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Abstract: Long-non-coding RNA (lncRNA) is a transcription product that exerts its biological func-
tions through a variety of mechanisms. The occurrence and development of a series of human
diseases are closely related to abnormal expression levels of lncRNAs. Scientists have developed
many computational models to identify the lncRNA-disease associations (LDAs). However, many
potential LDAs are still unknown. In this paper, a novel method, namely MSF-UBRW (multiple
similarities fusion based on unbalanced bi-random walk), is designed to explore new LDAs. First,
two similarities (functional similarity and Gaussian Interaction Profile kernel similarity) of lncR-
NAs are calculated and fused linearly, also for disease data. Then, the known association matrix
is preprocessed. Next, the linear neighbor similarities of lncRNAs and diseases are calculated, re-
spectively. After that, the potential associations are predicted based on unbalanced bi-random walk.
The fusion of multiple similarities improves the prediction performance of MSF-UBRW to a large
extent. Finally, the prediction ability of the MSF-UBRW algorithm is measured by two statistical
methods, leave-one-out cross-validation (LOOCV) and 5-fold cross-validation (5-fold CV). The AUCs
of 0.9391 in LOOCV and 0.9183 (±0.0054) in 5-fold CV confirmed the reliable prediction ability of the
MSF-UBRW method. Case studies of three common diseases also show that the MSF-UBRW method
can infer new LDAs effectively.

Keywords: lncRNA-disease associations; linear neighborhood similarity; Gaussian interaction profile;
logistic function; unbalanced bi-random walk

1. Introduction

Long-non-coding RNAs (lncRNAs) are long chains composed of nucleotides, with a
wide range of actions and complex mechanisms. They get involved in many critical
regulatory processes [1–4] and have attracted the attention of many life scientists and
biologists in recent years. Studies have found that mutations and disorders of lncRNAs are
bound up with the occurrence of human diseases [5,6], including AIDS [7], diabetes [8],
Alzheimer’s disease [9], and many types of cancer, such as breast cancer [10], prostate [11],
hepatocellular [12], and bladder cancer [13]. Many associations between lncRNAs and
diseases and how they interact have also become a good breakthrough for researchers to
understand the pathogenesis of diseases from the molecular level.

Although the research on identifying human lncRNA-disease associations (LDAs)
progresses rapidly, the precise principles behind it remain largely unclear, such as tran-
scriptional regulation, multi-biological processes, and molecular mechanisms of various
diseases [14]. Predicting the undiscovered LDAs can help people figure out the pivotal
factor of lncRNAs in biological processes, thus helping with the diagnosis, treatment, and
prognosis of diseases. Using computational models to predict potential LDAs takes far less
time and cost than biological experiments. Therefore, it is of great significance to study
computational models to reveal new LDAs for further experimental verification. Scien-
tists have done a lot to the research of lncRNA-disease relationship, and many excellent
predictive models have appeared [15–17]. Existing models for predicting LDAs mainly
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fall into two categories: machine learning-based methods and biological network-based
methods [18]. Machine learning-based methods play an important role in predicting LDAs.
Classifiers can be trained based on the characteristics of known disease-associated lncRNAs
and those of unknown disease-associated lncRNAs. Candidate lncRNAs can be ranked in
line with the differences of biological characteristics. Lan et al. [19] developed a supervised
method: LDAP, which integrated multivariate biological data. In this method, the bagging
support vector machine (SVM) was trained to predict LDAs. Multiple training datasets are
constructed by bagging method, and each dataset is trained by SVM to generate multiple
weak classifiers, which vote on the category of test samples. Chen et al. [20] proposed a
computational method: Laplacian Regularized Least Squares for LDA (LRLSLDA). This
method was based on a semi-supervised learning framework to predict new LDAs and
achieved reliable performance. However, LRLSLDA still has some limitations. For example,
there are many parameters in the method, and it is very difficult to determine the optimal
parameters. In addition, for the same LDA pair, two different scores can be obtained from
the lncRNA space and the disease space, respectively. How to efficiently combine the two
scores has become a current research topic. Gao et al. designed a method: Multi-Label
Fusion Collaborative matrix factorization (MLFCMF) [21] to identify LDAs. First, the inner
links between lncRNAs and diseases were improved and the hidden information was
discovered by multi-label learning. Second, the fusion method was used to learn the
multi-label information. Finally, potential LDAs were inferred by collaborative matrix
factorization. Fu et al. [17] reconstructed the LDA matrix by the optimized low-rank
matrices to identify latent LDAs. Lu et al. [22] proposed a method to recover informative
features by principle components analysis and complement the LDA matrix derived from
the inductive matrix completion. For the machine learning-based methods, the main chal-
lenge is how to select useful biometrics to train the classifier. Therefore, integrating multiple
data resources can effectively improve prediction performance. Biswas et al. [23] designed
a novel method for predicting potential LDAs based on matrix factorization. The model
integrated known LDAs, experimentally verified gene-disease associations, gene-gene
interaction data, and the profiles of lncRNAs and genes. The bi-clustering method was
used to identify lncRNA modules and non-negative matrix factorization (NMF) was used
to reveal potential LDAs.

In recent years, the outstanding performance of network-based methods in predicting
LDAs has aroused the researchers’ interest. Many excellent algorithms have emerged
based on the hypothesis that functionally similar lncRNAs may be related to diseases
with similar phenotypes. For example, Sun et al. [24] proposed a computing method,
namely RWRlncD. In this study, after the establishment of the LDA network, the disease
similarity network (DSN) and the lncRNA similarity network (LSN), RWRlncD predicted
the potential LDAs by randomly walking on the LSN. It is worth noting that RWRlncD is
robust to different parameters. As more LDAs and more accurate measures of the lncRNA
functional similarity become available, the prediction ability of RWRlncD will be improved.
Zhou et al. [25] also designed a novel model to identify potential LDAs. This model
integrated three networks (i.e., the miRNA-associated lncRNA-lncRNA crosstalk network,
the DSN and the known LDA network) into one network and conducted random walks
on it. However, the method is only applicable to lncRNAs with known lncRNA–miRNA
interactions. In addition, the incomplete coverage of the lncRNAs crosstalk network and
the LDA network may reduce the prediction performance of the model. Xie et al. [26]
developed a method to infer new LDAs. First, the features of lncRNAs and diseases were
mapped to the features of local-constraint by location-constrained linear coding, and then
the initial correlation matrix and the acquired features of lncRNAs and diseases were mixed
up by the label propagation strategy. Xie et al. [18] also used the weighted K-nearest
known neighbors algorithm (WKNKN) method to solve the problem with rare known
LDAs and applied the linear neighbor similarity (LNS) to reconstruct the DSN and LSN.
In 2020, Ref. [27] designed a method to reveal potential LDAs. The method combined the
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heat spread algorithm and probability diffusion algorithm to reallocate resources, and used
unbalanced bi-random walks to infer new LDAs.

However, these methods have some drawbacks. For example, most methods only
introduce Gaussian Interaction Profile (GIP) kernel similarity, which makes the prior
information used for prediction too simple and single. In response to this question, we
propose a new method called MSF-UBRW to infer potential LDAs based on multiple
similarities fusion and unbalanced bi-random walk. First, the lncRNA functional similarity
matrix is obtained from known LDA matrix. Second, the GIP kernel similarity of lncRNAs
is calculated derived from known LDAs, and the logistic function is used to adjust the
similarity of the lncRNA network. The same is true for the disease network. Third, linear
fusion is performed for the above two similarities of lncRNAs and diseases, respectively.
Then, the initial association probability matrix is calculated by WKNKN. Next, the pairwise
linear neighborhood similarities of lncRNAs and diseases are calculated. Finally, LDAs
are inferred by bi-randomly walking with different steps on the lncRNA network and the
disease network. The main highlights of the MSF-UBRW method are as follows:

(1) Linear fusion was performed for lncRNA functional similarity and GIP kernel
similarity of lncRNAs, as well as for disease semantic similarity and GIP kernel similarity
of diseases. In addition to that, logistic functions are constructed from known LDAs to
improve the topology structure of networks.

(2) So far, very few LDAs have been identified, which results in a sparse LDA matrix.
WKNKN is used to preprocess the known LDA matrix to solve the sparse problem and
obtain the association probability matrix.

(3) The linear neighbor similarity is applied to reconstruct the DSN and LSN.
The MSF-UBRW method achieves the reliable AUC values with 0.9391 and

0.9183 (±0.0054) based on leave-one-out cross validation (LOOCV) and 5-fold cross val-
idation (5-fold CV), respectively. In addition, case studies of three common diseases
(prostate cancer, esophageal squamous cell carcinoma (ESCC), and small cell lung cancer
(NSCLC)) further prove the prediction ability of the MSF-UBRW method. Experimental
results demonstrate that MSF-UBRW is an effective and reliable method for identifying
potential LDAs.

2. Materials and Methods
2.1. Datasets

The known LDA dataset is downloaded from the public database LncRNADisease [28].
Due to the database upgrade, you can also download the new dataset from the LncRNADis-
ease V2.0 database. We can provide the data set used in the experiment, if you need. After
removing the non-human items and duplicated data, we finally get the known human
LDAs, including 115 kinds of lncRNAs and 178 kinds of diseases. Then, L =

{
l1, l2, . . . , lnl

}
denotes the lncRNA set, and D =

{
d1, d2, . . . , dnd

}
is the disease set. We can describe the

known LDAs by constructing a 115× 178 dimensional adjacency matrix Y ∈ Rnl×nd . If the
lncRNA li is related to the disease dj, Y i,j = 1; otherwise, Y i,j = 0.

2.2. Disease Similarity

The disease similarity is usually described by directed acyclic graphs (DAGs) in recent
research [18,21,27,28]. In this study, the disease similarity is obtained by the following
steps. First, the MeSH descriptor for each disease is downloaded from the U.S. National
Library of Medicine. Second, based on the precise classification and semantic information
provided by the MeSH descriptor, we use the Directed Acyclic graphs (DAGs) to calculate
the disease semantic similarity. Let DAG(Di) = D(Di, N(Di), E(Di)) is the DAG of the
disease Di. In the expression above, the node set N(Di) contains all the nodes, and the edge
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set E(Di) contains all the direct links between nodes in the DAG(Di). For each disease Di,
the semantic value can be defined as follows:

Dsum(Di) = ∑
d∈DAG(Di)

DDi (d), (1)

DDi (d) =

{
1 i f d = Di,

max
{

δ× DDi (d
′
)|d′ ∈ children o f d

}
i f d 6= Di.

(2)

δ ∈ [0, 1] in (2) denotes the semantic contribution factor. According to the current
research methods, we set δ to be 0.5. The node’s contribution to itself is defined as 1.0.
The DAGs of the Digestive System Neoplasms and the Breast Gastrointestinal Neoplasms
are illustrated in Figure 1. According to Figure 1, the semantic values of these two dis-
eases can be calculated using Formulas (1) and (2). For Digestive System Neoplasms,
Dsum(Di) = 1.0 (Digestive System Neoplasms) + 0.5 (Digestive System Diseases) +
0.5 (Neoplasms by Site) + 0.5 × 0.5 (Neoplasms) = 2.25. For Breast Gastrointestinal
Neoplasms, Dsum(Di) = 1.0 (Breast Gastrointestinal Neoplasms) + 0.5 (Gastrointestinal
Diseases) + 0.5× 0.5 (Digestive System Diseases) + 0.5 (Digestive System Neoplasms) +
0.5× 0.5 (Neoplasms by Site) + 0.5× 0.5× 0.5 (Neoplasms) = 2.625.

Figure 1. DAGs of digestive system neoplasms and breast gastrointestinal neoplasms. (a) digestive
system neoplasms. (b) breast gastrointestinal neoplasms.
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Previous studies have shown that the more similar the structures of two diseases’
DAGs are, the greater the semantic contribution value will be. The semantic similarity
between two diseases di and dj can be calculated as the following formula:

Sdis(di, dj) =
∑ti∈(DAG(di)

⋂
DAG(dj))

(Ddi
(ti) + Ddj

(ti))

DSUM(di) + DSUM(dj)
, (3)

where Sdis is the disease semantic similarity matrix.
As shown in Figure 1, there are four kinds of nodes in the gather DAG(di)

⋂
DAG

(
dj
)
.

They are Neoplasms, Neoplasms by Site, Digestive System Diseases, and Digestive System
Neoplasms. Therefore, ∑ti∈(DAG(di)

⋂
DAG(dj))

(Ddi
(ti)) = 1.0 (Digestive System Neoplasms)

+ 0.5 (Digestive System Diseases) + 0.5 (Neoplasms by Site) + 0.5× 0.5 (Neoplasms)
= 2.25, ∑ti∈(DAG(di)

⋂
DAG(dj))

(Ddj
(ti)) = 0.5 × 0.5 (Digestive System Diseases) + 0.5

(Digestive System Neoplasms) + 0.5× 0.5 (Neoplasms by Site) + 0.5× 0.5× 0.5 (Neo-
plasms) = 1.125. Finally, the semantic similarity between Digestive System Neoplasms and
Breast Gastrointestinal Neoplasms is calculated according to the Formula (3): Sdis(di, dj) =
2.25 + 1.125
2.25 + 2.625 = 0.6923.

2.3. LncRNA Similarity

In previous studies, Chen et al. [29] proposed and tested the assumption that function-
ally similar lncRNAs are usually related to diseases with similar phenotypes, and vice versa.
In 2015, Chen et al. [29] obtained the functional similarity between two lncRNAs by cal-
culating the similarity between two sets of diseases associated with these two lncRNAs.
For example, l1 and l2 are two different lncRNAs. It is assumed that l1 and l2 are as-
sociated with two sets of diseases Dis1 = {d1, d2, . . . , dm} and Dis2 = {d1, d2, . . . , dn},
respectively. The similarity between a disease d (d ∈ Dis) and its set including k diseases
can be defined as:

Sdis(d, Dis) = max(Sdis(d, di)), (4)

where di ∈ Dis, 1 6 i 6 k. The similarity between l1 and l2 can be defined as the sum of
similarities between all diseases of the sets with the respective other set, normalized by the
size of the sets:

Sl(l1, l2) =
∑m

i=1 Sdis(d1i, Dis2) + ∑n
j=1 Sdis(d2j, Dis1)

m + n
, (5)

where d1i ∈ Dis1 and d2j ∈ Dis2.

2.4. Gaussian Interaction Profile (GIP) Kernel Simlarity

Previous studies [29–31] show that GIP kernel similarity can be constructed from
known LDAs to increase the topology structure of the LDA network. The similarity score
between disease di and dj can be defined as following:

KD(di, dj) = exp(−γd
∥∥Y(di)− Y(dj)

∥∥2
). (6)

The lncRNA network similarity between li and lj can be obtained in a similar way:

KL(li, lj) = exp(−γl
∥∥Y(li)− Y(lj)

∥∥2
), (7)

where γd and γl are the parameters that control the kernel bandwidth. In this study,

γd =
∑

µ
i=1‖Y(di)‖2

µ , and γl =
∑ν

i=1‖Y(li)‖
2

ν . Y(di) and Y(dj) are the disease interaction profiles.
Y(di) denotes the ith row vector in the incidence matrix. µ is number of diseases in the data
set. Y(li) and Y(lj) denote the lncRNA interaction profiles. Y(li) denotes the ith column
vector in the incidence matrix. ν is number of diseases in the data set.
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Relevant studies [29,32] have shown that logistic function transformation can improve
the predictive ability of disease-associated problems. Therefore, we take the logistic function
transform for KD and KL:

LD(di, dj) =
1

1 + ec·KD(di ,dj)+x
, (8)

LL(li, lj) =
1

1 + ec·KL(li ,lj)+x
. (9)

The value of parameter x is set to log(9999) in line with the previous study [30].
The parameter c is tuned by the experiments.

2.5. Similarity Fusion

Disease semantic similarity and disease GIP kernel similarity are linearly fused to
obtain the fused disease similarity matrix, and lncRNA functional similarity and lncRNA
GIP kernel similarity are linearly fused to obtain the fused disease similarity matrix.

FD = f1Sdis + f2LD, (10)

FL = f1Sl + f2LL. (11)

2.6. WKNKN Preprocessing

There may be some potentially unknown interactions in the known LDA matrix.
In this study, the WKNKN method is used to initialize the association probabilities for
potential interactions [33]. Specifically, the 0 values in the known LDA matrix are replaced
by the values between 0 and 1 by the following steps:

(1) The K nearest neighbors are picked out by K-nearest neighbor (KNN) algorithm for
each disease dj, and they are arranged in a descending order. The weighted average of the
similarities between the disease dj and its K nearest neighbors can be obtained as follows:

Yd(:, dj) =
1

Zd

K

∑
nd=1

wndYd(:, dnd), (12)

where wnd = ηnd−1FD(dnd, dj) denotes the weight coefficient, η 6 1 is a delay factor,
and Zd = ∑K

nd=1 FD(dnd, dj) is the normalization term.
(2) Similarly, the weighted average of the similarities between the lncRNA li and its K

nearest neighbors can be calculated as follows:

Y l(li, :) =
1
Zl

K

∑
nl=1

wnlY l(lnl , :), (13)

where wnl = ηnl−1FL(li, lnl) is the weight coefficient, η 6 1 is a delay factor, and
Zl = ∑K

nl=1 FL(li, lnl) is the normalization term.
(3) The zero entries in the known LDA matrix Y are replaced by the averages of Yd

and Y l . Then, Y i,j denotes the probability that the lncRNA li is related to the disease dj and
it can be defined as follows:

Y i,j =

{
Yd+Y l

2 , i f Y i,j = 0
Y i,j, i f Y i,j 6= 0

. (14)

2.7. Linear Neighborhood Similarity (LNS)

Roweis et al. [34] discovered that a data point and its neighboring data points are
close to the locally linear patch of the manifold in a feature space. Wang et al. [35]
revealed that each data point can be reestablished by its neighbors. In recent years, some
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researchers [18,36,37] obtained the pairwise similarity by reconstructing the data point
through its neighbors. Here, we calculate the similarity between two different lncRNA data
points (or two different disease data points) as previous work. Let xi, i = 1, . . . , nl denote
the feature vector of the lncRNA li in a feature space. Assume that the data point xi can be
reestablished by the linear combination of its neighbors, we write the objective function
and minimize the reconstruction error as follows:

εi =

∥∥∥∥∥∥∥xi − ∑
ij :xij

∈N(xi)

wi,ij xij

∥∥∥∥∥∥∥
2

+ λ‖wi‖2

= ∑
ij ,ik :xij

,xik
∈N(xi)

wi,ij G
i
ij ,ik wi,ik + λ‖wi‖2

= wT
i Giwi + λ ∑

xij∈N(xi)

(
wi,ij

)2

= wT
i (G

i + λI)wi

, (15)

s.t. ∑
ij :xij

∈N(xi)

wi,ij = 1, wi,ij > 0, j = 1, . . . , K.

where N(xi) is the set of K (0 < K < nl) nearest neighbors of the node xi. xij is the j-th
neighbor of xi. wi = (wi,i1 , wi,i2 , . . . , wi,iK )

T , and wi,ij is the reconstructive weight of xi from

xij . Gi ∈ RK×K and Gi
ij ,ik = (xi − xij)

T(xi − xik ). The regularization parameter λ is very
important for the optimization problem (13). In this paper, the parameter λ is set to 1 based
on the study of Ref. [37].

The optimization problem for each data point xi can be solved by using the standard
quadratic programming technique. Finally, the weight matrix W l with size nl × nl can be
obtained, which describes the pairwise similarity between nl lncRNAs. The weight matrix
Wd can also be calculated in the same way, which denotes the pairwise similarity between
nd diseases.

2.8. Unbalanced Bi-Random Walk

Inspired by the successful applications of bi-random walks in identifying drug-disease
associations [38], predicting miRNA-disease associations [39] and inferring LDAs [18], we
design a novel method (called MSF-UBRW) based on unbalanced bi-random walks on the
DSN and the LSN to identify potential LDAs. First, a bipartite G(V, E) is used to represent
LDAs. V denotes the set of vertices, and E is the set of edges. The weight of edge eij is
equal to 1 when the disease di is related to the lncRNA lj, otherwise eij = 0. Next, there
are many isolated nodes in the DSN and the LSN. In this study, LNS is used to overcome
this shortcoming. Finally, based on the assumption that similar diseases may be related
to similar lncRNAs, and vice versa, unbalanced bi-random walks are executed on the
DSN and the LSN simultaneously. Considering the differences in the topology of the two
networks, different random walk steps are performed on the DSN and the LSN.

The column-normalized adjacency matrix MD ∈ Rnd×nd of the DSN can be defined as:

MD(i, j) =


Wd(i,j)

∑
nd
p=1 Wd(p,j)

, if ∑nd
p=1 Wd(p, j) 6= 0

0, otherwise.
(16)

The column-normalized adjacency matrix ML ∈ Rnl×nl of the LSN can be calcu-
lated as:

ML(i, j) =


W l(i,j)

∑
nl
p=1 W l(p,j)

, if ∑nl
p=1 W l(p, j) 6= 0

0, otherwise.
(17)
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Let P ∈ Rnd×nl denote the association probability matrix. The element P(i, j) is the
probability that the disease i is associated with the lncRNA j. s1 and s2 denote the steps of
random walks on the DSN and the LSN, respectively. The iterative process of bi-random
walks can be defined as follows:

DSN : D(t+1)
P = (1− α) · P(t) ·MD + α · Y,

LSN : L(t+1)
P = (1− α) ·ML · P(t) + α · Y,

where α is a delay factor with a value ranging from 0.1 to 0.9. t denotes the number of
iterations. Y denotes the known association information. P(0) is the initial association
probability matrix, and P(0) = Y = Y/sum(Y(:)).

The flowchart of the MSF-UBRW algorithm is shown in Figure 2, and its pseudocode
is Algorithm 1.

Algorithm 1 MSF-UBRW

Input: Known association information Y, parameters K, c, s1, s2, η and α
Output: final LDA matrix F

1: GIP kernel similarity KL for lncRNAs;
2: GIP kernel similarity KD for diseases;
3: The logistic function LL for lncRNAs;
4: The logistic function LD for diseases;
5: Linear fusion: FD = f1Sdis + f2LD;
6: Linear fusion:FL = f1Sl + f2LL;
7: Pre-processing: Y = WKNKN(Y, FD, FL, K, η);
8: The lncRNA similarity matrix W l based on LNS;
9: The disease similarity matrix Wd based on LNS;

10: Initialization: F = 0 ;
11: P0 = Y/sum(Y(:));
12: Regularization:

MD(i, j) = Wd(i,j)
∑

nd
p=1 Wd(p,j)

, if ∑nd
p=1 Wd(p, j) 6= 0.

Otherwise, MD(i, j) = 0.
ML(i, j) = W l(i,j)

∑
nl
p=1 W l(p,j)

, if ∑nl
p=1 W l(p, j) 6= 0.

Otherwise, ML(i, j) = 0.
13: Iter = max([s1, s2]); //Iteration
14: for p = 1 : Iter
15: rD = 0;
16: rL = 0;
17: //Bi-randomly walking;
18: if p <= s1

19: D(t+1)
P = (1− α) · P(t) ·MD + α · Y;

20: rD = 1;
21: end
22: if p <= s2

23: L(t+1)
P = (1− α) ·ML · P(t) + α · Y;

24: rL = 1;
25: end
26: P(t+1) = (rD ·D

(t+1)
P + rL · L

(t+1)
P )/(rD + rL);

27: end
28: F = P(t+1);
29: Return F;
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Figure 2. Flowchart of MSF-UBRW.

3. Results
3.1. Performance Evaluation

In order to evaluate the performance of the MSF-UBRW method in predicting undiscov-
ered LDAs, 5-fold CV and LOOCV are performed on the gold standard dataset downloaded
from the LncRNADisease database [28]. In 5-fold CV, all known LDAs are randomly di-
vided into 5 parts. Each part serves as the testing samples in turn and the others as the
training samples. In this experiment, 5-fold CV is run 100 times to take the average value.
In LOOCV, each known LDA is treated as the test sample in turn, and the remaining known
LDAs are treated as the training samples. In 5-fold CV and LOOCV, the test samples are
compared with all unknown LDAs. Area Under Curve (AUC) is the final evaluation metric.
Previous studies [21] have shown that this method is meaningless when AUC is between
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0 and 0.5. When AUC lies between 0.5 and 1, the larger the AUC value is, the better the
prediction performance of this method will be.

3.2. Comparison with Other Methods

In this paper, the MSF-UBRW method is compared with the other five prediction meth-
ods, namely, LDA-LNSUBRW [18], HAUBRW [27], LLCLPLDA [26], LRLSLDA [20], and
RWRlncD [24]. First, the MSF-UBRW method is compared with these prediction methods
in 5-fold CV. The AUC values of these six methods are shown in Table 1. The MSF-UBRW
method achieves the AUC value of 0.9183 (±0.0054), which is higher than the AUC values
of the other methods (LDA-LNSUBRW: 0.8632 (±0.0051), HAUBRW: 0.8617 (±0.0064), LL-
CLPLDA: 0.8153 (±0.0046), LRLSLDA: 0.7448 (±0.0041) and RWRlncD: 0.6425 (±0.0051)).
Table 1 also presents the prediction results of the MSF-UBRW method and other five meth-
ods (LDA-LNSUBRW, HAUBRW, LLCLPLDA, LRLSLDA, and RWRlncD) via LOOCV.
The MSF-UBRW method performs the best in predicting LDAs and its AUC value achieves
0.9391, which exceeds the other five methods (LDA-LNSUBRW: 0.8874, HAUBRW: 0.8693,
LLCLPLDA: 0.8678, LRLSLDA: 0.8174 and RWRlncD: 0.6804). Figures 3 and 4 show intu-
itively the comparison of the prediction performance of these six methods in 5-fold CV and
LOOCV, respectively.

Table 1. Auc results of six methods.

Methods Five-Fold CV LOOCV

MSF-UBRW 0.9183 (±0.0054) 0.9391
LDA-LNSUBRW 0.8632 (±0.0051) 0.8874
HAUBRW 0.8617 (±0.0064) 0.8693
LLCLPLDA 0.8153 (±0.0046) 0.8678
LRLSLDA 0.7448 (±0.0041) 0.8174
RWRlncD 0.6425 (±0.0051) 0.6804

Figure 3. The ROC curves of the six methods (MSF-UBRW, LDA-LNSUBRW, HAUBRW, LLCLPLDA,
LRLSLDA and RWRlncD) based on the 5-fold CV method.
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Figure 4. The ROC curves of the six methods (MSF-UBRW, LDA-LNSUBRW, HAUBRW, LLCLPLDA,
LRLSLDA and RWRlncD) based on the LOOCV method.

3.3. Parameters Analysis

Here, we use the 5-fold CV and LOOCV to select the most appropriate parameters
in the MSF-UBRW method. First, for the parameter c in the logistic function, it ranges
from −1 to −21. From Figure 5, we can see that MSF-UBRW can gain the best prediction
performance when c is equal to −19 in 5-fold CV and −21 in LOOCV. As shown from
Figure 6, f1 and f2 is set to 1 and 9 in 5-fold CV, respectively. According to Figure 7, f1 and f2
is set to 2 and 10 in LOOCV, respectively. Next, for the number of known nearest neighbors
K and the delay factor η in WKNKN, K is adjusted from 1 to 10 and η is adjusted from 0.1
to 1. According to Figures 8 and 9, we finally set K = 9 and η = 1 in 5-fold CV, while K = 7
and η = 1 in LOOCV. Third, for the number of lncRNA neighbors kl and the number of
disease neighbors kd in LNS, they are adjusted from 10 to 100, increasing by 10 each time.
In fact, the number of lncRNA neighbors is less than the total number of lncRNAs, and the
same is true for diseases. Considering the computational complexity, the maximum value
of kl and kd is set to 100. As shown from Figure 10, kl and kd is set to 40 and 20 in 5-fold CV,
respectively. According to Figure 11, kl and kd is set to 40 and 60 in LOOCV, respectively.
Finally, we determine the maximum numbers of bi-random walks steps s1 and s2 on DSN
and LSN. A grid searching method is conducted to analyze the parameters s1 and s2 via
5-fold CV and LOOCV. As seen from Figures 12 and 13, the MSF-UBRW method achieves
the highest AUC values when s1 = 5 and s2 = 1 in 5-fold CV and s1 = 3 and s2 = 1 in
LOOCV. There is also a delay factor α in the bi-random walk algorithm. α is adjusted from
0.1 to 0.9. The prediction performance as α changes as shown in Figure 14. Obviously, α
should be equal to 0.9 in both 5-fold CV and LOOCV.
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Figure 5. Sensitivity analysis of parameter c.

Figure 6. Sensitivity analysis of parameter f1and f2.

Figure 7. Sensitivity analysis of parameter f1 and f2.
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Figure 8. Sensitivity analysis of parameter K.

Figure 9. Sensitivity analysis of parameter η.

Figure 10. Joint sensitivity analysis of parameters kl and kd.
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Figure 11. Joint sensitivity analysis of parameters kl and kd.

Figure 12. Joint sensitivity analysis of parameters s1 and s2.

Figure 13. Joint sensitivity analysis of parameters s1 and s2.
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Figure 14. Sensitivity analysis of parameter α.

3.4. Case Studies

To further verify the prediction ability of the MSF-UBRW method, case studies of
human diseases are performed in this section. Three common cancers are selected for
verification: prostate cancer, ESCC, and NSCLC. The final prediction matrix is obtained
by the MSF-UBRW method. The predicted scores are ranked in descending order for
the column and the top 20 lncRNAs are selected for analysis. The prediction results are
validated by two databases: Disease v2.0 (http://www.rnanut.net/lncrnadisease/) and
Lnc2Cancer 3.0/ (http://bio-bigdata.hrbmu.edu.cn/lnc2cancer/).

Prostate cancer is caused by malignant hyperplasia of prostate epithelial cells with
a very high incidence of the urinary system. It is closely related to age. The older the
age, the higher the incidence. The early symptoms of the disease are not obvious, and the
symptoms of metastasis are prone to appear, which will endanger the life of the patients.
The top 20 lncRNAs with higher predicted scores related to prostate cancer are listed in
descending order in Table 2. From Table 2, we can find that 13 known LDAs in the gold
standard dataset are predicted successfully. We use the database LncRNADisease v2.0 and
Lnc2Cancer 3.0 to verify whether the other 7 lncRNAs are associated with prostate cancer.

Recent studies [40] revealed that the CDKN2B-AS1 is overexpressed in prostate cancer.
Du et al. [41] found that XIST is down-regulated in prostate cancer specimens and cell
lines, and has a tumor suppressor effect in prostate cancer. Its regulatory role will provide
new ideas for epigenetic diagnosis and treatment of prostate cancer. Huo et al. [42]
demonstrated that BCYRN1 was overexpressed in prostate tumors. Some studies [43,44]
revealed PTENP1 may act to suppress prostate cancer. So far, NPTN-IT1 and BOK-AS1
have not been found to be related to prostate cancer.

ESCC belongs to the category of esophageal malignant tumors. The main symptoms
of ESCC are pain and difficulty swallowing after eating hard and dry food, which brings
great pain to the patients. The cause of ESCC is not yet fully understood, and its treatment
remains a worldwide problem till now. From Table 3, we can see that 13 known LDAs are
predicted successfully. By searching in the database LncRNADisease v2.0 and Lnc2Cancer
3.0, six lncRNAs (GAS5, MEG3, PVT1, NEAT1, XIST and CCAT1) associated with ESCC are
confirmed. Wang et al. [45] found that the expression of GAS5 was significantly reduced
in ESCC patients and it can act as a tumor suppressor factor. Huang et al. [46] revealed
that MEG3 decreased significantly in ESCC tissues. Zhang et al. [47] reported that the
lncRNA CCAT1 was significantly up-regulated in ESCC tissues compared with normal
tissues, and it was related to the prognosis. The up-regulation of XIST expression promoted
the proliferation of ESCC cells [48]. Besides, PVT1 and NEAT1 were also verified to be
related to ESCC [49–52]. BCYRN1 has not been confirmed to be associated with ESCC.

http://www.rnanut.net/lncrnadisease/
http://bio-bigdata.hrbmu.edu.cn/lnc2cancer/
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Table 2. Top 20 identified lncRNAs for prostate cancer.

Rank lncRNA Evidence

1 HOTTIP LncRNADisease v2.0
2 H19 LncRNADisease v2.0
3 MALAT1 LncRNADisease v2.0
4 GAS5 LncRNADisease v2.0
5 MEG3 LncRNADisease v2.0
6 HOTAIR LncRNADisease v2.0
7 KCNQ1OT1 LncRNADisease v2.0
8 UCA1 LncRNADisease v2.0
9 PVT1 LncRNADisease v2.0
10 HULC Lnc2Cancer 3.0
11 DANCR LncRNADisease v2.0
12 NEAT1 LncRNADisease v2.0
13 PCA3 LncRNADisease v2.0
14 CDKN2B-AS1 PMID: 31438464
15 XIST PMID: 16261845;29212233
16 BCYRN1 PMID: 32705287
17 NPTN-IT1 unconfirmed
18 BOK-AS1 unconfirmed
19 PTENP1 PMID: 25461816;20577206
20 PCAT1 PMID: 22664915

Table 3. Top 20 identified lncRNAs for esophageal squamous cell carcinoma.

Rank lncRNA Evidence

1 H19 PMID:31551175
2 MALAT1 LncRNADisease v2.0
3 HOTAIR LncRNADisease v2.0
4 UCA1 PMID: 30002691
5 TUG1 PMID: 31742924
6 CDKN2B-AS1 PMID: 25239644
7 MINA unconfirmed
8 SPRY4-IT1 PMID: 27250657
9 HNF1A-AS1 PMID: 25608466
10 SOX2-OT PMID: 24105929
11 CCAT2 PMID: 25919911
12 TUSC7 PMID: 29530057
13 FOXCUT unconfirmed
14 GAS5 PMID: 29170131; 31866421
15 MEG3 PMID: 28405686; 28539329
16 BCYRN1 unconfirmed
17 PVT1 PMID: 33848670;28404954
18 NEAT1 PMID: 29147064; 26609486
19 XIST PMID: 33345719
20 CCAT1 PMID: 27956498

Lung cancer is currently the cancer that causes the highest mortality among malignant
tumors in China. Compared to small cell lung cancer, NSCLC develops and spreads more
slowly, but it is usually found to be very advanced and difficult to control and treat. There
are 15 lncRNAs associated with NSCLC in the oringinal dataset. In this experiment, all these
15 lncRNAs have been confirmed to be associated with NSCLC. LncRNAs H19,CDKN2B-
AS1,BCYRN1, UCA1 and LSINCT5 are demonstrated to be associated with NSCLC in the
database LncRNADisease v2.0 and Lnc2Cancer 3.0. Evidences that these four lncRNAs
are related to NSCLC are shown in Table 4 [53–60]. There is no evidence to prove that
CDKN2B-AS1 is associated with NSCLC.
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Table 4. Top 20 identified lncRNAs for non-small cell lung cancer.

Rank lncRNA Evidence

1 GAS5 LncRNADisease v2.0
2 PVT1 LncRNADisease v2.0
3 MALAT1 LncRNADisease v2.0
4 HOTAIR LncRNADisease v2.0
5 XIST LncRNADisease v2.0
6 MEG3 LncRNADisease v2.0
7 NEAT1 LncRNADisease v2.0
8 CCAT2 LncRNADisease v2.0
9 BANCR LncRNADisease v2.0
10 CCAT1 LncRNADisease v2.0
11 TUG1 LncRNADisease v2.0
12 HIF1A-AS1 PMID: 26339353
13 ADAMTS9-AS2 unconfirmed
14 LINC00261 Lnc2Cancer 3.0
15 PANDAR LncRNADisease v2.0
16 H19 PMID: 30214583; 31219199
17 CDKN2B-AS1 PMID: 31775885
18 UCA1 PMID:31938341; 31951852
19 BCYRN1 PMID: 25866480;32016455
20 LSINCT5 PMID: 29883241

4. Conclusions

More and more studies have found that changes in lncRNA expression patterns are
associated with specific diseases. Building computational models to predict LDAs is not
only a meaningful complement to experimental methods, but also helps researchers to gain
insight into the pathogenesis of diseases. In this study, based on GIP and LNS, MSF-UBRW
performs unbalanced bi-random walks in the LSN and DSN based on multiple similarities
fusion to find new LDAs. Compared with LDA-LNSUBRW, HAUBRW, LLCLPLDA,
LRLSLDA, and RWRlncD methods, the MSF-UBRW method achieves the highest AUC
values under 5-fold CV and LOOCV. In addition, case studies of prostate cancer, ESCC,
and NSCLC also confirm the prediction ability of the MSF-UBRW method.

Although the MSF-UBRW method has achieved good prediction results, it still have
some limitations. Existing experimental data are inadequate, which limits the prediction
performance of the MSF-UBRW method. In the future, as more LDA data are available,
the MSF-UBRW method will be improved. However, the complexity and heterogeneity
of biological data also bring some difficulties in improving the prediction ability of the
algorithm. In the future, we will integrate data from different sources and improve the
integrity and quality of experimental data to achieve higher prediction performance.
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Abbreviations
The following abbreviations are used in this manuscript:

LDAs lncRNA-disease associations
MSF-UBRW multiple similarities fusion based on unbanlanced bi-random walk
GIP Gaussian Interaction Profile
LOOCV leave-one-out cross-validation
NMF non-negative matrix factorization
LSN lncRNA similarity network
DSN disease similarity network
WKNKN weighted K-nearest known neighbors
ESCC esophageal squamous cell carcinoma
NSCLC small cell lung cancer
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