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Abstract: Copy number variations (CNVs) are defined as deletions, duplications and insertions
among individuals of a species. There is growing evidence that CNV is a major factor underlining
various autoimmune disorders and diseases in humans; however, in plants, especially oilseed crops,
the role of CNVs in disease resistance is not well studied. Here, we investigate the genome-wide
diversity and genetic properties of CNVs in resistance gene analogues (RGAs) across eight Brassica
napus lines. A total of 1137 CNV events (704 deletions and 433 duplications) were detected across
563 RGAs. The results show CNVs are more likely to occur across clustered RGAs compared to
singletons. In addition, 112 RGAs were linked to a blackleg resistance QTL, of which 25 were affected
by CNV. Overall, we show that the presence and abundance of CNVs differ between lines, suggesting
that in B. napus, the distribution of CNVs depends on genetic background. Our findings advance the
understanding of CNV as an important type of genomic structural variation in B. napus and provide
a resource to support breeding of advanced canola lines.

Keywords: canola; disease resistance; genomic structural variation; oilseed crops

1. Introduction

Current advances in high-throughput sequencing techniques have simplified and ac-
celerated genomic studies and made it easier to reveal the genetic diversity among different
individuals. Genome-wide DNA variations have traditionally included single-nucleotide
polymorphisms (SNPs) and insertion/deletions (InDels). In recent years, pangenomes
representing the entire genetic content of a species, have become popular as a tool to study
genomic variants without reference bias [1,2]. There are now published pangenomes across
plants such as B. napus [3–5], B. oleracea [6,7], wheat [8], Amborella [9], pigeon pea [10],
sesame [11], rice [12,13], soybean [14–16], and banana [17]. These pangenomes facilitate
the identification of copy number variation (CNV) [18,19] and highlight the importance of
CNVs in the evolution and functionality of genes related to crop agronomic traits [3].

A CNV is defined as a genomic sequence variant larger than 50 bp [20] to over several
Mbp in size [21], consisting of deletions, insertions, duplications or translocations [22].
Gene CNVs occur due to errors in homologous recombination events [23] and are observed
in many organisms resulting in dozens to hundreds of differences in their number of
functional genes [24].

CNVs affect gene and protein expression levels and eventually influence the pheno-
type [25] and evolutionary adaptation [26]. There are increasing reports associating CNV
with major traits in different crop species, but the extent and role of CNVs in plants are
not yet fully understood [27]. CNVs may have broad implications for model organism
research, evolutionary biology, and genomics-assisted breeding approaches to improve
crop adaptation and yield [28,29].

Since CNVs are ubiquitous and encompass more nucleotides per genome than the
total number of SNPs [21,30], more attention has recently been paid to their role. There
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are a growing number of investigations in plant species such as maize [31–33],
Arabidopsis [28,34,35], rice [36,37], wheat [38,39], barley [40–42], banana [43], tomato [44],
and soybean [45,46], suggesting that genes affected by CNVs are associated with agronomi-
cally important traits.

CNVs have been identified as plant disease defense genes in various species [45,47–52].
For example, Hu et al. (2018) identified an association between CNV of rp1 and resistance
to Goss’s Wilt of maize [52]. Another example is soybean cyst nematode resistance, which
is driven by CNV of the locus Rhg1 increasing expression of a set of genes [45,53]. In
canola, genes located within QTL linked to resistance to Verticillium longisporum are affected
by CNV [54] and local duplication of a TNL gene is likely to be involved with clubroot
resistance in B. napus cv. Tosca [55]

Canola (Brassica napus L. AACC, 2n = 38) is an allopolyploid that originated from
natural hybridization events between the two diploid species B. rapa (AA, 2n = 20) and
B. oleracea (CC, 2n = 18) [56]. Canola production is affected by several important diseases, of
which blackleg, caused by the fungus Leptosphaeria maculans, is the most important disease.
Although resistant canola cultivars have been developed through targeted introduction
of resistance genes by breeding, yield losses still occur due to resistance breakdown. This
breakdown highlights the importance of identifying and characterizing novel resistance
genes. Resistance gene analogues (RGAs) are the most important component of the host
resistance mechanism [57]. Classes of RGAs include nucleotide-binding site leucine-rich
repeats (NLR), receptor-like proteins (RLPs) and receptor-like kinases (RLKs). CNV events
may lead to additional copies of resistance genes, suggesting that CNV can be beneficial
and a mechanism driving resistance [58].

Although B. napus is a model species for studying phenomena such as polyploidy [59],
genomic rearrangements [60,61], its resistance at the cotyledon stage to blackleg is a typical
example of qualitative resistance involving RGAs [62]. However, there are still few studies
of CNV within the B. napus genome [29,54] and their effect on qualitative resistance. The
present study is the first genome-wide analysis of copy number variation across RGAs
among various morphotypes of B. napus. As RGAs are responsible for qualitative resistance,
the CNV events were also investigated across blackleg resistance-linked regions. In this
study, we investigated and detected deletions and duplication events, as these types of
CNV are likely more associated with disease resistance or susceptibility. Our analysis
provides new insight into CNVs in canola cultivars and will help identify the role of CNV
in resistance.

2. Materials and Methods
2.1. Plant Materials

Eight winter type B. napus lines were used in this study. The selected lines have
various important agronomic characteristics. All are resistant to blackleg, but may carry
different blackleg resistance genes. Ascona (breeder: SW Seed, New South Wales, Australia),
Pirola (breeder: KWS, New South Wales, Australia), Milena (breeder: KWS, New South
Wales, Australia) and Pacific (breeder: Limagrain-Nickerson, Lincolnshire, UK) are canola
quality lines and widely cultivated [63]. English Giant (breeder: Afrigro Seed Company,
Oudtshoorn, South Africa) is one of the most popular lines in Zimbabwe (favourable
because of its hardness) [64], Tina and Wilhelmsburger (type: swede) are resistant to the
pathogen Plasmodiophora brassicae [65,66] and HANSEN × GASPARD DH LINE (breeder:
KWS, New South Wales, Australia) is partially resistant to Sclerotinia sclerotiorum [67]. Tina
was released in the early 1980s [65], Wilhelmsburger [68] and English Giant [69] were used
in the 1960s and the rest of the varieties were available no later than 2010 [63,70].

2.2. DNA Extraction and Quantification

Genomic DNA was extracted and purified from fresh young leaves of all B. napus lines
using a Qiagen (Qiagen, Germany) DNAeasy kit following the manufacturer’s instructions.
Total DNA was quantified using the Qubit 3.0 Fluorometer with the Qubit dsDNA HS
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Assay Kit (Invitrogen, Waltham, MA, USA) following the manufacturer’s instructions.
After quantification, each DNA sample was diluted to 10 ng µL-1.

2.3. Construction of Genomic DNA Libraries and Sequencing

Libraries were constructed using the Illumina TruSeq® Nano DNA Library Prep kit
(Illumina, California, CA, USA) according to the manufacturer’s instructions. The libraries
were quantified using a Qubit, and the quality was assessed using a LabChip (GX Touch
24, PerkinElmer, Waltham, MA, USA). The concentration of the library was adjusted to
10 nM. The whole genome was sequenced pair end (150 bp) using a HiSeq X Ten sequencing
platform at the Garvan Institute of Medical Research (Sydney, NSW, Australia).

2.4. Sequencing Data Processing and Read Alignments

Trimmomatic v0.36 [71] was used to trim adapters and remove low quality reads
shorter than 150 bp. The reads from each line were aligned to the B. napus Darmor-bzh v9
reference genome [5] with default settings using SpeedSeq v0.1.2 [72] and BWA v0.7.10 [73].
The resulting alignment files were sorted and indexed using SpeedSeq. SAMBAMBA
v0.5.9 [74] was used to mark duplicates.

For phylogeny analysis, SNP calling was performed using bcftools and only the
biallelic SNPs were kept. A Neighbour Joining tree was made using vcfkit.

2.5. CNV Calling

CNVs were called using CNVnator v0.3.3 [75]. Different bin sizes were used to ensure
the standard deviation of read depth signal was in the range 4 to 5 as recommended. To
reduce false-positive calls, the CNVnator result was filtered by removing CNVs with an
e-value ≥ 0.05 and q0 value ≥ 0.5 using BCFtools v1.5 [76]. CNVs overlapping at least 50%
with gap regions (N) were removed using BEDTools v2.25.0 [77] intersect (parameters: -f
0.50 -r -v). After filtering, RGAs were associated with CNVs if they overlapped for more
than 50% of their length using BEDTools v2.25.0 [77] intersect (parameters: -f 0.50).

2.6. RGA Prediction and Physical Clustering

The RGAugury pipeline (v 2017-10-21) [78] was used to automate RGA (NLR, RLK,
and RLP) prediction in the B. napus Darmor-bzh NRGene v9 annotation. RGA candidates
were classified into subclasses based on the presence or absence of specific domains. The
NLR candidates were divided into classes based on domain presence. Proteins carrying
only an NB-ARC domain were classified as NBS, proteins carrying TIR, NB-ARC, and
Leucine-Rich-Repeat (LRR) domains were classified as TNLs, or TN if the LRR domain
was missing. Proteins carrying Coiled-Coils, NB-ARC, and LRR domains were classified as
CNLs, or CN if the LRR domain was missing, or NL if the Coiled-Coils domain was missing.
Proteins carrying a TIR domain with additionally unknown domains were classified as TX.
Other combinations (e.g., CNL + RPW8) were classified as OTHER. RGAs were joined into
physical clusters if they were located within ±10 genes of each other.

2.7. QTL and Genomic Data Representation

Known blackleg resistance-linked QTL were collected from the literature [79–83] and
the sequences of the markers, genes and primer pairs were downloaded. BLAST [84]
was used to assign positions for the forward and reverse primer sequences. Circos plots
were generated using Circa (http://omgenomics.com/circa accessed in 2019) and Circos
(http://circos.ca/ accessed in 2019).

3. Results
3.1. CNV Analysis

To investigate the role of CNVs in RGA-diversity in B. napus, we generated whole-
genome sequencing data to search for CNVs among RGAs of eight B. napus morphotypes;
Ascona, English Giant, Hansen × Gaspard, Milena, Pacific, Pirola, Tina and Wilhelms-

http://omgenomics.com/circa
http://circos.ca/
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burger. While all lines are winter type and blackleg resistant, they are of interest for other
characteristics including canola quality (widely cultivated) and resistance to diseases other
than blackleg. The phylogeny analysis of lines is shown in Figure 1.
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Figure 1. Phylogeny analysis of eight winter type and blackleg resistant B. napus cultivars; Ascona,
English Giant, Hansen × Gaspard, Milena, Pacific, Pirola, Tina and Wilhelmsburger.

Our study detected a total of 1,137 CNV events (deletions and duplications) with a
total size of 3.74 Mbp across 563 RGAs. On average, we found 142 CNVs per cultivar,
representing an average of 3.29 kb across the eight cultivars. Out of the 1,137 CNV events,
704 (61.92%, 2.58 Mbp) were deletions and 433 (38.08%, 1.16 Mbp) were duplications,
with an average of 88 and 54 events, respectively (Table 1). We found 1.6× more deletion
than duplication events, and on average deletions were larger (3.67 kb) than duplications
(2.66 kb). The largest deletion and duplication percentages were found in the culti-
vars Tina (68.20%) and Pacific (50%), respectively (Figure 2 and Table 1). We identified
188 CNV events (16.53%) that showed deletion in one cultivar, but duplication in another,
which are termed as “both deletion and duplication”. These “both deletion and duplica-
tion” events were detected on all chromosomes except A07, A08, A10, C01, C02 and C05
(Figures 3 and S1).

Table 1. The number and percentage of CNV events in RGAs (i.e., deletion, duplication and both
deletion and duplication) in eight B. napus cultivars.

Cultivars Deletion Duplication Total Both

Ascona 48 (56.47%) 37 (43.53%) 85 11 (12.94%)
English Giant 87 (55.77%) 69 (44.23%) 156 29 (18.59%)

Hansen × Gaspard 33 (52.38%) 30 (47.62%) 63 17 (26.98%)
Milena 67 (63.81%) 38 (36.19%) 105 21 (20.00%)
Pacific 58 (50%) 58 (50%) 116 19 (16.38%)
Pirola 77 (65.25%) 41 (34.75%) 118 14 (11.86%)
Tina 163 (68.20%) 76 (31.80%) 239 34 (14.23%)

Wilhelmsburger 171 (67.06%) 84 (32.94%) 255 43 (16.86%)

Total 704 (61.92%) 433 (38.08%) 1137 188 (16.53%)

Based on the number of CNV events detected in each cultivar, Hansen × Gaspard
with 26.98% and Pirola with 11.86% contained the largest and lowest percentages of these
“both deletion and duplication” CNV events, respectively, (Table 1).
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Figure 2. The distribution and size of CNV events in RGAs (red and blue dots represents deletions
and duplications, respectively) across the chromosomes of eight winter type and blackleg resistant
B. napus cultivars. The tracks from outer to inner show chromosomes, Ascona, English Giant, Hansen
× Gaspard, Milena, Pacific, Pirola, Tina and Wilhelmsburger. The green line shows the 1000 bp
threshold. Ax and Cx in the outer coloured boxes are presenting chromosomes number.
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Figure 3. The position of “both deletion and duplication” events in RGAs across the chromosomes of
eight winter type and blackleg resistant B. napus cultivars. No “both deletion and duplication” events
were detected on chromosomes A07, A08, A10, C01, C02 and C05. The tracks from outer to inner
show chromosomes, Ascona, English Giant, Hansen × Gaspard, Milena, Pacific, Pirola, Tina and
Wilhelmsburger. Ax and Cx in the coloured boxes are showing chromosomes number.

3.2. Distribution along Chromosomes and Sub-Genomes

The average number of CNV events per chromosome ranged from 19.37 on chromo-
some A09 to 1.25 on chromosome A10 (Figure 4 and Table S1). In cases where both deletion
and duplication events were observed, the largest deletion and duplication percentages (in
relation to the total number of CNV events on each chromosome) were found on chromo-
somes C08 (30 deletions out of 31 CNVs; 96.77%) and A03 (12 duplications out of 14 CNVs;
85.71%) in the cultivars Tina and Pirola, respectively (Figure 4 and Table S1).
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Figure 4. The average number of CNV events (i.e., deletion, duplication and both deletion and
duplication) per chromosome of eight winter type and blackleg resistant B. napus lines. Each colour
(bin) represents a different CNV events and the bars show the average number of CNVs falling into
each event bin. Both: Where both deletion and duplication events occurred.

Across all cultivars CNVs showed an even distribution over the A sub-genome
(568 CNVs) and the C sub-genome (569 CNVs), yet when separated by cultivar, there
were more CNVs in the A sub-genome than in the C sub-genome in English Giant (A:96,
C:60), Hansen × Gaspard (A:37, C:26), Milena (A:55, C:50) and Pacific (A:62, C:54), and
more CNVs in the C sub-genome than in the A sub-genome in Ascona (A:35, C:50), Pirola
(A:56, C:62), Tina (A:114, C:125) and Wilhelmsburger (A:113, C:142) (Table S1). Overall,
deletions were more abundant than duplications in both the A (317 vs. 251) and C (387 vs.
182) sub-genomes (Table S1).

Out of the 1,137 CNV events, 905 CNVs (79.59%) were found to be larger than
1 kb (Table S2). The average size of the CNVs identified varied from 1.91 kb in Ascona to
4.90 kb in Milena, with an average size of 3.29 kb across the eight cultivars (Table S2). In
all the cultivars, except for Hansen x Gaspard, deletions were larger than duplications
(Table S2 and Figure 2). The size distributions of observed CNVs were also very similar
between the eight cultivars. Only Milena and Pacific had more CNVs larger than10 kb than
CNVs smaller than 10 kb but larger than 5 kb (Figures 2 and 5).
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Figure 5. Size range distribution of CNVs in eight winter type and blackleg resistant B. napus lines.
Each colour (bin) represents a different range of CNV lengths and the bars show the percentage of
CNVs falling into each size bin.

3.3. CNVs across RGAs

We identified 563 RGAs overlapping with CNVs including 164 NLR, 319 RLK and
80 RLP genes. The largest classes of RGAs affected by CNV across the eight cultivars
were RLK and RLP (on average 50.21% RLKs and 16.86% RLPs in each cultivar) (Table S3).
Among the NLR sub-families, NL and TNL were the most abundant RGAs affected by CNV
events (Table S3). Out of 563 RGAs, 310, 196 and 57 genes showed deletion, duplication and
“both deletion and duplication”, respectively (Table S4). No “both deletion and duplication”
events were detected on chromosomes A07, A08, A10, C01, C02 and C05 (Figure 3). Across
all eight cultivars, multiple RGAs overlapping CNV were shared between two or more
cultivars (Table 2). The highest and lowest two cultivar overlap was 126 between Tina
and Wilhemsburger, and 11 between English Giant and Hansen × Gaspard (Table 2). The
number of RGAs with CNV in common between the cultivars is depicted in Table 2 and
Figure 6. Out of 563 RGAs showing CNV, 262 (46.54%) were detected only in one cultivar
and two (0.36%) were shared in all cultivars (Table 3).
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Table 2. The number of RGAs with the same CNV type in eight B. napus cultivars.

Ascona English
Giant

Hansen ×
Gaspard Milena Pacific Pirola Tina Wilhelmsburger

Ascona -
English
Giant 24 -

Hansen ×
Gaspard 17 11 -

Milena 30 36 27 -
Pacific 36 25 22 42 -
Pirola 37 28 23 42 47 -
Tina 31 52 24 42 47 38 -

Wilhelmsburger 37 65 26 51 43 54 126 -
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3.4. Gene-Physical Clustering

Out of 1768 RGAs previously identified in the B. napus Darmor-bzh NRGene v9
annotation, 793 RGAs were clustered in 306 physical clusters, of which 284 RGAs (35.81%)
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(121 NLRR, 110 RLK and 53 RLP) were affected by CNV (180 deletions, 75 duplications
and 29 both) (Tables S4 and S5). In addition, there were 975 singleton RGAs, of which
279 RGAs (28.61%) (43 NLR, 209 RLK and 27 RLP) were affected by CNV (130 deletions,
121 duplications and 28 both) (Table S4). The distribution and number of the singletons
and clustered resistance genes affected by CNV across the chromosomes are presented
in Table S5.

3.5. Investigating of RGAs Affected by CNV Events across Known Genomic Regions for Blackleg
Resistance Genes

The RGA positions were compared with known regions for blackleg resistance to
identify possible candidate genes affected by CNV. Positions were predicted for 14 markers
from genetic mapping of seven loci: LepR1 (A02), LepR2 (A10), Rlm1, Rlm3, Rlm4, Rlm7
and Rlm9 (A07) in the Darmor-bzh v9 assembly (Table 4). Rlm1 was localised within an
interval of approximately 4.94 Mbp containing 13 RGAs. Rlm3 and Rlm4 were placed
within intervals of 16.79 Mbp (60 RGAs) and 3.71 Mbp (17 RGAs), respectively. Rlm7 and
Rlm9 loci were localised within 16.02 Mbp (51 RGAs) and 5.35 Mbp (21 RGAs), respectively.
The A02 (LepR1) and A10 (LepR2) RGAs were localised to regions 10.41 (7 RGAs) and
13.95 Mbp (29 RGAs), respectively. Rlm1 and Rlm4 were in the smallest region which
covered 13 and 17 RGAs, respectively (Table 4).

Table 4. RGA candidates and RGA affected by CNV events underlying reported regions for blackleg
resistance genes.

Locus Marker Reference Chromosome Start (Mbp) End (Mbp) Length
(Mbp)

RGA
Candidates

RGA
Affected by

CNV

Rlm1

Na12A02 -

22.35 27.29 4.94

TN 1,
OTHER 1,

TX 1, RLK 8,
NL 1, CNL 1

RLK 1 (1 del)

Ol12-E03A Delourme et al.,
2004 [79]

CB10544A
Raman, Taylor,
Lindbeck et al.,

2012 [80]
A7

Ra2-A05b -
BSR + KASP

Rlm3

BnGMS147b Delourme et al.,
2004 [79] A7

8.97 25.75 16.79

RLK 44, RLP
5, NL 4, CNL
1, TNL 3, TN
1, OTHER 1,

TX 1

RLK 14
(12 del,

2 dup), TNL
2 (1 del,
1 dup)

IGF0504f_F Leflon et al.,
2007 [82]

Rlm4
BRMS040 Raman, Taylor,

Marcroft et al.,
2012) [80]

A7
11.49 15.20 3.71 RLK 15, RLP

2
RLK 9 (8 del,

1 dup)Na12-E11b

Rlm7 sR7018 Larkan et al.,
2016 [83] A7 12.16 28.19 16.02

RLK 34, RLP
5, NL 4, CNL
2, TNL 3, TN
1, OTHER 1,

TX 1

RLK 8 (7 del,
1 dup), TNL

2 (1 del,
1dup)

Rlm9
BnGMS665 Delourme et al.,

2004 [79]
A7

13.76 19.11 5.35
RLK 16, RLP

3, NL 2
RLK 4 (4 del)BnGMS147b

LepR1 FlankingMarkers Larkan et al.,
2016 [83] A02 10.02 20.43 10.41 RLK 7 RLK 2 (2 del)

LepR2 FlankingMarkers Larkan et al.,
2016 [83] A10 0.20 14.15 13.95

RLK 17, RLP
6, TX 1, NL 1,
CN 2, CNL 1,

NBS 1

RLK 4 (3 del,
1dup)

Overall, we identified 100 RGAs within previously known regions for blackleg resis-
tance of which 22 RGA were affected by CNV events. There were 64 RGAs overlapping
Rlm1, Rlm3, Rlm4, Rlm7 and Rlm9 QTL on chromosome A07 of which 16 were affected by
CNV events; 12 RLKs and 1 TNL were deleted, and 2 RLKs and 1 TNL were duplicated.
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On chromosome A02, out of 7 RLKs, two RLKs were deleted, on chromosome A10, out of
29 RGAs three RLKs were deleted, and one RLK was duplicated (Table 4).

4. Discussion

Recently, several studies have reported CNV events across various crop species, in-
cluding rice [27,36], wheat [85], barley [86], maize [52,87], soybean [46], melon [88] and
cannabis [89]. Most of these studies have linked CNV analysis with agronomic traits. Given
that canola is a major crop and CNVs are among the major genomic structural variations
and hotspots for genetic and phenotypic variation during environmental adaptation and
population differentiation, we performed genome-wide analysis of CNV events of RGAs
across eight canola cultivars. In total 563 RGAs overlapped with 1,137 CNV events of
which the majority were deletions (704 deletions, 433 duplications). The higher number
of deletions than duplications is consistent with other B. napus studies. Schiessl, Huet-
tel, Kuehn, Reinhardt and Snowdon [29] have shown that deletions are more abundant
than duplications in B. napus as genomes are known to reduce their gene space after
polyploidisation [90].

Deletions abolish gene function, whereas duplications can cause an alteration in gene
expression level [91] and thereby affect gene dosage. Kopec et al. (2021) showed in B.
napus resistant and susceptible lines against clubroot that the transcript levels of the two
TNL copies in the resistant line was twice the amount of the transcript level of one copy
in the susceptible line, and this upregulation was most likely involved with the resistance
response [55]. Therefore, duplications are more likely to change traits than point mutations
or InDels [92].

We found more deletions in the C sub-genome than in the A sub-genome and more
duplications in the A sub-genome than in the C sub-genome. These findings are consistent
with earlier B. napus studies [29]. This might be due to the fact that the A sub-genome
copies had been selected over the C sub-genome copies. For example, CNVs concerning
copies of Bna.FLC, Bna.PHYA and Bna.GA3ox1 involve duplications in the A sub-genome
and corresponding homoeologous deletions in the C sub-genome [93]. Another possible
explanation for this genome bias might be due to the high transposon content and more
active transposons in the C sub-genome [5,94]. Generally, due to high gene redundancy [29]
and inter-sub-genomic homology [95], genomic rearrangements are common events in
polyploid genomes. Our data suggest that CNVs larger than 1 kb but smaller than 5 kb are
more frequent than other CNV sizes. Similar results were found in rice and maize where
smaller CNVs (shorter than 10 kb) are more frequent than larger ones [36,96].

CNV numbers differ between species and between individuals of the same species. In
this study, the chromosomes of all eight cultivars exhibited different numbers and patterns
of CNV events. Similarly, Springer et al. (2009) identified more than 400 putative CNVs
between Mo17 and B73 maize inbred lines distributed across all maize chromosomes [31].
Furthermore, Demeke and Eng (2018) investigated CNVs among three canola cultivars and
found variability in gene copy numbers [97].

Although CNVs frequently overlap with protein-coding regions in plant genomes [95],
little is known about the presence and phenotypic effects of CNVs in plants. Nevertheless,
the nature of CNVs detected in maize suggests that they may have a significant impact on
plant phenotypes, including disease response and heterosis [36]. We found that the majority
of RGAs that were associated with CNV events are RLKs due to RLKs being the most
abundant class of RGAs. RLKs and RLPs are primary components of the first line of plant
immune response and mediate microbial elicitors pathogen/microbe-associated molecular
pattern (PAMP/MAMP), triggered immunity (PTI/MTI) [98] to recognize broad spectra
of pathogens [99]. In addition to defense mechanisms, RLKs and RLPs are also involved
with developmental processes [98] including meristem and stomatal development [100,101]
which can explain their abundance across the genomes.

It has been reported that the CNV of RGAs differ between species and within
species [102,103], and this variability allows RGAs to recognize a wide range of effec-
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tor proteins [104]. Therefore, a high copy number of RGAs should be beneficial to guard
against the genetic diversity of pathogens.

We found that genes localized in physical clusters exhibit more CNV than singletons,
which is consistent with a previous study in soybean [105]. RGAs in plants tend to be
physically clustered in genomes [106]. For example, approximately 66% of resistance genes
in Arabidopsis [107] and 76% in rice [108] were found in physical clusters. In addition,
Yr genes responsible for resistance against wheat yellow rust were found to be physically
clustered [109]. Similar to our findings, it has been previously reported that the majority of
RGAs within a cluster belong to the same subfamily [110,111] and can have different rates
and patterns of variation [112]. Genes in physical clusters may have adaptive advantages
derived from rapid evolution due to rearrangement [52]. The results revealed that CNVs
are distributed throughout the genome and CNV affected genes were more likely to be
found in physical clusters. Thus, gene clustering may be a critical feature of the generation
of novel resistance specificities through gene deletion or duplication.

Several regions that carry blackleg resistance genes have been identified in B. napus
cultivars [80,83,113,114]. We identified 22 RGAs within the regions associated with black-
leg resistance affected by CNV events, potentially leading to different levels of disease
resistance in cultivars. Identification of RGA candidates and their structural variation will
assist with RGA mapping and a better understanding of RGA evolution and functionality
which is beneficial for genes identification and their application breeding programs.

To conclude, whole-genome sequencing was used to investigate CNV events of RGAs
across eight blackleg resistant B. napus cultivars. The outcomes reveal that CNV events are
a key type of genomic variation that may play an important role in disease resistance. The
results constitute a valuable genome-wide variation resource of B. napus for future research
on phenotypic variation and breeding. The results also provide insights into the evolution,
formation and distribution of resistance genes in B. napus.

Supplementary Materials: The following supporting information can be found at https://www.
mdpi.com/article/10.3390/genes13112037/s1. Figure S1: The position of CNV events (red and blue
lines represents deletions and duplications, respectively) across the chromosomes of eight B. napus cul-
tivars. The tracks from outer to inner show chromosomes, Ascona, English Giant, Hansen × Gaspard,
Hansen × Gaspard, Milena, Pa Pacific, Pirola, Tina and Wilhelmsburger; Table S1: Chromosomal
distribution of CNV events in eight B. napus cultivars; Table S2: Characteristics of CNVs including
CNV number, deletion to duplication ratio, average CNV size and percentage of CNVs larger or
smaller than average in eight B. napus cultivars; Table S3: The number of RGAs affected by CNV
events in eight B. napus lines; Table S4: The number of singletons and clustered RGAs affected by
CNV across 563 RGAs; Table S5: Distribution and number of the singletons and clustered RGAs
affected by CNV across the chromosomes.
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