with size ranged from 335 bp
to 375 bp in open-pollinated offspring, however, only two of those alleles were detected
in self-pollinated offspring (Figure S2). The results indicated that many new alleles were
introduced from other parents into offspring of cx569 by inter-individual mating. Overall,
these findings suggested a natural preference of outcrossing for cx569.
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The mating system of the coniferous trees are characterized as predominantly (~90%)
outcrossing [56], especially the species that is temporal asynchrony between pollen release
and ovulate cone opening (e.g., Pinus roxburghii [57]). On the contrary, synchronization in
mature male and female cones lead to selfing in some conifers [58,59]. To our knowledge,
there is few literatures about the self-fertilizing event in Chinese fir. In this study, ‘cx569’
shows the overlapping of pollen and ovulate cone maturation, which may lead to self-
fertilization. To reveal the self-fertilization event in Chinese fir from a genetic view, genetic
relationships between individuals of the self- and open-offspring were analysis. STRUC-
TURE analysis showed that 13 individuals (1, 6, 9, 10, 13, 16, 18, 19, 24, 28, 29, 38, 193) of
open-pollinated offspring were grouped with the self-pollinated ones (Figure 3C). Similarly,
13 open-pollinated offspring (1, 9, 10, 13, 16, 18, 19, 24, 28, 29, 38, 193, 195) were clustered
together with self-pollinated offspring in the UPGMA tree (Figure 4A), while an additional
six individuals (6, 36, 66, 70, 92, 165) were clustered together with a self-pollinated group
in the NJ tree (Figure 4B). The PCoA broadly confirmed the results of the above three
analyses, that is, 13 open-pollinated offspring (1, 9, 10, 13, 16, 18, 19, 24, 28, 29, 38, 193,
195) were grouped into a self-pollinated group (Figure 5). These results suggest that the
12 open-pollinated offspring clustered together with self-pollinated offspring in the four
clustering results were likely the progenies that were produced by natural self-pollination.
The finding suggests that cx569 is predominantly (94%) outcrossing in open-pollinated
environment, however, it still had 6% acceptance for selfing.

At the genetic level, a selfing organism is more likely to rapidly create homozygotes
from recessive favorable mutations than outcrossers, increasing the overall selection acting
on them [19,21,60]. In the complete selfing group, only one genotype was observed at
7 loci, i.e., SSR3, SSR4, SSR8, SSR10, SSR12, SSR14 and SSR19, while three or two genotypes
were detected at the remainder of loci (Figure 6). This result indicated that the selfing
group seemed to be consistently homozygous at the seven loci. Theoretical studies have
predicted that selfing can purge the deleterious recessive mutations and fix recessive
favorable mutations, and thus rapidly evolve unless it is counteracted by sufficiently high
inbreeding depression [19,21,60]. Considering the lack of early inbreeding depression in
cx569, we speculate that these homozygous loci may be the beneficial types that are fixed
in the offspring by selfing.
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4. Conclusions

In the present study, our results revealed that the genetic diversity of self-pollinated
offspring was significantly reduced by half relative to the open-pollinated group. Moreover,
they also showed significantly positive FIS values and a much higher proportion of com-
mon allele, suggesting their heterozygote deficiency. The clustering analysis showed that
12 open-pollinated offspring clustered together with self-pollinated offspring were likely the
progenies that were produced by self-pollination. The results indicated that cx569 naturally
prefer cross-fertilization with an outcrossing rate of 94%, however, it still had 6% acceptance
for selfing. When being complete selfing, they were likely to be consistently homozygous at
some particular loci (i.e., SSR3, SSR4, SSR8, SSR10, SSR12, SSR14 and SSR19) that is likely the
beneficial types. The present study advances our understanding of the rare self-fertilizing
event in the conifer (Chinese fir).
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and DNA fragment sizes in base pairs was shown in the X-axis. The allele detected both in self- and
open-pollinated offspring was represented by black box; Figure S2: The fingerprint profiles of self-
and open-offspring generated by primer SSR11. The fluorescence strength was shown in the Y-axis
and DNA fragment sizes in base pairs was shown in the X-axis. The allele detected both in self- and
open-pollinated offspring was represented by black box; Table S1: Attributes of 20 microsatellite loci
in this study; Table S2: Microsatellite profiles for 20 SSR loci for 400 offspring.
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