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Abstract: 22q11.2 deletion syndrome (22q11DS) is a clinically heterogeneous genetic syndrome,
associated with a wide array of neuropsychiatric symptoms. The clinical presentation is likely to be
influenced by environmental factors, yet little is known about this. Here, we review the available
research literature on the role of the environment in 22q11DS. We find that within-patient design
studies have mainly investigated the role of parental factors, stress, and substance use, reporting
significant effects of these factors on the clinical profile. Case-control studies have been less successful,
with almost no reports of significant moderating effects of the environment. We go on to hypothesize
which specific environmental measures are most likely to interact with the 22q11 deletion, based on
the genes in this region and their involvement in molecular pathways. We end by discussing potential
reasons for the limited findings so far, including modest sample sizes and limited availability of
environmental measures, and make recommendations how to move forward.

Keywords: 22q11DS; copy number variation; gene-environment interaction; clinical heterogeneity;
neuropsychiatric disorders

1. Introduction

22q11.2 deletion syndrome (22q11DS, OMIM #192430/188400) is a genetic syndrome
associated with a microdeletion on the long arm of chromosome 22 [1]. The clinical pheno-
type is highly heterogeneous and may include obesity [2], heart defects, facial anomalies,
immune-related issues, and developmental delay [3]. Individuals with this syndrome fur-
ther have a 20-fold increase in the risk of developing schizophrenia [4–6], and it is associated
with a range of other neuropsychiatric disorders [7,8] including autism spectrum disorder
(ASD) [9], intellectual disability [10], attention deficit hyperactivity disorder (ADHD) [11],
Parkinson’s disease [12], anxiety, and depression [13]. Patients with 22q11DS also exhibit a
wide range of impairments in the linguistic, affective, and cognitive domains [14–19].

While the 22q11.2 deletion strongly impacts mental health, 22q11DS is characterised by
a high level of phenotypic heterogeneity [20]. The complex interplay between many genetic
and environmental factors that regulate neurodevelopment underlies the significant clinical
variability observed among 22q11DS individuals [21]. Identifying the factors explaining
this heterogeneity may enable more effective, personalised treatment and more accurate
prognoses for 22q11DS patients, and inform our understanding of mechanisms of mental
illness more broadly.

The 22q11DS prevalence is 1:3672 based on national registry data [1,22]; there are
difficulties for in-depth research due to a lack of adequate sample sizes. However, the
aggregation of carriers through large-scale collaborations, such as the Psychiatric Ge-
nomics Consortium (PGC) [23] and Enhancing NeuroImaging through Meta-Analysis
(ENIGMA) [24], is now making possible well-powered studies with an accumulation of
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neurobiological information. Other consortia, such as the International 22q11.2 Brain Be-
haviour (IBBC) [25] and the NIMH-funded Genes to Mental Health (G2MH) initiative [26],
in addition to aggregation of data, have enabled deep phenotyping using standardised
instruments across research groups. This may allow us to identify those environmental
factors that determine to what extent carriers suffer from the detrimental effects of the
22q11 deletions. This is valuable, given that until recently, the focus of 22q11DS research
has been concentrating mainly on neurobiology, and environmental factors to date have
received little attention.

The goal of this short review is to provide a brief update on our knowledge of the
role of environmental factors in moderating the effects of 22q11DS on mental health and
cognition and the underlying biological mechanisms. In general, studies looking into the
role of the environment in explaining the clinical heterogeneity of 22q11DS individuals
have followed two approaches, leveraging either within- or between-group designs (see
Table 1).

Table 1. Overview of the reviewed sources grouped by the type of the study separately for within
22q11DS and between-group studies.

Author Age Range Sample Size Environmental Factor Outcome Measure Significance *

Within 22q11DS

Parental influence

Sandini et al., 2020
[27]

Patients > 11 years
old

103 patients in a
total sample

Parental anxiety and
depression

Children’s
psychopathology +

Briegel and
Andritschky 2021

[28]

4–14 years old and
their mothers

41 children for the
analysis Maternal stress

Children’s
behaviour
problems

-

Allen et al., 2014
[29] 9–18 years old 48 children and

adolescents Parenting style
Children’s
behaviour
problems

+

Klaassen et al.,
2016 [30] 5.2–15.9 years old 171 children Parental Intelligence The intelligence of

the offspring +

Socio-economic status (SES)

Olszewski et al.,
2014 [31]

11.8 ± 2.0 years
old 73 children Parental education The intelligence of

the offspring +

Shashi et al. 2012
[32]

10.5 ± 2.6 years
old 66 children Parental SES Social competency +

Stress

Gur et al., 2021 [33] 24.6 ± 9.3 years
old 80 patients Peer victimisation Reports of anxi-

ety/depression +

Armando et al.,
2018 [34] 12 to 25 years old 59 patients Past stress load Dysfunctional

coping strategies +

Substances

Vingerhoets et al.,
2019 [35]

30.91 ± 12.65 years
old 434 adults Substance use Psychosis -

Between-groups

Parental influence
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Table 1. Cont.

Author Age Range Sample Size Environmental Factor Outcome Measure Significance *

Serur et al., 2022
[36] 3–8 years old

24 children with
22q11DS,

28 children with
idiopathic ASD
and 23 typically

developed children

Parental expressed
emotions

Children’s
behavioural

problems
-

Socio-economic status (SES)

Shashi et al., 2010
[37]

10.2 ± 2.6 years
old for patients

65 children with
22q11DS and

52 controls
SES Cognition -

Stress

van Duin et al.,
2019 [38]

34.11 ± 9.81 years
old for patients

27 adults with
22q11DS and
24 age/sex-

matched healthy
controls

Activity-related stress Cortisol reactivity +

Schneider et al.,
2020 [18]

34.11 ± 9.81 years
old for patients

27 adults with
22q11DS and
24 matched

controls

Daily-life stressors
Affective and

psychotic
reactivity

-

* Indication of whether the results were significant (“+”) or not (“-”) was based on the study-defined significance
threshold.

2. Within-Group Studies

One group of studies has investigated environmental effects in cohorts of 22q11DS pa-
tients. Studies looking into the role of maternal stress on children’s behaviour problems [28],
of substance use on psychosis [35], of the character of a close relationship, of stressful
events and neighbourhood danger on anxiety and depression [33], and general history of
trauma [39] have reported non-significant findings. Other studies have shown significant
effects of the following environmental factors: (1) 22q11DS patients with higher levels of
parental anxiety or depression had significant increases in psychopathology [27]; (2) more
usage of physical punishment was linked to higher levels of problem behaviours [29];
(3) individuals with higher parental education or parent intelligence showed higher IQ
scores [30,31]; (4) higher parental socio-economic status (SES) correlated with higher social
competency of patients [32], less frequent behaviour problems [37] or patients’ better global
functioning [39]; (5) higher stress load—the number of negative life events, was associated
with psychotic symptoms, e.g., hallucinations and delusions, as well as with dysfunctional
coping strategies [34]; and (6) higher scores on peer victimisation and hostile close rela-
tionships were related to reports of both higher levels of anxiety and depression as well
as to impaired tolerance to normal stress in patients [33]. This general overview makes
apparent the many gaps in our understanding of the role of the environment in 22q11DS.
Most identified studies investigated the role of parental factors, stress, or substance use on
cognition or behaviour. More studies looking into other factors of the environment, such
as migration [40], poverty [41], patient lifestyle [42], family structure changes [43], social
support [44], and drug exposure [45] are necessary, particularly because these factors have
generally been implicated in psychosis risk, and 22q11DS is a major known risk factor for
psychosis [46] (see Figure 1).
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studies. One of the possible explanations for this is that the information for parents is often 
not available for the control group. Detecting differences in the effects of environmental 
factors between the controls and 22q11DS individuals demands more complex statistical 
models due to the inclusion of the interaction term [47] requiring bigger samples [48]. Yet, 
with an increase in the sample size, this approach could provide more insight into under-
lying mechanisms than the within-group design. Case-control studies have the advantage 
that differences in response to environmental factors allow us to identify which behav-
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and controls, which points towards biological mechanisms underlying the pathology of 
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Figure 1. Visualisation of types of environmental factors, with on the left side those studied in relation
to 22q11DS clinical heterogeneity (stress, parents’ education, peer violence, parents’ psychopathology,
substance use, socio-economic status) and on the right side those that remain under investigated
(birth complications, infection, social interactions, migration, urbanicity, family structure).

3. Between-Group Studies

The other group of studies has employed the gene-environment interaction (GxE)
approach, with an interaction term between 22q11DS status and specific environmental
factors, in case-control samples. These studies have investigated the moderating effects of
activity-related stress on cortisol reactivity [38], parental expressed emotions on children’s
behavioural problems [36], SES on cognition [37], and daily-life stressors on affective
and psychotic reactivity [18]. However, among these studies, only one had a significant
interaction effect. Specifically, higher activity-related stress in 22q11DS was associated
with blunted cortisol response [38]. Factors central to within-22q11DS studies, such as
parental intelligence or social interactions, have so far received little attention in such
case-control studies. One of the possible explanations for this is that the information for
parents is often not available for the control group. Detecting differences in the effects
of environmental factors between the controls and 22q11DS individuals demands more
complex statistical models due to the inclusion of the interaction term [47] requiring bigger
samples [48]. Yet, with an increase in the sample size, this approach could provide more
insight into underlying mechanisms than the within-group design. Case-control studies
have the advantage that differences in response to environmental factors allow us to
identify which behavioural domains are most vulnerable. Relative to within-group design,
case-control studies allow us to identify differences in sensitivity to environmental factors
between 22q11DS and controls, which points towards biological mechanisms underlying
the pathology of 22q11DS.

4. Biological Mechanisms

A more theory-driven approach to choosing environmental factors for studies would
be beneficial, based on the symptoms of 22q11DS, and the possible biological mechanisms
involved. For example, biological measures, such as hormones, inflammatory markers, or
brain morphology, may mediate the effects of the environment on the clinical heterogeneity
of 22q11DS. Neuroimaging studies have identified such mediators—neuroanatomic abnor-
malities linked to 22q11DS aetiology [49], as well as brain connectivity dysfunction [50].
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Five genes in the 22q11.2 region [51] have been mainly implicated in the neuropsy-
chiatric phenotype: proline dehydrogenase (PRODH) [52], DiGeorge Critical Region 8
(DGCR8) [53], catechol-o-methyltransferase (COMT) [54], T-box 1 (TBX1) [55], and septin 5
(SEPT5) [56]. The knowledge of the biological function of these genes and how environmen-
tal factors might impair their functionality may further point to potential environmental
influence underlying 22q11DS heterogeneity.

PRODH codes for proline dehydrogenase, an enzyme that catalyses the first step
in proline degradation. It is essential for proline protection against hydrogen peroxide-
induced cell death [57]. The presence of an excessive amount of hydrogen peroxide and
severe reduction of proline dehydrogenase activity could lead to poor cell response to
oxidative stress, and eventually, cell death [57]. Hydrogen peroxide levels are increased by
certain environmental stresses, such as smoking, radiation, toxins, and inflammation [58,59],
meaning that the reduced expression of PRODH combined with environmental stressors
makes cells more vulnerable to oxidative stress. Early childhood factors, such as maternal
smoking, neighbourhood quality and PRODH activity, could be candidates for future
interaction studies.

The DGCR8 protein binds with Drosha—the primary nuclease that executes the
initiation step of miRNA processing in the nucleus. The disruption of Drosha function
could lead to genome instability and lower its antiviral activity [60]. Stressful events [61]
and lower SES [62] are associated with lower pathogen defence, meaning that DGCR8
hemizygosity—the presence of only one copy of a gene, and related decreased resistance
to infection due to environmental factors could contribute to the worsening of the clinical
picture in the case of 22q11DS.

The COMT enzyme takes part in the degradation of catecholamines, such as dopamine
and norepinephrine, and is connected to a number of mental conditions, such as schizophre-
nia, ADHD, and bipolar disorder [63,64]. Studies have shown that COMT polymorphisms
interact with parenting quality to influence attention in children [65], moderate the role of
environmental stress on negative affect in nonaffective psychotic disorder patients [66], and
moderate the relationships between a number of traumatic events and PTSD risks [67]. Since
COMT contributes to various mental disorders, further studies are needed on childhood
stress triggers, including low SES, migration, adversity, family structure, and trauma [68].

TBX1 is a DNA-binding protein involved in developmental processes, which has effects
on specific cognitive functions (spatial memory and cognitive flexibility) in mice models [69].
Various environmental factors contributing to the same cognitive domains, such as adverse
childhood experiences [70], maternal immune activation [71], and stress [72], could enhance
the effect of TBX1 malfunction and increase the number of symptoms of neuropsychiatric
disorders.

SEPT5 codes for a nucleotide-binding protein, Septin-5 and its disruption leads to
impaired cytokinesis. It is involved in molecular pathways involved in Parkinson’s dis-
ease [73]. Environmental influences that might contribute to Parkinson’s disease, such as
toxins (neurotoxin MPTP [74], pesticides, solvents, metals [75]), and infection [76], could
also be investigated as potential interaction factors with 22q11.2 deletion. Closer attention
to stress factors, maternal infection, toxins, and substance use during pregnancy of a mother
and the first years of a patient’s life in research might lead us to a better understanding of
clinical trajectories of 22q11DS.

5. Future Directions

The lack of research into the moderating role of environmental factors can for an
important part be attributed to the limited environmental data available for 22q11DS.
Differences in data collection and instruments between the clinical cohorts with 22q11DS
patients’ information further hinder the identification of interaction effects, as they impede
aggregation of the required sample sizes. One of the solutions could be standardised
and comprehensive questionnaires among research teams working on 22q11DS covering
all likely categories of environmental factors affecting carriers, for example, maternal
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stress, birth complications and infections, SES (parent’s education, urbanicity, migration,
poverty), lifestyle (substances use, sleep quality, physical activity), home environment
(parenting, family environment), social environment (harassment, trauma, stressful events),
and cognitive tests evaluating different cognitive domains, as implemented by the G2MH
consortium [26]. Between-cohort differences in recruitment further add to difficulties
in identifying the causes of clinical heterogeneity, as population cohorts tend to contain
relatively less-affected cases than clinical cohorts, hindering cross-cohort analyses.

Pending data availability, research into the role of ethnicities, such as analyses of
non-European and non-American samples [77,78], may contribute to a greater understand-
ing of the clinical heterogeneity of the disorders associated with 22q11DS. Furthermore,
transparency in data sharing should be reached, ideally through the creation of a common
database with widely available access for researchers. The different age ranges in the
mentioned studies make it challenging to generalize the results, necessitating separate
analyses for children and adults. As well as the data for children and adults, data for
similar patients across the lifespan will provide researchers with information about how
22q11DS representation changes with age. Additionally, the collection of data from parents
and siblings of 22q11.2 deletion carriers is valuable to evaluate the environmental influence
of the family-determined factors, as in the G2MH consortium.

Research has further shown that besides the influence of environmental measures on
the presentation of the 22q11DS, the heterogeneity of the symptoms of 22q11.2 deletions
carriers highly depends on (1) the size of the deletion [49], (2) the particular part of the
22q11.2 locus that is deleted [79], (3) the developmental stage in which CNVs occur (leading
to mosaicism) [80], and (4) other genetic variables, such as CNVs in other regions and SNPs
in associated genes [81,82]. Hence gene × gene interactions are potential research targets,
along with the above-mentioned G × E analyses. There is a genetic component in certain
environmental measures, such as parental education or SES. Clarification of the role of
the environment in 22q11DS requires us to tease apart this genetic component from the
environmental influence.

6. Conclusions

It is evident that the role of the environment in explaining 22q11DS clinical hetero-
geneity has remained under investigated. With an increase in the number of recent papers
on 22q11DS-disorder and 22q11DS-environmental factors links within the affected indi-
viduals’ group, a lot of progress is expected in upcoming years, through studies involving
interaction between 22q11DS status and environmental factors. Integration of knowledge
from different fields, such as genetics, biochemistry, and cognitive neuroscience, may be
leveraged to identify several potential targets for interaction analysis in 22q11DS research.
Using the knowledge of the genes involved in the pathology of 22q11DS, their function and
environmental factors contributing to their activity could lead to biology-based theories
of gene × environment interaction in 22q11DS, inspiring interaction models that explain
clinical heterogeneity. Ultimately, knowledge of environmental factors involved in 22q11DS
and their influence on the biological level could lead to more personalised medicine and
better clinical outcomes in the future.
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