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Abstract: A prior for Bayesian nonparametric clustering called the Table Invitation Prior (TIP) is
used to cluster gene expression data. TIP uses information concerning the pairwise distances between
subjects (e.g., gene expression samples) and automatically estimates the number of clusters. TIP’s
hyperparameters are estimated using a univariate multiple change point detection algorithm with
respect to the subject distances, and thus TIP does not require an analyst’s intervention for estimating
hyperparameters. A Gibbs sampling algorithm is provided, and TIP is used in conjunction with a
Normal-Inverse-Wishart likelihood to cluster 801 gene expression samples, each of which belongs to
one of five different types of cancer.

Keywords: Bayesian clustering; distance-dependent clustering; genome-wide association studies;
gene expression

1. Introduction

The goal of clustering is to provide informative groupings (i.e., clusters) of similar
objects. The objects are referred to in this paper as “subjects”, and an example of an
individual subject is a single gene expression from one person. The term “subjects” will be
used throughout this paper in order to avoid confusion associated with the term “samples”
in a statistical context. Note that, in practice, an individual subject may correspond to
an individual vector, matrix, or higher-order tensor. In this work, vectors are considered
for the sake of simplicity. In contrast, a “subject index” refers to an identifier for a subject.
For example, in vector-variate data, a subject index i ∈ {1, 2, . . . , n} refers to the ith row
in the provided dataset and n is the total number of subjects. The notation xi is used to
refer to the subject (object) itself (i.e., a vector, matrix, tensor, etc.). The goal of Bayesian
clustering is to produce a set of cluster assignments for each subject while also calculating
the probability that two subjects are clustered together given the observed data and prior
assumptions. Mathematically, this is represented as

P(c | X) ∝ P(X | c)P(c) (1)

where X refers to the data, c is a vector of n cluster assignments (e.g., the cluster assignments
for each of the n gene expression samples), and P(c | X) represents the posterior probability
of a cluster configuration, P(X | c) is the likelihood, and P(c) is the cluster prior which is
the focus of this paper.

A well-known challenge in clustering is to estimate the unknown number of clusters
K∗ [1,2]. Some clustering methods, such as MCLUST, involve an analyst fitting several
models with varying degrees of complexity and then choosing the desired model based
on a chosen clustering metric [3,4]. A distinct, though similar approach, uses the gap
statistic [2] in conjunction with another clustering algorithm (e.g., hierarchical clustering)
to estimate the number of clusters.

Bayesian nonparametric models refer to a flexible class of prior distributions that may
be used in a variety of settings including clustering. In the context of clustering, the use of
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such priors means that an analyst does not need to specify an estimate for the number of
clusters since the number of clusters is modeled as a random variable. A variety of methods
have been proposed to accomplish this task, and the relevant methods are reviewed in the
sections that follow. Two methods include the Ewens-Pitman Attraction (EPA) prior [5]
and a well-known special case of EPA called the Chinese Restaurant Process (CRP) [6,7].

The CRP, a variant of the Dirichlet process, is a well-known prior used in Bayesian
clustering. One drawback of CRP is that it does not utilize information pertaining to
the similarity between subjects (e.g., gene expression samples). A natural extension of
the CRP is one that includes the aforementioned similarity information, and one such
extension is the EPA prior. Although EPA utilizes similarity information, the primary
drawback of EPA is that it relies on the choice of a hyperparameter (this is α in Section 1.2
below). Consequently, an analyst using EPA must either choose a fixed value for the EPA
hyperparameter α or rely on an approximate posterior distribution for α [5,8]. In the context
of Bayesian clustering, a number of samples are taken from a posterior distribution which
can be time consuming, so manually tuning a hyperparameter is not desirable.

The focus of this paper is the Table Invitation Prior (TIP) which is an attempt to main-
tain the advantage of Bayesian clustering (i.e., the analyst does not have to specify the
number of clusters) while removing the need for an analyst to carefully tune a hyperparam-
eter. Although the approximate posterior distribution for α used in EPA removes the need
of the analyst to tune the hyperparameter, empirical results show that TIP gives superior
results and is less susceptible to splitting clusters as compared to EPA. Bayesian clustering
methods often rely on the use of similarity functions to capture the relationships between
subjects (e.g., gene expression samples), and thus a brief review of pairwise similarity
functions is provided.

1.1. Pairwise Similarity Functions

Some Bayesian clustering priors use the similarity between subjects in order to obtain
clusters that contain subjects that are similar to each other [5,9]. Let the similarity between
two subjects with indices i and j be given by λ(i, j) for i = 1, 2, . . . , n and j = 1, 2, . . . , n
where n is the number of subjects. The similarity function λ may take a variety of forms,
and in this paper the similarity function used is the exponential decay function [5,9]:

λ(i, j) = exp(−τdij) (2)

where τ > 0 is a hyperparameter and dij is the distance between the ith and jth subjects.
Following the approach taken in [10], the hyperparameter τ is set to the following:

τ̂ =
1
d̃

(3)

where d̃ is the median of the pairwise distances of the strictly upper triangular portion of
the distance matrix:

d̃ = median
{

dij : i > j, i, j ∈ {1, 2, . . . , n}
}

. (4)

The choice of the median is heuristic, but there is a justification. Equation (3)
implies that

lim
dij−→∞

exp
(−dij

d̃

)
= 0,

lim
dij−→0

exp
(−dij

d̃

)
= 1,

and

lim
dij−→d̃

exp
(−dij

d̃

)
= exp(−1).
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Consequently, similarity values corresponding to subject pairs whose distances are sig-
nificantly larger than the overall median distance go to zero whereas subject pairs that
are very close to each other have a similarity value that is closer to 1. Subject pairs whose
distance from each other is close to the overall median distance have a similarity value that
is between 0 and 1.

1.2. Ewens-Pitman Attraction Prior

The EPA distribution uses the pairwise similarity between subjects and a sequential
sampling scheme to induce a partition of n subjects [5,11]. Let σ = {σ1, σ2, . . . , σn} be a
random permutation of the subject indices {1, 2, . . . , n}. Then the conditional probability
of a subject with index i joining cluster k is given by the following:

P(cσi = k|α, δ, λ, c(σ1, . . . , σi−1)) =


i−1−δqi−1

α+i−1
∑σs∈S λ(σi ,σs)

∑i−1
s=1 λ(σi ,σs)

if S ∈ c(σ1, . . . , σi−1)

α+δqi−1
α+i−1 if S is a new cluster

(5)

where α > 0 is a hyperparameter that controls the extent to which a new cluster is created,
qi−1 is the number of clusters that are assigned among the first i− 1 subjects, δ ∈ [0, 1) is
a “discount” hyperparameter, λ is a similarity function, and c(σ1, σ2, . . . , σi−1) are the part
assignments for the first i− 1 permuted subjects σ1, . . . , σi−1. The discount parameter is
specific to EPA and its purpose is to incorporate information about the number of clusters in
a previous iteration when computing the probability of a new cluster in the current iteration.

The value for α may be treated as a constant or it can be sampled from a distribution
as described in West [8]. Specifically, West’s approximate posterior distribution for α, given
the number of clusters nk, is:

α | nk ∼ Γ(a + nk − 1, b + γ + log(n)) (6)

where Γ denotes the gamma distribution, γ is Euler’s constant, and the prior parameters
are a and b. In this work, a = b = 1 so that the prior for α has exponential distribution with
a scale parameter of 1.

Chinese Restaurant Process

The CRP is a special case of EPA that occurs when the discount parameter δ = 0 and
λ(i, j) is constant for all subject indices i and j [5–7]. The conditional probability of a subject
xi joining cluster k is given by the following:

P(cσi = k | α, c(σ1, σ2, . . . , σi−1)) =

{ |S|
α+i−1 if S ∈ c(σ1, σ2, . . . , σi−1)

α
α+i−1 if S is a new subset

(7)

The CRP is obtained by taking the product of (7) over all possible partitions.

2. Table Invitation Prior

In this section, the Table Invitation Prior (TIP) is presented in the context of a Gibbs
sampler in iteration t = 1, 2, . . . , T. An analogy is now provided to illustrate the prior’s
mechanics. Suppose that n subjects x1, x2, . . . , xn (i.e., vectors, matrices, tensors, etc.) are
sitting in a restaurant with k = 1, 2, . . . , K(t) tables (clusters). A randomly selected subject
with index r is chosen and then the n̂τr subjects that are most similar to the subject with
index r are “invited” to a new table (cluster) K(t) + 1 (in this paper, all the n̂τr subjects accept
the invitation with probability 1). The posterior probability of every subject belonging
to a table (cluster) is computed for tables (clusters) 1, 2, . . . , K(t), K(t) + 1 and, using the
probabilities, the subjects are randomly assigned to a table (i.e., sample the posterior cluster
assignment for every subject). The variable t is incremented by 1 and the this process
continues; here t is the number of times the above process has occurred so far.
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A more formal description of the Table Invitation Prior now follows. For the iteration
t in a Gibbs sampler, let the random variable r be a randomly selected subject index (e.g., a
randomly selected index corresponding to an individual gene expression) from a discrete
uniform distribution

r ∼ U{0, n} (8)

so that r ∈ {1, 2, . . . , n}. Suppose a random subject xr is selected (i.e., xr can be a vector,
matrix, higher-order tensor, etc.). The set of similarity values between subject xr, itself, and
the other n− 1 subjects is

Λr = {λ(r, i) : i ∈ {1, 2, . . . , n}} (9)

where λ(r, i) is the similarity between the rth subject and the ith subject. Let the jth
ordered similarity value in the set Λr be Λr(j) for j = 1, 2, . . . , n and let

Λr(n) = λ(r, r) > Λr(n−1) > Λr(n−2) . . . > Λr(1) . (10)

The set of indices of the nτr subjects that are most similar to subject xr is given by

Sr = {r = r(n), r(n−1), r(n−2), . . . , r(n−nτr+1)} (11)

where nτr ∈ {1, 2, . . . , n− 1} is a hyperparameter. The estimation of hyperparameter nτr

proceeds in the following manner. First, recall that r is a randomly selected subject index so
that r ∈ {1, 2, . . . , n}. The pairwise distances with respect to subject r are extracted and the
distance from subject r to itself is removed:

dr = {dr,j : j ∈ {1, 2, . . . , r− 1, r + 1. . . . , n}},

The distances are then sorted in ascending order:

d∗r = {dr,j∗ : dr,j∗ < dr,j∗+1 , j∗ ∈ {1, 2, . . . , r− 1, r + 1, . . . , n}}. (12)

Next, a univariate multiple change point detection algorithm is applied to the sorted
distances. The change point detection algorithm used in this paper is binary segmentation
from the changepoint library in R [12]. The binary segmentation function in R takes a
hyperparameter, denoted by Q, that is the maximum number of changepoints (13). In
this paper, the value is set to b n

2 + 1c since the changepoint library will throw an error if
Q > n

2 + 1; also this allows the change point method to have the maximum amount of
flexibility in detecting changes in the subject distances. Let the set of change points be
given by

τ̂r = {τ̂r,1, τ̂r,2, . . .}, (13)

then the number of subjects that are similar to the subject with index r is taken to follow a
Poisson distribution:

n̂τr ∼ Poi(τ̂r,1).

Consequently, the set Ŝr is given by:

Ŝr = {r = r(n), r(n−1), r(n−2), . . . , r(n−n̂τr+1)}. (14)

Let the vector containing the cluster assignments be denoted by ct so that the ith element
contains the cluster assignment for the ith subject and

ct,i ∈ {1, 2, . . . , K(t)} for i = 1, 2 . . . , n

where K(t) is the total number of clusters after posterior sampling in iteration t. The Table
Invitation Prior is based on selecting a random subject index r and forming a new cluster
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with n̂τr subjects that are most similar to subject xr. That is, the new cluster is formed using
the subjects whose indices are in the set Ŝr. Consider a modified cluster vector c̃t

c̃t,i =

{
ct,i i 6∈ Ŝr

K(t) + 1 i ∈ Ŝr,
(15)

then the Table Invitation Prior (TIP) is given by

P(ct+1,i = k|X, p, λ) ∝ ∑
c̃t,j=k

λ(i, j) for k ∈ {1, 2, . . . , K(t), K(t) + 1}. (16)

3. TIP Gibbs Sampler

An implementation of a Gibbs sampler with a Table Invitation Prior for clustering cor-
responds to the following steps, and it is summarized in Algorithm 1. Initially, all subjects
are sitting at K(0) tables (clusters). For Gibbs sampling iteration t = 1, a random subject with
index r is chosen and the n̂τr most similar subjects with indices r(n−1), r(n−2), . . . , r(n−n̂τr+1)

are assigned to table K(0) + 1 with subject xr. The conditional probabilities for all subjects
x1, x2, . . . , xn (i.e. vectors, matrices, tensors, etc.) are computed using Equation (16) for all
clusters k = 1, 2, . . . , K(0) + 1; if desired, a likelihood value may be computed for each table
(cluster). Next, the posterior probability is computed and the subject’s posterior cluster
assignment is sampled (i.e., sampled from the set {1, 2, . . . , K(0), K(0) + 1}). This gives a
partition with K(1) clusters (tables). In the second Gibbs sampling iteration t = 2, a random
subject with index r ∼ U{0, n} is chosen and the n̂τr most similar subjects with indices
r(n−1), r(n−2), . . . , r(n−n̂τr+1) are assigned to table K(1) + 1 with subject xr. The conditional
probabilities for all subjects x1, x2, . . . , xn are computed using Equation (16) for all clusters
k = 1, 2, . . . , K(1) + 1; again, a likelihood value may be computed for each table (cluster),
and each subject’s posterior cluster assignment is sampled (i.e., sampled from the set
{1, 2, . . . , K(1) + 1}). This process continues for t ∈ {3, . . . , T}.

Algorithm 1: Table Invitation Prior Clustering

1 Inputs: n subjects X = {xi}n
i=1, number of Gibbs sampling iterations T, initial

cluster assignments c0, similarity function λ with hyperparameters Θ, and a
distance matrix D.

2 Output: posterior cluster assignments c1, c2, . . . , cT .
3 Sort the ith row of the distance matrix to obtain d∗i .
4 Compute n̂τi for each subject xi for i ∈ {1, 2, . . . , n} by applying a univariate

multiple change point detection algorithm to the set of sorted distances d∗i .
5 Compute the similarity sets Ŝi using Equation (14) for i ∈ {1, 2, . . . , n}.
6 for t in 1:T do
7 Draw a random subject index r ∼ U{0, n}.
8 Using the set Ŝr, compute the modified cluster vector c̃t via (15) given ct−1.
9 parallel for i in 1:n do

10 for k in 1:(K(t) + 1) do
11 Compute the log-prior log(P(ci = k | X)) via (16).
12 Compute the log-likelihood (if desired; i.e., Normal-Inverse-Wishart

etc.).
13 Compute the log-posterior = log-prior + log-likelihood.
14 Convert the log-posterior to a probability.
15 Sample the posterior cluster assignment ci,t.
16 end
17 end
18 end
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3.1. Posterior Cluster Assignments

The TIP Gibbs sampler produces a set of posterior cluster vectors c1, c2, . . . , cT . How-
ever, it is necessary to produce a single clustering from this set of posterior cluster assign-
ments, and this section describes the methodology used in this paper to accomplish this
task (other methods may be used for this task). Each posterior cluster vector is transformed
into an n× n posterior proximity matrix B(t):

B(t)
i,j =

{
0 ct,i 6= ct,i

1 ct,i = ct,j
(17)

where ct,i and ct,j are the posterior cluster assignments for subject xi and xj after Gibbs
sampling iteration t ∈ {1, 2, . . . , T}. The posterior similarity matrix is given by

B̄ =
1
T

T

∑
t=1

B(t). (18)

A vector of posterior cluster assignments is computed using the Posterior Expected
Adjusted Rand (PEAR) index, and technical details as well as an application of PEAR to
gene expression data may be found in Fritsch and Ickstadt [13]. Let ρ denote the PEAR
index function. Using the posterior similarity matrix B̄, the cluster vector that maximizes
the PEAR index is taken to be the posterior cluster assignment vector:

c∗ = arg max
c∈{c1,c2,...,cT}

ρ(c|B̄). (19)

The computation of the PEAR index is accomplished using the mcclust package in R [13,14].

3.2. Likelihood Function

The Table Invitation Prior may be used for clustering vectors, matrices, and higher-
order tensors, assuming that a suitable distance metric is available. One component of a
Gibbs sampler utilizing TIP that may change depending on the dataset is the likelihood
function. In this paper vector-variate data are considered, and the conjugate Normal-
Inverse-Wishart (NIW) prior for the mean and covariance is utilized. Let xi ∈ Rp be a p× 1
vector and represent the ith subject for i = 1, 2, . . . , n. Let ci be the cluster assignment for
subject i. Assume that

xi|ci = k ∼ Np(µk, Σk), (20)

(µk, Σk) ∼ NIW(µ0, λ0, Ψ0, ν0), (21)

then the joint posterior for (µk, Σk|xi) is given by

(µk, Σk|yi) ∼ NIW(µ1k, λ1k, Ψ1k, ν1k) (22)

where NIW denotes the Normal-Inverse-Wishart distribution. The posterior arguments are
given by

µ1k =
λ0µ0 + nk x̄

λ0 + nk
,

λ1k = λ0 + nk,

ν1k = ν0 + nk,

and

Ψ1k = Ψ0 +
nk

∑
i=1

(xi − x̄k)
′(xi − x̄k) +

λ0nk
λ0 + nk

(x̄k − µ0)(x̄k − µ0)
′.
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There are four hyperparameters and the following values are used:

µ̂0 =
1
n

n

∑
i=1

xi,

λ̂0 = 1,

ν̂0 = p,

and

Ψ̂0 =

(
(p− 1)

n

∑
i=1

(xi − x̄)′(xi − x̄)

)−1

.

3.3. Visualizing The Posterior Similarity Matrix

The n× n symmetric matrix B̄ can be viewed an undirected weighted graph with n
vertices where the edge between the ith and jth subjects (vertices) represents the posterior
probability that subject xi and subject xj are in the same cluster. A network plot may be used
to view B̄ directly, but the number of edges corresponding to small posterior probabilities
may unnecessarily complicate the plot. Consequently, we show the plot of the graph B̄1
which is the result of removing the maximum number of edges in the graph B̄ such that the
number of components in the graph is 1. That is, the graph B̄1 has the minimum entropy
among all subgraphs with one component and we call its corresponding network plot
the “one-cluster plot”. The idea is to remove as many connections as possible while still
maintaining one component so that the clusters’ relationships with each other are revealed.
The network plots are used in Section 5 to visualize the cluster results.

4. Simulation Data

In this section, a clustering simulation is presented to compare TIP with various
clustering algorithms including EPA, MCLUST, and linkage-based methods. For EPA,
δ = 0 and α follows West’s posterior given by Equation (6).

4.1. Simulation Description

The simulation is given by the following. A dataset X with n subjects x1, x2, . . . , xn is
generated where xn ∈ Rp. Each subject xi for i = 1, 2, . . . , n is generated according to its
true cluster assignment k so that

xi | k ∼ Np(µk, Σk), for i = 1, 2, . . . , n,

µk ∼ Np(0, 10Ip),

and
Σk ∼W−1(Ip, p + 1).

Here Np denotes the p-variate multivariate normal distribution and W−1
p denotes the

inverse Wishart distribution. The number of burn-in iterations for both TIP and EPA is set
to 1000, and the number of sampling iterations is set to 1000.

4.2. Simulation Results: Normal-Inverse-Wishart Likelihood Function

In this section, simulation results for TIP and EPA in conjunction with a Normal-
Inverse-Wishart likelihood function are presented. TIP and EPA are compared with the
MCLUST algorithm, k-means clustering, and hierarchical clustering [4,15]. For k-means
and hierarhcial clustering, the number of clusters is estimated using the gap statistic [2].

4.2.1. Well Separated Clusters : p = 2, K∗ = 4 and n = 110

In this simulation there are K∗ = 4 well separated clusters. Each cluster is composed
of n1 = 20, n2 = 25, n3 = 30, and n4 = 35 vectors in p = 2 dimensional space. The results
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are shown in Figure 1. Both TIP and MCLUST cluster the datasets perfectly while EPA
with West’s posterior is too aggressive and results in 12 clusters. Hierarchical clustering
(complete linkage) is utilized in conjunction with the gap statistic. The optimal number of
clusters given by the gap statistic is 4, and hierarchical clustering using complete linkage
with exactly 4 clusters perfectly separates the data. The gap statistic is also used with
k-means and the optimal number of clusters given by the gap statistic is 4, and k-means
perfectly separates the data.

(a) True Cluster (b) TIP

(c) EPA (d) MCLUST

Figure 1. Cont.
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(e) HCLUST-GAP (f) KMEANS-GAP

Figure 1. Panel (a) shows the true cluster assignments when p = 2, K∗ = 4, and n = 110. Panel (b)
shows the posterior TIP cluster assignments, Panel (c) shows the posterior EPA assignments, Panel (d)
shows the MCLUST assignments, Panel (e) shows the hierarchical clustering assignments (complete
linkage) where the number of clusters is determined via the gap statistic, and Panel (f) shows the
k-means clustering assignments where the number of clusters is determined via the gap statistic.

4.2.2. Overlapped Clusters: p = 2, K∗ = 4 and n = 120

In this simulation there are K∗ = 4 clusters, but two of the clusters are overlapped. In
this case, the cluster sizes are given by n1 = 20, n2 = 25, n3 = 30, and n4 = 45 vectors in
p = 2 dimensional space. The results are shown in Figure 2. EPA gives 15 clusters, TIP
gives 11 clusters, and MCLUST gives 5 clusters. MCLUST divides the two overlapped
clusters into 3 clusters whereas TIP is too aggressive and divides the overlapped clusters
into 8 clusters. Similarly, EPA divides the overlapped clusters into 8 clusters, but, unlike
TIP, EPA also divides Cluster 1 into 2 clusters. Hierarchical clustering (complete linkage) is
used in conjunction with the gap statistic and gives 4 clusters, though the resulting cluster
assignments are not necessarily accurate since part of Cluster 3 is clustered with part of
Cluster 4. K-means is also applied to the dataset in conjunction with the gap statistic; the
optimal number of clusters according to the gap statistic is 3 which fuses two of the true
clusters (i.e., Cluster 3 and Cluster 4) together.

(a) True Cluster (b) TIP

Figure 2. Cont.
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(c) EPA (d) MCLUST

(e) HCLUST-GAP (f) KMEANS-GAP

Figure 2. Panel (a) shows the true cluster assignments when p = 2, K∗ = 4, and n = 110.
Panel (b) shows the posterior TIP cluster assignments, Panel (c) shows the posterior EPA assignments,
Panel (d) shows the MCLUST assignments, Panel (e) shows the hierarchical clustering assignments
where the number of clusters is determined via the gap statistic, and Panel (f) shows the k-means
clustering assignments where the number of clusters is determined via the gap statistic.

5. Application: Clustering Gene Expression Data

In this section TIP is applied to a dataset pertaining to RNA-Seq gene expression
levels as measured by an Illumina HiSeq platform [16]. The data were accessed from the
UCI Machine Learning Repository [17] and were collected as a part of the Cancer Genome
Atlas Pan-Cancer analysis project [18]. There are n = 801 gene expression samples (i.e.,
n = 801 subjects) and p = 20, 531 gene expression levels. The 801 gene expression samples
can be classified into one of 5 classes, and each class corresponds to a different type of
cancer: BRCA, COAD, KIRC, LUAD, and PRAD.

Principal components analysis was applied to the data, and 7 principal components
were used so that p = 7. A plot showing the cumulative variance explained by a given num-
ber of principal components is shown in Figure 3. The reason that 7 principal components
were used is that it takes a relatively large number of dimensions to explain percentages of
the variance greater than 80%. The first 7 principal components explain about 80% of the
variance, but it takes 22 principal components to explain 85% of the variance, 82 principal
components to explain 90% of the variance, 269 principal components to explain 95% of the
variance, and 603 principal components to explain 99% of the variance.
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Figure 3. The cumulative proportion of variance explained by the principal component analysis.

The clustering methods are applied to the principal components so that p = 7 and
n = 801. The TIP posterior cluster assignments are shown in Table 1. There is a small
overlap of classes in cluster 3 where there are 270 BRCA gene expression samples and
1 LUAD gene expression sample. Also, 30 BRCA gene expression samples form a dis-
tinct cluster (see cluster 5). The one-cluster plot is shown in Figure 4 and shows a small
amount of overlap between LUAD and BRCA which is consistent with the posterior cluster
assignments in Table 1.

Figure 4. A one-cluster plot with respect to TIP where each graph vertex (i.e., a colored dot) corre-
sponds to a subject (e.g., an individual gene expression sample) and the edge weights (i.e., the lines)
correspond to the elements in the matrix B̄1. Specifically, the edge between subject i and subject j is
the posterior probability that subject i and subject j are in the same cluster. Shorter lines correspond
to larger posterior probabilities, so pairs of graph vertices that are closer to each other in the plot are
more likely to be assigned to the same cluster. The plot shows a minor overlap between BRCA (red
diamond) and LUAD (green circle).
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Table 1. The distribution of the posterior TIP cluster assignments. The number in parenthesis is the
number of subjects (e.g., gene expression samples) for one of the five cancer types.

Cluster ID Distribution

1 PRAD (136)
2 LUAD (140)
3 BRCA (270) LUAD (1)
4 KIRC (146)
5 BRCA (30)
6 COAD (78)

The posterior cluster assignments for EPA are shown in Table 2. EPA is able to separate
the classes quite well, but there is one cluster where there is substantial overlap between
classes. Cluster 10 is comprised of samples from BRCA, COAD, KIRC, LUAD, and PRAD
whereas this does not occur for TIP and MCLUST. Furthermore, Cluster 6 contains samples
from both BRCA and LUAD; this is true for TIP and EPA. The one-cluster plot for EPA is
shown in Figure 5, and it shows that there is overlap between LUAD and BRCA as well as
BRCA and COAD.

Figure 5. A one-cluster plot with respect to EPA where each graph vertex (i.e., a colored dot)
corresponds to a subject (e.g., an individual gene expression sample) and the edge weights (i.e.,
the lines) correspond to the elements in the matrix B̄1. Specifically, the edge between subject i and
subject j is the posterior probability that subject i and subject j are in the same cluster. Shorter lines
correspond to larger posterior probabilities, so pairs of graph vertices that are closer to each other in
the plot are more likely to be assigned to the same cluster. There is an overlap between LUAD (green
circle) and BRCA (red diamond) as well as BRCA (red diamond) and COAD (orange square).

The cluster assignments for MCLUST are shown in Table 3. MCLUST, like TIP, per-
forms well. MCLUST produces one cluster with a minor amount of overlap: cluster 1
features 57 BRCA samples and 2 LUAD samples. Furthermore, BRCA is split between two
clusters: one with 57 BRCA samples and another with 243 BRCA samples. This is similar
to the TIP results.

Hierarchical clustering is applied in conjunction with the gap statistic to choose the
number of clusters, and the R package cluster is used to compute the gap statistic [19]. The
settings used for hierarchical clustering and k-means are the default settings in the stats
library in R [20]. The results for hierarchical clustering using complete linkage are shown
in Table 4. The optimal number of clusters estimated via the gap statistic is 7, but complete
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linkage clustering is unable to separate the classes. The results for hierarchical clustering
using single linkage are shown in Table 5. The optimal number of clusters estimated by the
gap statistic is 1, and thus single linkage clustering is unable to separate the classes. The
results for hierarchical clustering using median linkage are shown in Table 6. The optimal
number of clusters given by the gap statistic is 1, and thus median linkage clustering is
unable to separate the classes. K-means clustering is also used in conjunction with the gap
statistic. The optimal number of clusters according to the gap statistic is 5, but the resulting
clusters, which are provided in Table 7, do not separate the data well.

Table 2. The distribution of the EPA cluster assignments. The number in parenthesis is the number of
subjects for one of the five cancer types.

Cluster ID Distribution

1 PRAD (124)
2 LUAD (124)
3 PRAD (11)
4 BRCA (100)
5 KIRC (128)
6 BRCA (104) LUAD (2)
7 BRCA (32)
8 KIRC (16)
9 COAD (74)
10 BRCA (3) COAD (4) KIRC (2) LUAD (15) PRAD (1)
11 BRCA (61)

Table 3. The distribution of the MCLUST cluster assignments. The number in parenthesis is the
number of subjects for one of the five cancer types.

Cluster ID Distribution

1 BRCA (57) LUAD (2)
2 LUAD (139)
3 PRAD (136)
4 BRCA (243)
5 KIRC (146)
6 COAD (78)

Table 4. The distribution of the hierarchical cluster assignments using complete linkage (default
settings in R are used) and the gap statistic to select the number of clusters. The gap statistic suggests
7 clusters.

Cluster ID Distribution

1 BRCA (57) COAD (7) KIRC (42) LUAD (32) PRAD (25)
2 BRCA (52) COAD (8) LUAD (18) PRAD (22)
3 BRCA (84) COAD (17) LUAD (17)
4 COAD (17) LUAD (34) PRAD (40)
5 BRCA (68) KIRC (23) LUAD (18)
6 BRCA (70) COAD (8) KIRC (29) LUAD (22) PRAD (49)
7 KIRC (52) COAD (21)

Table 5. The distribution of the hierarchical cluster assignments using single linkage (default settings
in R are used) and the gap statistic to select the number of clusters. The gap statistic suggests exactly
1 cluster.

Cluster ID Distribution

1 BRCA (300) COAD (78) KIRC (146) LUAD (141) PRAD (136)
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Table 6. The distribution of the hierarchical cluster assignments using median linkage (default
settings in R are used) and the gap statistic to select the number of clusters. The gap statistic suggests
exactly 1 cluster.

Cluster ID Distribution

1 BRCA (300) COAD (78) KIRC (146) LUAD (141) PRAD (136)

Table 7. The distribution of the hierarchical cluster assignments using k-means (default settings in R
are used) and the gap statistic to select the number of clusters. The gap statistic suggests 5 clusters.

Cluster ID Distribution

1 BRCA (68) COAD (27) KIRC (39) LUAD (42) PRAD (28)
2 BRCA (77) COAD (14) KIRC (31) LUAD (26) PRAD (41)
3 COAD (34) LUAD (1)
4 BRCA (57) COAD (3) KIRC (40) LUAD (46) PRAD (37)
5 BRCA (98) KIRC (36) LUAD (26) PRAD (30)

6. Conclusions and Discussion

In this work, a Bayesian nonparametric clustering prior called the Table Invitation
Prior (TIP) was introduced. TIP does not require the analyst to specify the number of
clusters, and its hyperparameters are automatically estimated via univariate multiple
change point detection. EPA is a prior on partitions and is used for Bayesian clustering.
Unlike TIP, the probability of a new cluster in EPA depends on preset hyperparameters
(i.e., δ and α > −δ), which is not data-driven, and it may lead to a bias of the number of
clusters due to improper hyperparameter values. The main difference between TIP and
MCLUST is that TIP is a Bayesian cluster prior which can be incorporated with various
types of likelihoods and priors for the parameters in the likelihood. For example, TIP can
work with a conjugate using the Normal-Inverse-Wishart prior of for unknown mean and
covariance matrix. MCLUST is based on a mixture model of finite Gaussian likelihoods and
uses an expectation–maximization (EM) algorithm [21] for the Gaussian mixture parameter
estimation with a preset covariance structure. TIP was used in conjunction with a Normal-
Inverse-Wishart conjugate prior to cluster gene expression data, and it was compared with
a variety of other clustering methodologies, including another Bayesian nonparametric
clustering method called EPA, MCLUST, hierarchical clustering in conjunction with the
gap statistic, and k-means clustering in conjunction with the gap statistic.
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